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Background: Clear cell renal cell carcinoma (ccRCC) accounts for 80% of all kidney cancers
and has a poor prognosis. Recent studies have shown that copper-dependent, regulated cell
death differs from previously known death mechanisms (apoptosis, ferroptosis, and
necroptosis) and is dependent on mitochondrial respiration (Tsvetkov et al., Science, 2022,
375 (6586), 1254–1261). Studies also suggested that targeting cuproptosis may be a novel
therapeutic strategy for cancer therapy. In ccRCC, both cuproptosis and lncRNA were critical,
but the mechanisms were not fully understood. The aim of our study was to construct a
prognostic profile based on cuproptosis-associated lncRNAs to predict the prognosis of
ccRCC and to study the immune profile of clear cell renal cell carcinoma (ccRCC).

Methods: We downloaded the transcriptional profile and clinical information of ccRCC
from The Cancer Genome Atlas (TCGA). Co-expression network analysis, Cox regression
method, and least absolute shrinkage and selection operator (LASSO) method were used
to identify cuproptosis-associated lncRNAs and to construct a risk prognostic model. In
addition, the predictive performance of the model was validated and recognized by an
integrated approach. We then also constructed a nomogram to predict the prognosis of
ccRCC patients. Differences in biological function were investigated by GO, KEGG, and
immunoassay. Immunotherapy response was measured using tumor mutational burden
(TMB) and tumor immune dysfunction and rejection (TIDE) scores.

Results:We constructed a panel of 10 cuproptosis-associated lncRNAs (HHLA3, H1-10-
AS1, PICSAR, LINC02027, SNHG15, SNHG8, LINC00471, EIF1B-AS1, LINC02154, and
MINCR) to construct a prognostic prediction model. The Kaplan–Meier and ROC curves
showed that the feature had acceptable predictive validity in the TCGA training, test, and
complete groups. The cuproptosis-associated lncRNA model had higher diagnostic
efficiency compared to other clinical features. The analysis of Immune cell infiltration
and ssGSEA further confirmed that predictive features were significantly associated with
the immune status of ccRCC patients. Notably, the superimposed effect of patients in the
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high-risk group and high TMB resulted in shorter survival. In addition, the higher TIDE
scores in the high-risk group suggested a poorer outcome for immune checkpoint
blockade response in these patients.

Conclusion: The ten cuproptosis-related risk profiles for lncRNA may help assess the
prognosis and molecular profile of ccRCC patients and improve treatment options, which
can be further applied in the clinic.

Keywords: cuproptosis, lncRNA, ccRCC, prognostic model, bioinformatics

INTRODUCTION

Renal cell carcinoma is a common genitourinary malignancy that
causes nearly 170,000 deaths each year. Themost common histologic
type of renal cell carcinoma is clear cell renal cell carcinoma (ccRCC),
which accounts for approximately 80% of cases (Delman, 2020). Due
to the asymptomatic nature of renal clear cell carcinoma, metastases
are usually already present at the time of diagnosis. Surgery is also
difficult to remove renal cell carcinoma metastases, and recurrence is
common after nephrectomy. Also, ccRCC differs from other urologic
tumors in that it is insensitive to both radiotherapy and
chemotherapy (Ljungberg et al., 2015). As a highly immunogenic
tumor, ccRCC may benefit from immunotherapy. Although
immunotherapy has indeed made considerable breakthroughs in
ccRCC, treatment outcomes still vary from individual to individual
(Motzer et al., 2019). Therefore, there is an urgent need to better
understand the heterogeneity of ccRCC patients and establish an
accurate and comprehensive risk model to stratify patients to design
personalized treatment plans in terms of prognosis prediction and
drug selection.

Long non-coding RNA (lncRNA) refers to RNAs that are
longer than 200bp and do not have protein-coding functions,
which play an important regulatory role in immune response
processes, such as immune cell infiltration, antigen recognition,
antigen exposure, and tumor clearance (Quinn and Chang, 2016).

LncRNAs play specific roles in carcinogenesis and metastasis
by transcription and post-transcriptional modifications of genes
(Du et al., 2020; Gao et al., 2020; Liu et al., 2021). Lv pointed out
that lncRNAs were associated with tumor autophagy in
ccRCC(9). At the same time, a number of studies have shown
that lncRNAs can influence the expression of target genes by
acting as competing RNAs (Liu and Lei, 2021; Shan et al., 2022a;
Zhang et al., 2022). LncRNAs are also connected to drug
resistance in tumors (Barik et al., 2021). However, studies on
the role of cuproptosis-associated lncRNAs in ccRCC prognosis
and tumor immunity (TIME) are still unclear.

Copper is an indispensable cofactor for all organisms to maintain
life activities, as it plays an important role in biological processes such
as mitochondrial respiration, antioxidant/detoxification, and iron
uptake (Ruiz et al., 2021). However, it can become harmful if the
concentration of copper in the body exceeds the threshold that can be
maintained by homeostatic mechanisms. Recent studies have
indicated that copper-regulated cell death occurs in a manner that
is different from previously known death mechanisms (apoptosis,
ferroptosis, and necroptosis) and that it is closely linked to
mitochondrial respiration. Specifically, cuproptosis occurs through

direct binding of copper to the lipidated components of the
tricarboxylic acid (TCA) cycle. The combination of the two will
lead to lipid-acylated protein aggregation and subsequent loss of iron-
sulfur cluster proteins, further leading to proteotoxic stress and
ultimately cell death (Tsvetkov et al., 2022). Several links have
been observed between copper and cancer. Copper accumulation
is closely associated with tumor cell development, angiogenesis, and
metastasis (Lelièvre et al., 2020; Li, 2020; Ruiz et al., 2021; Ge et al.,
2022). Currently, the mechanism of copper-mediated death
regulation in tumors is unclear, and studies on the role of copper-
death-associated lncRNAs in ccRCC are inconclusive. Therefore, our
study aims to explore the role of cuproptosis-related lncRNAs in
ccRCC using bioinformatics.

MATERIALS AND METHODS

Data Collection
RNA sequencing data and clinical characterization data for
ccRCC were obtained on 9 April 2022 by downloading from
the TCGA database (https://portal.gdc.cancer.gov/repository),
which included a dataset of 539 tumor samples and a dataset
of 72 normal tissue samples (Liu et al., 2018). Using the Perl
programming language (version Strawberry-Perl-5.30.0; https://
www.perl.org), the RNA-seq data were extracted in the fragment
per kilobase million (FPKM) format that has been normalized
(Conesa et al., 2016). At the same time, the clinical data were
preprocessed with Pearl to obtain the complete pathological
information of the clinical samples.

Screening and Differential Expression
Analysis of Cuproptosis-Associated
lncRNAs
Using the packages “limma,” “dplyr,” “ggalluvial,” and “ggplot2,”
we plotted the Sankey relationship between cuproptosis genes
and cuproptosis-associated lncRNAs (Ritchie et al., 2015). Our
team was filtered using Pearson’s correlation analysis with the
criteria of |Pearson R| > 0.4 and p < 0.001.

Modeling and Validation of Prognostic Risk
Assessment
The KIRC dataset from TCGA was randomly divided into a
training risk set and a test risk set using the caret R package in a 1:
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1 ratio. The train set was utilized to construct cuproptosis-related
lncRNA signatures, and the test set and the whole set were applied
to validate the signature.

Univariate Cox regression analysis was applied to identify
prognosis-associated lncRNAs among those cuproptosis-
associated lncRNAs (p < 0.05), and forest plots were drawn.
Also, we mapped these lncRNAs by the “limma,” “pheatmap,”
“reshape2,″ and “ggpubr” packages. Then, by performing
LASSO Cox regression algorithm analysis (using the penalty
parameter estimated by 10-fold cross-validation) on the
obtained prognostic lncRNAs, we determined the best group
of prognostic lncRNAs and established the risk model. This
approach minimizes overfitting in the modeling process.
Finally, we developed a prognostic risk model based on
optimal lncRNA using multivariate Cox regression and
calculated the risk score for each patient with ccRCC
according to the following equation:

risk score � ∑ i � 1nCoef(i)×Expr(i).
Coef (i) and Expr (i) in the formula denote the regression

coefficient of the multiple Cox regression analysis for each
lncRNA and normalized expression level for each lncRNA,
respectively. The median of the training set was used as a cut-
off point to classify all samples containing KIRC as low- or high-
risk subsets. Kaplan–Meier (KM) curves were adopted to explore
whether there is a difference in the overall survival and
progression-free survival of ccRCC patients between the high-
risk and low-risk subsets in the training and testing sets using
the “survival” R package. The chi-square test was utilized by
us to evaluate the correlation between the model and the
clinical characteristics. Based on survival, caret, glmnet, rms,
survminer, and timeROC packages, we generated ROC curves
and calculated the area under the curve (AUC) and applied the
consistency index (C-index) together to measure the accuracy of
the model.

Nomogram and Calibration
Combining risk scores with various clinical pathological factors,
the rms package was applied to create line graphs for 1-, 3-, and 5-
years OS for ccRCC patients. The calibration curve based on the
Hosmer–Lemeshow test was used to show the predictive power of
the nomogram models developed.

PCA, GO, and KEGG Analysis
The expression patterns of cuproptosis-related lncRNAs for
ccRCC samples were classified using principal component
analysis to visualize the spatial distribution of high- and low-
risk samples. In addition, for the differential genes in the low-
and high-risk groups, we used Gene Ontology (GO) analysis,
which consisted of three components: biological process
(BP), cellular component (CC), and molecular function
(MF). Also, differentially expressed KEGG pathways in
the two groups were analyzed using the Hs. eg.db,
clusterProfiler, and enrichplot packages. p < 0.05 and FDR
<0.05 were considered as significantly enriched biological
processes and pathways.

Tumor Immune Analysis
In order to explore the relationship between this model and immune
infiltration status, our team calculated the immune infiltration profile
of the TCGA-KIRC dataset using seven algorithms (XCELL, TIMER,
QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and
CIBERSORT) (Aran et al., 2017; Li et al., 2017; Racle et al., 2017;
Chen et al., 2018; Dienstmann et al., 2019; Finotello et al., 2019; Li
et al., 2020; Tamminga et al., 2020). Wilcoxon signed-rank test,
limma, tidyverse, scales, ggplot2, and ggtext R packages were used to
perform the analysis of the differences in the content of immune
infiltrating cells in the different risk groups explored and the
outcomes were shown in the bubble plots.

Then, based on the ESTIMATE algorithm, we explored the
abundance of immune and stromal cells between different
groups and calculated the StromalScore, ImmuneScore, and
ESTIMATEScore (StromalScore + ImmuneScore) for each
group (Chen et al., 2018). In addition, we investigated the
differential expression of immune checkpoints in high- and
low-risk populations and showed them in box plots.
Subsequently, single-sample GSEA (ssGSEA) scoring of
infiltrating immune cells and immune-related functions in
ccRCC was performed by the “limma,” “GSVA,” and
“GSEABase” packages and presented as a heat map.

TumorMutation Burden and Tumor Immune
Dysfunction and Exclusion Score
After downloading the somatic mutation data from the TCGA
website, we applied the Pearl programming language to extract
the mutation data. Then, we examined and integrated TCGA
data using the “maftools” package and analyzed the differences
in TMB and survival rates between the high-risk and low-risk
groups. The tumor immune dysfunction and exclusion (TIDE)
scoring file was retrieved from the TIDE website (http://tide.
dfci.harvard.edu) (Jiang et al., 2018). We then assessed potential
differences in immune checkpoint blockade (ICB) responses
between the low- and high-risk groups using the “ggpubr”
package. Finally, our team used the R package pRRophetic to
predict the IC50 values of drugs available for the treatment of
ccRCC in the high- and low-risk groups.

Validation of the Expression Level of
Screened Hub Cuproptosis-Associated
lncRNAs in KIRC by qRT-PCR
Cancer and adjacent normal tissues were collected from six
patients with renal clear cell carcinoma admitted to the
Second Hospital of Tianjin Medical University. Each patient
was informed and signed the consent form. The study was
approved by the Institutional Review Board of the Second
Hospital of Tianjin Medical University. All tissues were
rapidly stored in liquid nitrogen after excision. After tissue
grinding, total RNA was extracted from ccRCC tissue using
TRIzol reagent (Invitrogen, China) according to the
manufacturer’s protocol. Finally, we performed a quantitative
reverse transcription-polymerase chain reaction (qRT-PCR) on
cDNA using FastStart Universal SYBR Green Master (ROX,
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FIGURE 1 | Identification of Cuproptosis-associated lncRNA prognostic features in ccRCC. The forest plot shows prognosis-related genes for cuproptosis-
associated lncRNAs (A). Sankey relationship diagram of cuproptosis genes and cuproptosis-associated lncRNAs (B). Differential expression of 81 cuproptosis-
associated lncRNAs associated with survival between ccRCC and normal samples (C). Distribution of the LASSO coefficients of cuproptosis-associated lncRNAs (D).
The 10-fold cross-validation of variable selection in the least absolute shrinkage and selection operator (LASSO) algorithm (E). Correlation of lncRNAs with
cuproptosis-related genes in risk models (F).
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Roche; United States). GAPDH was used as a reference. The
following primer sequences were used: GAPDH-F: GGAAGG
TGAAGGTCGGAGTCA, GAPDH-R: GTCATTGATGGCAAC
AATATATCCACT; SNHG15-F: TGGCAGACCTGTACTCCG
TA, SNHG15-R: CCTGGGCTCAGGAATGGTCA; LINC00471-
F: TATCACCAAGCAGGAGGGGA, LINC00471-R: ATCGGG
AACCCCCTACAGAA.

RESULTS

Prognosis-Related lncRNAs With
Coexpression of Cuproptosis
Our team identified 434 lncRNAs with co-expression
relationships in ccRCC (|Pearson R| > 0.4 and p < 0.001)
(Figure 1B). Univariate Cox analysis (p < 0.05) was utilized to
choose 81 differentially expressed prognostic-related

lncRNAs: THBS4-AS1, LINC01711, MACORIS, KIAA1671-
AS1, BACE1-AS, SIAH2-AS1, LINC00571, RAP2C-AS1,
ARF4-AS1, MYOSLID, PLBD1-AS1, FALEC, GNG12-AS1,
AGAP2-AS1, OXCT1-AS1, FOXD2-AS1, SNHG9,
LINC00882, APCDD1L-DT, SNHG11, OXCT1-AS1,
CTBP1-DT, HHLA3, NNT-AS1, MAP3K4-AS1, OIP5-AS1,
LINC01671, LASTR, NFE4, GTF3C2-AS1, LINC01801,
LINC00886, CDK6-AS1, EIF3J-DT, MHENCR, LINC01605,
H1-10-AS1, SBF2-AS1, PCCA-DT, LYPLAL1-DT, COLCA1,
SNHG3, GAS6-DT, LINC02027, SGMS1-AS1, BDNF-AS,
KLHL7-DT, NORAD, DHRS4-AS1, SNHG15, LHFPL3-AS2,
LINC00460, LINC02446, LINC02195, LINC00271, GATA2-
AS1, LINC01011, SEPTIN7-DT, SNHG8, UGDH-AS1,
CYTOR, MANCR, MIR4435-2HG, ITGA9-AS1, ZBTB20-
AS4, SUCLG2-AS1, LINC01507, OTUD6B-AS1, EIF1B-
AS1, HCG25, PAXIP1-AS2, WDFY3-AS2, TGFB2-AS1,
BAALC-AS1, LINC00941, LINC02154, SNHG6, EMS2OS,

FIGURE 2 | Prognosis of the risk model in different groups. The distribution of overall survival risk scores (A–C), survival time and survival status (D–F), heat maps of
10 lncRNA expressions (G–I), Kaplan–Meier survival curves of overall survival of ccRCC patients (J–L), and Kaplan–Meier survival curves of progression-free survival of
ccRCC patients (M–O) between low- and high-risk groups in the train, test, and entire sets, respectively.
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MINCR, ATP1A1-AS1, LINC00623, and LINC01415
(Figure 1A and C).

Construction of the Cuproptosis-Related
LncRNA Predictive Signature
Then, we performed a LASSO Cox regression analysis using
the training set and obtained the lncRNAs with the highest
prognostic values using the “glmnet” package of R software
(Figure 1D–F). Finally, we obtained 17 lncRNAs, 10 of which
were introduced into the multi-Cox proportional risk model.
The risk score was obtained using the multivariate Cox
regression formula: risk score = HHLA3 × (0.4223) + H1-
10-AS1 × (0.5960) + PICSAR × (0.9702) + LINC02027 ×
(−0.5392) + SNHG15 × (0.3602) + SNHG8 × (−0.6352) +

LINC00471 × (1.2766) + EIF1B-AS1 × (−3.8776) +
LINC02154 × (0.7232) + MINCR × (0.3724). Overall
survival was significantly shorter for all patients in the high-risk
group in the complete set and training and validation partitions
(Figure 2A–L). Similarly, the progression-free survival was
significantly lower in the high-risk group compared to the low-
risk group (Figure 2M–O). Meanwhile, ccRCC patients were
grouped by age, sex, stage, T-stage, N-stage, and M-stage to
investigate the correlation between survival probability and risk
score in generic clinicopathological characteristics. The results
showed that for different classifications, except for stage N1
(Figure 3J), the overall survival rate was much higher in the low-
risk group (Figures 3A–I, Figure 3K-L). A possible interpretation of
the N1 stage was the limited number of patients because of the bad
prognosis of advanced ccRCC. The results suggested that the model

FIGURE 3 | Kaplan–Meier survival curves for low- and high-risk populations by different clinical variables. Age (A,B), sex (C,D), stage (E,F), T stage (G,H), N stage
(I,J), and M stage (K,L).
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can be used to help predict the prognosis of patients with ccRCC
with different clinicopathological variables.

An Independent Prognostic Indicator of
ccRCC of the Cuproptosis-Related lncRNA
Signature
The area under the curve (AUC) was 0.796, 0.761, and 0.786 for
the 1-, 3-, and 5-years ROCs, respectively (Figure 4A). The AUC
of the risk score was 0.786 in the 5-years ROC of the model,
showing extremely strong predictive power compared to other
clinicopathological characteristics (Figure 4B). The 10-years
C-index in the risk model was also higher than the other
clinical features (Figure 4C).

Construction and Validation of the
lncRNA-Based Nomogram
Our team predicted the prognosis of ccRCC patients at 1, 3,
and 5 years by constructing a nomogram that included clinical

characteristics and risk scores (Figure 5A). The calibration
curves showed good agreement between the nomogram and
the predicted results (Figure 5B).

The Principal Component Analysis and
Biological Pathways Analyses
We then utilized PCA to explore the differences between the
high- and low-risk groups in four expression profiles (total
gene expression profiles, cuproptosis genes, cuproptosis-
associated lncRNAs, and risk models classified by the
expression profiles of 10 cuproptosis-associated lncRNAs)
(Figure 6A–D). The outcomes indicated that the
10 cuproptosis-associated lncRNAs were of best
discriminatory capacity to distinguish well between low-
and high-risk populations. GO analysis showed that
cuproptosis-associated lncRNAs were strongly associated
with the development of immune responses (Figure 7A
and B). KEGG analysis resulted mainly in
cytokine–cytokine receptor interaction and PI3K-AKT
signaling pathway (Figures 7C and D).

FIGURE 4 | Accuracy of the risk characteristic based on a whole-group prediction of 1-, 3-, and 5-years receiver operating characteristic curves (A). Predictive
accuracy of the risk model compared with clinicopathologic characteristics such as age, sex, and stage (B). C-index curve of the risk model (C).
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FIGURE 5 |Construction and validation of the nomogram. A nomogram combining clinicopathological variables and risk scores predicts 1-, 3-, and 5-years overall
survival in patients with ccRCC (A). Calibration curves test the agreement between actual and predicted outcomes at 1, 3, and 5 years (B).

FIGURE 6 | PCA in both groups of patients. PCA of all genes (A). PCA of cuproptosis genes (B). PCA of cuproptosis-related lncRNAs (C). PCA of risk lncRNAs (D).
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Examination of Immune Characteristics in
High- and Low-Risk Groups
In immune cell bubble graphs, our team found that samples from the
high-risk group were significantly positively correlated with
infiltration of regulatory T cells, B cell memory, NK cells, and
T cell follicular helper and negatively correlated with neutrophil
infiltration (all p < 0.05) (Figure 8A). Details of the infiltration of
the aforementioned cells are shown in Supplementary Figure S1. In
addition, we analyzed the differences in immune checkpoints between
the high-risk and low-risk groups (Figure 8B). Interestingly, most of
the immune checkpoints had higher expression in the high-risk
patients, which may explain the poorer OS in the high-risk group.
Subsequently, our team investigated the connection between risk
scores and immune-related activities in ccRCC. The box plots of the
results indicated that type II IFN response, Type I IFN response,
cytolytic activity, inflammation-promoting, check point, T-cell co-
stimulation, CCR, and parainflammation were dramatically different
in the risk scores (Figure 8C). In terms of TME scores, immune scores
and ESTIMATE scores were higher in high-risk patients than in low-
risk patients, with no difference in stromal scores between them
(Figure 8D–F).

TMB, TIDE, and Therapeutic Drug
Sensitivity
We then downloaded the somatic mutation data from the
TGCA database and analyzed the changes in somatic
mutations in the high- and low-risk groups. The 10 most
highly mutated genes were VHL, PBRM1, TTN, SETD2,
BAP1, MTOR, MUC16, DNAH9, KDM5C, and LRP2.
(Figure 9A and B). Among these genes, VHL, PBRM1,
SETD2, BAP1, KDM5C, and MTOR were the most
frequently mutated genes in ccRCC. However, in general,
there was no significant difference in TMB between the two
groups (Figure 9C). In addition, patients in the high TMB
and high-risk cohorts had the worst prognosis than the other
groups (Figures 9D and E). Compared to the low-risk
group, the TIDE scores were dramatically higher in the
high-risk group (Figure 9F). By comparing drug sensitivity,
we found significant differences in IC50 values between the
low- and high-risk groups for multiple drugs. Drugs sensitive
to the high-risk group and drugs sensitive to the low-risk
group are shown in Supplementary Figures S2 and S3,
respectively. Of these drugs, sorafenib was more effective in

FIGURE 7 | GO and KEGG analysis. Gene Ontology (GO) analysis demonstrated the richness of molecular biological processes (BP), cellular components (CC),
and molecular functions (MF) (A,B). KEGG pathway analysis showed the significantly enriched pathways (C,D).
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the high-risk group and, conversely, pazopanib was more
effective in the low-risk group (Figure 10A and B).

External Validation of Cuproptosis-Related
lncRNAs as a Potential Biomarker
Then, the KM survival analysis was utilized to verify the
prognostic value of SNHG15 and LINC00471 in the external
Kaplan–Meier Plotter database. The results showed that
SNHG15, as a poor prognostic factor, was dramatically
correlated with OS (HR = 2.46 (1.79–3.39), Log-rank p = 1.1e-
08) (Figure 11A). LINC00471, an indicator of bad prognosis, was
also significantly associated with OS (HR = 1.6 (1.18–2.15), Log-

rank p = 0.002) (Figure 11B). The results of the survival analysis
of external datasets were consistent with our outcomes.

In Vitro Experimental Validation of
Cuproptosis-Related lncRNAs as a
Potential Biomarker
To further validate the prognostic value of this cuproptosis death-
associated lncRNAmodel, our team performed in vitro experiments to
illustrate the expression trends of hub differentially expressed
cuproptosis-associated lncRNAs. RT-qPCR results indicated an
overall trend of increased SNHG15 and LINC00471 expression
levels in ccRCC tissues compared to adjacent paired normal tissues,

FIGURE 8 | Differences in the tumor immune microenvironment between the low- and high-risk groups. Immune cell bubble of risk groups (A). Differences in
expression of common immune checkpoints in the risk groups (B). ssGSEA scores of immune cells and immune function in the risk group (C). Box plots comparing
StromalScore, ImmuneScore and ESTIMATEScore between the low- and high-risk groups, respectively (D–F). *p < 0.05, **p < 0.01, and ***p < 0.001.
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whichmatched the results of our previous bioinformatics analysis based
on public databases (Figure 12A and B).

DISCUSSION

CCRCC, as the most aggressive subtype, is the predominant
histological type of renal cancer.

Although surgical resection is a moderate treatment option for
localized ccRCC, the outcome of advanced or metastatic ccRCC
remains dissatisfactory. Therefore, the identification of
prospective prognostic and molecular signatures specific to
patients with ccRCC is essential to improve the patient’s
prognosis.

Recent studies have shown that intracellular copper
accumulation triggers the aggregation of mitochondrial

FIGURE 9 | TMB, TIDE, and Chemotherapeutic Sensitivity. Waterfall plots of somatic mutation characteristics in the two groups (A-B). TMB between the low-risk
and high-risk groups (C). K–M survival curves between the high- and low-TMB groups (D). K–M survival curves between the four groups (E). TIDE scores between the
two groups (F).

FIGURE 10 | Drug sensitivity. Sorafenib was more effective in the high-risk group (A). Pazopanib was more effective in the low-risk group (B).
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lipid acylated proteins and the loss of Fe–S cluster proteins,
resulting in a proteotoxic stress-induced death called
cuproptosis (Tsvetkov et al., 2022). Significantly, the
accumulation of intracellular copper is dependent on the
transport of copper ionophores. Therefore, copper
ionophores are a powerful tool for studying copper toxicity
(Hunsaker and Franz, 2019). Traditional cancer treatments
usually harm normal cells, so novel therapeutic agents are
being developed with the aim of improving selectivity and,
thus, reducing side effects. In addition, these agents should

target cancer stem cells, thus, overcoming the resistance of
cancer cells. Cancer cells are usually preferentially induced by
cuproptosis compared to normal cells, and some copper
ionophores have shown promise in this direction (Li, 2020;
Steinbrueck et al., 2020; Babak and Ahn, 2021; Michniewicz
et al., 2021; Shanbhag et al., 2021). Therefore, cuproptosis-
related studies are urgently needed for a deeper
understanding.

Previous studies have shown that lncRNAs play an important
regulatory role in the development and progression of ccRCC.

FIGURE 11 | External validation of cuproptosis-associated lncRNAs as potential biomarkers. OS analysis of SNHG15 and LINC00471 in the Kaplan–Meier Plotter
datasets (A and B).

FIGURE 12 | Expression levels of cuproptosis-associated lncRNAs in paired tumor tissues. RT-qPCR was used to measure the expression of SNHG15 and
LINC00471 in paired tumor tissues (A,B).
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Professor Liu confirmed that LINC01232 promotes clear cell
renal cell carcinoma by binding miR-204-5p to upregulate
RAB22A (Liu et al., 2021). Lv noted that the long non-coding
RNA TUG1 promotes cell proliferation through the MIR-31-5p/
FLOT1 axis in clear cell renal cell carcinoma and inhibits
apoptosis and autophagy (Lv et al., 2020). However,
lncRNAs associated with cuproptosis have never been
studied in ccRCC. Here, our team constructed a
cuproptosis-associated lncRNA signature to predict the
prognostic status of ccRCC patients. In our research, we
obtained 81 cuproptosis-related lncRNAs associated with
prognosis by analysis. We screened and identified
10 cuproptosis-related lncRNAs significantly associated with
OS by univariate, LASSO, and multivariate Cox regression
analysis (HHLA3, H1-10-AS1, PICSAR, LINC02027,
SNHG15, SNHG8, LINC00471, EIF1B-AS1, LINC02154,
and MINCR). With the aforementioned lncRNAs, we
constructed cuproptosis-related lncRNA features to predict
the prognosis of ccRCC patients. Among these lncRNAs, the
lncRNA PICSAR was reported to be highly expressed in
tumors and could promote proliferation and migration and
inhibit apoptosis in cutaneous squamous cell carcinoma and
hepatocellular carcinoma (Liu et al., 2020; Lu et al., 2021).
LINC02027 was an important member of the ccRCC
prognostic model (Chen et al., 2022). LncRNA SNHG15
was a novel lncRNA identified as a tumor promoter in
various human cancers, including hepatocellular carcinoma
(HCC), colorectal cancer (CRC), breast cancer (BRCA),
pancreatic cancer (PC), gastric cancer (GC), and clear cell
carcinoma (ccRCC) (Guo et al., 2018; Jin et al., 2018; Kong and
Qiu, 2018; Huang et al., 2019; Yang et al., 2020; Chen et al.,
2021). Studies in ccRCC have shown that increased expression
of lncRNA SNHG15 was an independent predictor of shorter
RFS. In addition, SNHG15 expression levels were significantly
regulated by DNA methylation in ccRCC (Yang et al., 2020).
All findings suggested that SNHG15 was promising as a
biomarker and therapeutic target for cancer patients.
Similarly, SNHG8 was considered to be an oncogenic factor
and was upregulated in various types of cancer (Yuan et al.,
2021), such as gastric cancer, melanoma, nasopharyngeal
cancer, and esophageal cancer (Shan et al., 2022b; Luan
et al., 2022; Wu et al., 2022; Zhu et al., 2022). LINC00471
was an essential member of the prognostic model of childhood
acute myeloid leukemia and esophageal squamous cell
carcinoma (Zhang et al., 2019a; Yu et al., 2019). LINC02154
was involved in the construction of a prognostic model for
laryngeal squamous cell carcinoma (Zhang et al., 2019b; Gong
et al., 2020). MINCR was highly expressed in nasopharyngeal,
colon, non-small cell lung cancers, and hepatocellular
carcinoma and promotes cancer development (Cao et al.,
2018; Chen et al., 2019; Yu et al., 2020; Zhong et al., 2020).
The remaining three lncRNAs (HHLA3, H1-10-AS1, and
EIF1B-AS1) are the first publicly available. In particular,
these newly discovered cuproptosis-related lncRNAs can
help us better understand ccRCC and find new targets for
cancer therapy. We then divided patients with ccRCC into low-

risk and high-risk cohorts according to median values. The
Roc and c-index curves were used to validate the prognostic
accuracy of the risk score. We could find that the risk score
could be used as a criterion to predict the prognosis. Then, we
constructed a nomogram to predict the prognosis of patients
with ccRCC. The calibration curves showed excellent agreement
between actual results and predictions. Then the PCA results
showed that the 10 cuproptosis-associated lncRNAs had the best
ability to discriminate well between low- and high-risk
populations. GO analysis suggested that immune responses
were strongly associated with lncRNAs associated with
cuproptosis. KEGG analysis showed that cytokine–cytokine
receptor interactions and the PI3K-AKT signaling pathway
were most active in cuproptosis-associated lncRNAs. The
PI3K-Akt signaling pathway was widely present in a variety
of cells and can be involved in cell proliferation, apoptosis,
invasion, metastasis, and angiogenesis by altering the activation
status of downstream signaling molecules, which had been
regarded by scientists as the primary pathway for cancer cell
survival (Polivka and Janku, 2014). Normally, immune cell
infiltration in the tumor microenvironment varies with
tumor progression. Sierra et al. (2021) found in vitro
experiments that an increase in NK cells suppressed the
proliferation of CD8+ T cells and suggested that infiltration
of NK cells impairs the immune regulatory function of the body.
A study showed that T cell follicular helper cells, T cell
regulation, and B cell memory were associated with adverse
outcomes of ccRCC (Yu et al., 2020). The characteristics of the
high-risk group we established were highly consistent with the
aforementioned study and predicted a poorer prognosis for the
high-risk group. Furthermore, the results of ssGSEA pointed to
an immune profile of type II inactivation of the IFN response
and activation of T cell co-stimulation in high-risk populations.
These results suggested that our features may be involved in the
tumor immunemicroenvironment of ccRCC, acting by blocking
the immune response, and may be a factor in the progression of
ccRCC. We also performed immune scores, stromal scores,
and ESTIMATE scores on different subgroups of the
population, resulting in higher-risk groups having higher
immune scores and lower tumor purity. As previously
reported, the TIDE algorithm was used to assess the
clinical response of patients to ICI therapy; the higher the
TIDE score, the greater the likelihood of immune escape,
which may imply a limited response and shorter survival time
for patients treated with ICI. Compared to the low-risk group,
patients in the high-risk group had higher TIDE scores,
suggesting that patients in the high-risk group may have a
more limited response to ICI therapy. Previous clinical trials
have confirmed that the benefits of pazopanib are more
prominent in the low-risk group, which is consistent with
our study (Méndez-Vidal et al., 2018). However, in the case of
sorafenib, there is no evidence in the literature that it is more
beneficial in the high-risk group, and the exact mechanism
remains to be confirmed by more studies. Our team
constructed 10 copper death-associated lncRNAs to predict
the prognosis of patients with ccRCC through adequate
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bioinformatics analysis. However, our study still had some
drawbacks and shortcomings. First, we could not get
validation from the GEO and ICGC databases. Even though
we tried the GEO and ICGC databases, we still could not
obtain proper lncRNA information due to the bias and
limitation of commercial microarray data compared with
GTEx and TCGA. Therefore, we validated the potential ability
of two of these lncRNAs as biomarkers by PCR together with the
external database Kaplan–Meier Plotter database. In addition, the
immune cell bubble plots showed the results of immune infiltration
from multiple platforms, which in a sense can be considered as
external validation. In addition, our team will subsequently collect
additional clinical datasets to validate the value of cuproptosis-
associated lncRNAs.

CONCLUSION

The 10 cuproptosis-related-associated lncRNA risk profiles may
help to assess the prognosis and molecular profile of ccRCC
patients and improve treatment options, which may be further
applied in the clinic.
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