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Abstract

The transformation of synaptic input into patterns of spike output is a fundamental operation that is determined by the
particular complement of ion channels that a neuron expresses. Although it is well established that individual ion channel
proteins make stochastic transitions between conducting and non-conducting states, most models of synaptic integration
are deterministic, and relatively little is known about the functional consequences of interactions between stochastically
gating ion channels. Here, we show that a model of stellate neurons from layer II of the medial entorhinal cortex
implemented with either stochastic or deterministically gating ion channels can reproduce the resting membrane
properties of stellate neurons, but only the stochastic version of the model can fully account for perithreshold membrane
potential fluctuations and clustered patterns of spike output that are recorded from stellate neurons during depolarized
states. We demonstrate that the stochastic model implements an example of a general mechanism for patterning of
neuronal output through activity-dependent changes in the probability of spike firing. Unlike deterministic mechanisms
that generate spike patterns through slow changes in the state of model parameters, this general stochastic mechanism
does not require retention of information beyond the duration of a single spike and its associated afterhyperpolarization.
Instead, clustered patterns of spikes emerge in the stochastic model of stellate neurons as a result of a transient increase in
firing probability driven by activation of HCN channels during recovery from the spike afterhyperpolarization. Using this
model, we infer conditions in which stochastic ion channel gating may influence firing patterns in vivo and predict
consequences of modifications of HCN channel function for in vivo firing patterns.
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Introduction

Thermal fluctuations in the conformation of an ion channel

protein can cause it to make spontaneous transitions between

discrete conducting and non-conducting states [1,2]. Nevertheless,

computational models of ionic conductances in a neuron generally

assume the behavior of a population of ion channels to be

deterministic and stochastic gating of ion channels is usually

neglected in models of synaptic integration and spike initiation

[3,4]. For a typical cortical principal neuron, this assumption can

be justified by the very small amplitude of the conductance change

and resulting membrane current caused by opening of a single ion

channel compared to either the resting membrane conductance or

the threshold current for firing of an action potential. However,

when neurons are depolarized to membrane potentials around the

threshold for initiation of action potentials, the biophysical

mechanisms that underlie spike generation dictate that the

effective membrane conductance becomes very low [5]. As a

result, even small fluctuations in ionic current through relatively

few ion channels could significantly alter the membrane potential

and the initiation of action potentials [6,7]. Consistent with this

possibility stochastic gating of membrane ion channels that

determine the threshold for action potential initiation can

influence the dynamic electrical properties of neurons [8–11].

However, little attention has been given to the consequences of

stochastic ion channel gating for the patterns of spike output

produced during active states in which the membrane potential is

depolarized to near threshold.

We have focused on understanding the influence of stochastic

ion channel gating on the integrative properties of stellate neurons

from Layer II of the medial entorhinal cortex (MEC). These

glutamatergic neurons provide cortical input to the hippocampal

dentate gyrus [12,13]. Electrophysiological recordings reveal two

unusual integrative properties of stellate neurons from the MEC

[14–17]. First, during prolonged periods of excitation stellate

neurons fire action potentials in stereotypical clustered patterns.

The frequency of spikes within a cluster is approximately 8–14 Hz

and is relatively independent of the average spike frequency, while

the intervals between spike clusters are typically hundreds of

milliseconds or longer [18]. The organization of clustered spike

patterns appears to depend on a large and slow spike after-

hyperpolarization (AHP) that is also independent of the overall
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average spike frequency [18]. A second distinctive feature of

stellate neurons is the emergence of prominent (,3–5 mV in

amplitude) intrinsic membrane potential fluctuations upon mem-

brane depolarization [14]. These fluctuations have been proposed

to contribute to network rhythmicity due to their power in the

theta frequency range (4–12 Hz), the prominent oscillatory

frequency of entorhinal and hippocampal network activity during

exploratory behavior and REM sleep [19]. Previous models and

experimental results indicate that stochastic gating of persistent

Na+ channels may be essential for the sub-threshold oscillations

observed in stellate neurons [20,21]. However, the consequences

of stochastic gating of other classes of ion channel expressed by

stellate neurons have not been explored. Moreover, while sub-

threshold oscillations have been suggested to drive clustered spike

patterns [14,22,23], the mechanisms underlying oscillations and

clustered spike firing can be dissociated experimentally [18,24],

and therefore it is not clear if stochastic fluctuations in ion channel

opening play any role in the generation of clustered spike firing.

Hyperpolarization-activated, cation non-selective (HCN) chan-

nels play a central role in determining subthreshold integration

and the pattern of action potential initiation in stellate neurons

from the MEC [18,25]. The substantial hyperpolarization-

activated current (Ih) in stellate cells is mediated in large part by

HCN1 channels and is a major determinant of the effective

membrane conductance of the neuron at rest and at more

depolarized potentials close to the threshold for initiation of action

potentials [18]. Experiments using pharmacological and genetic

manipulations suggest that HCN channels increase the probability

that clustered patterns of action potentials will be generated and

increase the frequency of action potentials within each cluster [18].

However, the mechanisms through which HCN channels

influence these patterns of spike firing are not clear. Computa-

tional models of stellate neurons have suggested either that Ih plays

an essential role in perithreshold oscillations and clustered patterns

of spike firing [26] or that Ih is not required [21]. Moreover,

numerous studies suggest that the effects of Ih on the integrative

properties of a neuron are highly context dependent [18,27–36].

Thus, the role of Ih is determined by interactions with other ion

channels. Depending upon the cell type and even the subcellular

compartment studied, Ih can lead to varied properties, from

prevention of bistability [37] to regulation of dendritic spiking

[38]. Therefore, understanding the properties of stellate neurons

and their sensitivity to manipulations of Ih will likely require an

account of the interactions between multiples classes of ion

channel.

To better understand the impact of stochastic ion channel

gating on the patterns of spike output from stellate neurons and to

reconcile the contrasting views of the role of Ih in perithreshold

oscillations and clustered patterns of spike firing, we addressed two

questions. How do interactions of HCN channels with other

membrane ion channels lead to the emergence of membrane

potential oscillations and spike firing patterns recorded from

entorhinal stellate cells? Could stochastic ion channel gating at

potentials close to spike threshold influence the patterns of spike

output generated by stellate neurons? We demonstrate that

whereas a deterministic model of channel gating is sufficient to

account for many of the properties of entorhinal stellate neurons at

hyperpolarized membrane potentials, including the consequences

of HCN1 deletion, a model with stochastically gating ion channels

is necessary to reproduce the distinctive properties of stellate

neurons near threshold. Examination of the model reveals that

spike initiation is probabilistic and that the tendency to emit

clustered spikes can be explained by a transient increase in the

probability of spike initiation following recovery from the action

potential AHP. We find that this transient increase in spike

probability is primarily due to Ih and explains the role of HCN

channels in the emergence of clustered patterns of spikes. Finally,

we ask whether stochastic ion channel gating could contribute to

patterns of spike output observed in vivo. We propose that

stochastic gating of ion channels expressed by stellate neurons is

crucial to their transformation of synaptic input into a patterned

spiking output and places constraints on the development of

models of entorhinal cortex function [39].

Results

To study the influence of stochastic gating of ion channels on

the integrative properties of stellate neurons we implemented a

single compartment model neuron endowed with ionic conduc-

tances derived from experimental data (see Materials and

Methods). In the results sections that follow we first describe the

key integrative properties of this model and show that they are

similar to published experimental data. We then explore how

clustered patterns of action potentials emerge in the model.

Finally, to establish whether the model might explain firing

patterns recorded from superficial entorhinal neurons in behaving

animals, we simulate responses of the model to dynamic input.

Initially, we developed kinetic formalisms of the Hodgkin-

Huxley type and solved for the resultant currents deterministically

(Figure 1). Using the deterministic model we established that the

single compartment model could account for the resting

membrane properties of stellate neurons (Figure 1 and Table 1).

As a further constraint we examined whether the model could

account for previous experimental results in mice with global

deletion of the gene encoding the HCN1 channel. Thus, in

addition to a wild-type version of the model, we implemented a

version in which the fast, large Ih was replaced by a smaller, slower

current similar to that recorded in HCN1 knockout mice [18].

This single compartment, deterministic model replicated the basic

effects of either HCN1 deletion or pharmacological blockade of Ih

on the resting membrane properties of stellate cells (Figure 1 and

Table 1).

Author Summary

Neurons use electrical impulses called action potentials to
transmit signals from their cell body to their axon
terminals, where the impulses trigger release of neuro-
transmitter. Initiation of an action potential is determined
by the balance of currents through ion channels in a
neuron’s membrane. Although it is well established that
membrane ion channels randomly fluctuate between open
and closed states, most models of action potentials
account for the average current through these channels
but not for the current fluctuations caused by this
stochastic opening and closing. Here, we examine the
consequences of stochastic ion channel gating for stellate
neurons found in the entorhinal cortex. The intrinsic
properties of these neurons cause characteristic clustered
patterns of spiking. We find that in a model of a single
stellate neuron that is constrained by previous experimen-
tal data clustered action potential patterns are produced
only when the model accounts for the random opening
and closing of individual ion channels. This stochastic
model provides an example of a general mechanism for
patterning of neuronal activity and may help to explain the
patterns of spikes fired by entorhinal neurons that encode
spatial location in behaving animals.

Patterned Spiking from Stochastic Channel Gating
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While previous studies have investigated the consequences of

stochastic Na+ channel gating in models containing otherwise

deterministic ion channels [21], as well as addition of a simulated

stochastic Na+ conductance during experimental recordings from

stellate neurons [20], models of stellate neurons in which all of the

ion channels are stochastically gating have not been explored. To

Figure 1. Subthreshold properties of the stellate neuron model. (A) Membrane potential responses (top) to current steps (bottom) are
plotted for the wild-type (left) and HCN1 knockout (right) versions of the model. Traces in blue are from simulations with the stochastic models and
traces in black from the deterministic version of the model. (B) Steady-state (closed symbols) and instantaneous (open symbols) voltage responses
plotted as a function of current step amplitude for the wild-type (left) and HCN1 knockout (right) versions of the model.
doi:10.1371/journal.pcbi.1000290.g001

Table 1. Passive membrane properties of the stellate neuron models.

Wild-Type (Deterministic) Wild-Type (Stochastic) HCN1 Knockout (Deterministic) HCN1 Knockout (Stochastic)

Vrest (mV) 263.15 263.1360.07 275.01 274.9760.05

Ri+(MV) 33.5 34.261.1 61.7 59.361.7

Ri2(MV) 32.2 32.361.4 62.1 61.461.5

tm+(ms) 5.4 5.060.5 10.1 9.760.9

tm2(ms) 5.4 5.660.9 10.1 9.861.0

Sag Ratio 0.73 0.7260.08 0.83 0.8460.03

Input resistance (Ri) was defined as the ratio of the steady-state voltage change in response to positive (‘‘+’’) or negative (‘‘2‘‘) current injection from the resting
membrane potential. Monoexponential fits to the initial voltage response were used to obtain the membrane time constant (tm). The sag ratio is calculated as the ratio
of the peak hyperpolarization divided by the steady-state hyperpolarization for the negative current injection. Parameter estimates from the stochastic models were
determined from an average of 5 simulations. Errors are the standard deviation.
doi:10.1371/journal.pcbi.1000290.t001

Patterned Spiking from Stochastic Channel Gating
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examine the effects of stochastic channel gating, all channels in

both models were converted to first-order Markov models

[1,40,41]. Consistent with previous studies [6,8,9], we find that

even with the substantial channel densities that are required to

match current amplitudes to values from whole-cell recordings,

channel noise can cause significant deviations from the mean

current (Figure S1). Nevertheless, the average resting membrane

properties of the model are unaffected by the presence of

stochastically rather than deterministically gating ion channels

(Figure 1 and Table 1).

Perithreshold Membrane Potential Fluctuations in the
Stochastic Model

At membrane potentials just below the threshold for initiation of

action potentials, stellate cells generate membrane potential

fluctuations with a dominant frequency typically in the 5–10 Hz

range [14,16]. Our previous experimental studies using HCN1

knockout mice indicate that, at any given membrane potential,

HCN1 channels are not required for fluctuations in this frequency

range, but rather HCN1 channels suppress low-frequency

components of membrane potential activity [18]. However, the

amplitude of the theta frequency fluctuations becomes larger with

depolarization towards the spike threshold and if the absolute

value of the membrane potential is not accounted for, then

deletion of HCN1 channels can appear to reduce the amplitude of

membrane potential fluctuations by lowering the most depolarized

potential at which fluctuations can be maintained without

triggering action potentials [18]. These results contradict proposed

deterministic models for the generation of theta frequency

fluctuations by stellate cells [17,26] and also suggest how failure

to account for differences in membrane potential could lead to the

conclusion that block of HCN channels abolishes theta frequency

fluctuations [25]. Nevertheless, it has yet to be shown whether

these experimental observations can be accounted for in a

theoretical model.

We first examined the membrane potential of the stochastic

models during injection of constant current of amplitude adjusted

to the maximum possible without triggering action potentials

(Figure 2). For the wild-type and knockout versions of the model

this corresponded to respective mean membrane potentials of

251.6 and 253.4 mV. At these membrane potentials, the

stochastic stellate neuron models show large fluctuations in

membrane potential (,3–4 mV peak to peak; Figure 2), whereas

the otherwise identical deterministic models show no fluctuations

(Figure 2C). We found that the membrane potential fluctuations

recorded over long epochs (20 s) are spectrally complex, but show

peak activation between 3–10 Hz consistent with previous

observations in stellate neurons in vitro [18,42]. Some previous

studies have analyzed brief epochs in which the membrane

potential fluctuations appear to be coherent oscillations [16,25,43].

Consistent with these studies, we also find that short epochs of

membrane potential, recorded from simulations with the stochas-

tic models, reveal clear autocorrelation peaks (Figure 2B) and

dominant frequency components in the theta frequency range

(Figure 2C and 2D).

Removal of the fast and large component of Ih in the knockout

model resulted in an apparent shift in the peak of the spectral

density to lower frequencies (,5 Hz) similar to previous

experimental results in HCN1 knockout mice [18] (Figure 2C

and 2D). By contrast, measurements made when controlling for

membrane potential between the models, reveal that the

knockout model has larger amplitude fluctuations

(Vavg = 253.7 mV, simulation time = 3 s; sWT = 0.37 mV

sKO = 0.47 mV; see also Figure S2), also consistent with

experimental data [18]. In further agreement with previous

experimental data [18], these effects can be explained by the

ability of HCN channels to reduce the membrane impedance at

low frequencies (Figure S2). As predicted by changes in

impedance, responses to a white noise current stimulus, with

standard deviation matched to the current noise recorded in the

stochastic model, were enhanced in the deterministic knockout

model compared with the equivalent wild-type model

(Figure 2C). Phase plots of the relationship between membrane

current and voltage during perithreshold fluctuations, revealed

that Ih is a minor contributor (Figures S3) to the net membrane

current changes that drive fluctuations. Thus, the stochastic

model accounts well for the properties of subthreshold

fluctuations and their dependence upon HCN1 channels

reported previously [16,18,21,25,42]. This model is consistent

with perithreshold fluctuations arising from interaction of

stochastically gating ion channels other than HCN channels

(Figure S4) [21], but with the amplitude and spectral properties

of the fluctuations shaped by the presence of HCN channels and

dependent on the average membrane potential at which the

fluctuations are examined.

Ih Determines the Stability of the Perithreshold
Membrane Potential

The most depolarized average membrane potential that can be

maintained without initiation of an action potential appears to

determine the maximal observable amplitude of membrane

potential fluctuations and is altered both in the HCN1 knockout

model (Figure 2) and in experimental recordings of stellate cells

from HCN1 knockout mice [18]. To further assess the stability of

the membrane potential prior to action potential initiation we

injected slow, ramp-like currents that crossed spike threshold for

both the wild-type (Figure 3A) and knockout (Figure 3B) versions

of the model. We averaged the membrane potential from several

sweeps in a time window 0.1–0.5 s before the initial action

potential for each trial (Figure 3E). The spike-triggered averages

(Figure 3D) revealed that removal of the HCN1-like current

from the model causes spikes to initiate from a more

hyperpolarized membrane potential (wild-type: 251.15+/

20.12 mV; knockout: 252.72+/20.12 mV; P = 4610211;

N = 20 total trials; Figure 3E). This difference between the

wild-type and knockout models is independent of stochastic

channel gating (Figure 3D), but is to be expected from the

increased rate of depolarization resulting from the reduced

membrane conductance following removal of HCN1 channels.

However, for both of the deterministic models the membrane

potential follows a more depolarized trajectory than in the

corresponding stochastic models (Figure 3D). This is consistent

with spontaneous membrane potential fluctuations in the

stochastic models triggering action potentials relatively early

during the ramp current. Consistent with the difference in

responses to DC current injection (Figure 2), during the time-

window preceding the spike, the more depolarized potentials in

the wild-type model are associated with an increased standard

deviation of the membrane potential due to stochastic channel

gating (wild-type: 0.90+/20.06 mV; knockout: 0.69+/

20.04 mV; P = 0.005; Figure 3E). The shift in membrane

potential stability was accompanied by a small increase in the

standard deviation of the time of the first action potential in the

stochastic HCN1 knockout model (wild-type: 0.11960.008 s;

knockout: 0.15260.015 s; Figure 3C; P,0.05, N = 60 simula-

tions), suggesting that HCN1 channels may increase the

reliability of spike timing as well as the stability of the sub-

threshold membrane potential.

Patterned Spiking from Stochastic Channel Gating
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Clustered Patterns of Spiking Emerge When Models
Contain Stochastically Gating Ion Channels

When stellate cells experience maintained depolarizing currents

that drive action potential firing at mean frequencies less than

5 Hz, the pattern of firing is characterized by clusters of action

potentials at a relatively high frequency (8–14 Hz) interspersed

with silent periods [14,18,24]. We determined the conditions for

initiation of spikes with mean frequencies less than 5 Hz, at which

Figure 2. Stochastic gating of ion channels produces perithreshold membrane potential fluctuations. (A) Pseudocolored plots (top)
show spectrograms of the membrane potential aligned to the corresponding membrane potential recordings (bottom) of responses to 20 s duration,
subthreshold current injection into the wild-type (left) and knockout (right) model. The mean membrane potential is stated in red above the
spectrogram. (B) Selected 1 s epochs of membrane potential for the wild-type (left) and knockout (right) model. Insets show the autocorrelation of
the membrane potential. Scale bars: 1 mV, 0.2 s. (C) Power spectra for the entire 20 s simulation for the wild-type (black) and knockout (red) models.
(D) Power spectra for the membrane potential traces in B, left (black) and B, right (red).
doi:10.1371/journal.pcbi.1000290.g002

Patterned Spiking from Stochastic Channel Gating
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clustered spike patterns might be expected. In the deterministic

model the transition from silence to continuous action potential

firing occurs when the amplitude of the injected current is

increased above 258.4 pA and 320.5 pA for wild-type and

knockout configurations, respectively. For the deterministic models

this transition corresponds to a sharp transition from silence to

repetitive spiking at ,6 Hz (wild type) and ,3 Hz (HCN1

knockout) and clustered spike patterns were not observed (Figure

S5). By contrast, the current threshold for the transition between

silent and spiking states was ,246 pA and ,308 pA for the

stochastic versions of the wild-type and HCN1 knockout models,

respectively. In both stochastic models, arbitrarily low firing

frequencies could be obtained when the injected current was just

above this threshold. When the mean frequency of action

potentials was less than approximately 5 Hz, then both stochastic

models generated clustered patterns of spikes (Figure 4). Thus,

stochastic ion channel gating enables clustered patterns of spikes to

emerge during firing at low frequencies in response to input

currents that are of insufficient amplitude to initiate action

potentials in the corresponding deterministic model.

We next examined in detail the patterns of spiking that emerge

when constant current injected into the stochastic model drives

low-frequency action potential firing (Figure 4). Consistent with

electrophysiological results [18,24,44], we find that the interspike

interval (ISI) distribution of the stochastic model in response to

constant current injection is multimodal, being characterized by

both a dominant, short ISI mode as well as a wide distribution of

long ISIs (Figure 4A). However, in the knock-out model this short

latency peak is much broader than in the wild-type model

(Figure 4A). Closer examination of the model behavior across a

range of average firing frequencies revealed the characteristic

tendency of stellate neurons to fire clustered action potentials

(Figure 4B and 4D). The knockout version of the model reveals a

lesser tendency to fire spikes in clusters (Figure 4C and 4D),

Figure 3. Ih enhances perithreshold stability. Example membrane potential responses (top) of the wild-type (A) and HCN1 knockout (B) model
to injections of a suprathreshold ramp current (bottom). The region indicated by the box is shown to the right on an expanded scale. Dashed blue
line is at 250 mV. Scale bars: 5 mV, 0.1 s. (C) Overlaid membrane potential response to ramp current injection for several trials (n = 20) for the wild-
type (black) and knockout (red) models. (D) For each trial the membrane potential was aligned to the time of the first spike. The mean response for
the wild-type (black) and HCN1 knock-out models (red) is plotted for both the deterministic (dashed lines) and stochastic models (solid lines). Shaded
areas indicate the standard error of the mean. (E) The mean (left) and standard deviation (right) of the spike-triggered membrane potential from 20.5
to 20.1 s prior to the action potential.
doi:10.1371/journal.pcbi.1000290.g003

Patterned Spiking from Stochastic Channel Gating
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Figure 4. Clustered spiking in the stochastic model. (A) Examples of interspike interval histograms calculated from long duration simulations
(150 s) of the response of the wild-type (WT; left) and knock-out (KO; right) models to DC current injection. In both examples the mean firing rate is in
the 1–2 Hz range. ISI distributions were fit with multiple Gaussians (solid blue lines). Insets show individual peak fits for the 0–0.6 s interval of the
histogram. (B–C) Examples of 10 s duration epochs of membrane potential activity from simulations with the wild-type (B) and knockout (C) models.
Average firing rate for the trial is stated in blue. (D) Pc is plotted as a function of average firing rate for the wild-type (closed symbols) and knockout
(open symbols) models using the ‘stringent’ clustering definition (left panel) and the ‘relaxed’ clustering definition (right panel). Several hundred, 16 s
duration simulations of the partially stochastic model (Figure S6) were used to provide detailed sampling. (E) Number of spikes per cluster is plotted
for a subset of the data.
doi:10.1371/journal.pcbi.1000290.g004

Patterned Spiking from Stochastic Channel Gating
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consistent with the broadening of the short latency peak in the ISI

histogram (Figure 4A). We quantified the probability of clustering

(Pc) with definitions used previously for experimental data (see

Materials and Methods; [18]). For the wild-type stellate neuron

model Pc depends upon average firing frequency and peaks at

intermediate (1–3 Hz) frequencies (Figure 4D). Importantly, Pc is

significantly reduced in the knockout model at intermediate

average firing rates (Figure 4D). Finally, as in experimental

recordings, the average number of spikes per cluster in the

stochastic models is quite variable and depends on the average

firing frequency (Figure 4E).

HCN Channels Influence the AHP Waveform in Stochastic
and Deterministic Models

We previously demonstrated that Ih accelerates the repolariza-

tion from the AHP in stellate neurons, while overall shorter AHPs

predict an increased tendency of neurons to fire clustered patterns

of action potentials [18]. Similarly, the half-width of the AHP in

the wild-type stochastic model was independent of the average

frequency of spike firing (Figure 5C). In contrast, after the

simulated removal of HCN1 channels, the AHP half-duration was

broader and varied as a function of average spike frequency

(Figure 5C), just as in experimental recordings from stellate

neurons in HCN1 knockout mice [18]. The increase in duration of

the AHP following removal of HCN1 channels was found in both

stochastic and deterministic (Figure S5) versions of the model

indicating that this role of Ih does not require stochastic gating of

the membrane ion channels. To quantify spike initiation following

the AHP we calculated the conditional probability that a spike

occurred at a time t following a previous spike at time t0 (P(st|st0))

[45]. For spike trains generated by the knockout model (Figure 5B,

right panels), the latency to the increase in P(st|st0) following a

spike was increased and the magnitude of the change in P(st|st0)

was reduced from more than 6 fold to less than 3 fold compared

with spike trains generated by the wild-type model (Figure 5A,

right panel). These changes are correlated with the reduction in Pc

observed in simulations of the knockout model across a range of

firing frequencies (Figure 4D).

Together, these simulations indicate that deterministic or

stochastic versions of our model stellate neuron are sufficient to

account for the resting membrane properties, subthreshold

stability of the membrane potential and the sensitivity of these

properties to alteration of Ih. However, only the version of our

model containing stochastically gating ion channels is able to

further account for the spontaneous emergence of membrane

potential fluctuations at potentials near threshold. Moreover, the

stochastic models produce clustered patterns of action potentials

similar to spike patterns recorded from stellate neurons from wild-

type and HCN1 knockout mice. Since our characterization of the

stochastic models suggest that they provide a remarkably good

account of experimental observations of both the resting and

active properties of entorhinal stellate neurons, we went on to use

these models to investigate how stochastic ion channel gating

influences spike initiation and the generation of distinctive

clustered patterns of action potentials.

Clustered Firing Patterns Involve Brief Action Potential
Dependent Changes in Firing Probability

How do the clustered patterns of action potentials emerge and

why do they require stochastic ion channel gating? In a

deterministic neuron, clusters or bursts of action potentials arise

through modulation of spiking by slow changes in the state of one

or more ion channels [46,47]. Indeed, such a deterministic

mechanism has previously been proposed to account for

clustered patterns of action potentials fired by entorhinal stellate

neurons [26]. By this account, stochastic ion channel gating may

lower the threshold for spike generation, but is not essential for

the generation of clustered patterns of activity. However,

stochastic ion channel gating may permit mechanisms for

control of spike patterns that are not possible in deterministic

models. In particular, whereas initiation of an action potential in

a deterministic neuron is binary, with a clearly defined threshold,

for stochastic neurons fluctuations in ion channel activity can

lead to cancellation of a spike even when the deterministic

threshold is crossed. At the other extreme spikes can be initiated

in conditions that are well below the deterministic spike

threshold [8,9]. Therefore, in a stochastic neuron there is no

clearly defined boundary between a spiking and a non-spiking

state and thus spike initiation should be considered probablistic

rather than binary.

The probabilistic nature of spiking in the stochastic model leads

to a simple alternative mechanism for generation of clustered

patterns of spikes, whereby the transient elevation in the

probability of spiking following a previous action potential is

sufficient to produce patterned output (Figure 6). According to this

mechanism, changes in the recovery from a spike would alter the

pattern of spikes by modifying the spike probability immediately

following the refractory period (Figure 6B). As a result, the

activation of ion channels during each action potential and its

associated AHP can be independent of the position of the action

potential within or outside a cluster. Several lines of evidence

support this probabilistic mechanism.

First, conditional probability distributions, P(st|st0) (Figure 5A

and 5B, right panels; also see Materials and Methods), reveal that

the wild-type version of the model produces clustered action

potentials by elevating the conditional probability of firing a spike,

P(st|st0), over the steady-state probability, P(st), for a brief period of

,50 ms following a spike (Figure 5A, right panels). Moreover, the

reduction in Pc in the HCN1 knockout model is correlated with a

decrease in P(st|st0) (Figure 5B, right panels) as required by a

probabilistic mechanism for clustered firing (Figure 6B).

Second, the number of spikes within a cluster is variable for a

particular firing rate (e.g. 3.1161.7 spikes per cluster for 1.6 Hz)

and depends upon the average firing rate in both our model

(Figure 4E) and experimental data [18]. This suggests that the

number of spikes in a cluster is probabilistic and is consistent with

a stochastic model of spike generation, but distinct from previous

deterministic models [26].

Third, in a deterministic mechanism the half-width of the AHP

should systematically vary with position in the cluster and should

determine the succeeding ISI when terminating a cluster. Thus, on

a spike-by-spike basis we would expect the AHP to correlate with

the subsequent ISI. However, we find no such correlation in spike

trains from either the wild-type or knockout models (Figure 5D).

Nonetheless, in both population data from experiments and in

different versions of the stochastic model the AHP half-width

correlates with Pc. These observations therefore support our

conceptual model of spike patterning and suggest that there may

be a common ionic basis that regulates the time course of both the

AHP and P(st|st0).

Fourth, to generate activity patterns that take place over

relatively long time scales, such as spike clusters, a deterministic

model requires relatively slow changes in the state of the model

and at least one of the model parameters must vary as a function of

a spike’s location within a cluster. By contrast, the probabilistic

mechanism of spike clustering does not require slow changes in

model parameters beyond the recovery period from the AHP
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(Figure 6). Consistent with this prediction we find that the

distribution of currents during AHP recovery is not different

between the first spike in a cluster and all other spikes regardless of

their position (see below, Figures 7 and S8).

Fifth, the conditional spike probabilities (P(st|st0)) are sufficient

to generate spike trains with interspike interval histograms and

clustered patterns of spikes that are indistinguishable from spike

trains generated by the biophysical neuronal models (Figure 6B

Figure 5. Recovery from the AHP is influenced by Ih and reflects spike clustering. (A–B) Overlaid action potentials (left) and corresponding
conditional spike probabilities (right, truncated at P = 0.1) from long simulations (150 s) in which constant current was injected to the wild-type (A)
and knockout (B) models. Average firing rate from the selected trials is indicated in blue. (C) Average width of the AHP at 252 mV for the wild-type
(closed circles) and knockout (open circles) spikes. (D) For a representative trial (upper panels in A and B) a log-log plot of the AHP width against the
succeeding ISI for wild-type (closed circles) and HCN1 knockout (open circles) versions of the model.
doi:10.1371/journal.pcbi.1000290.g005
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and 6C). Thus, P(st|st0) can fully characterize the spike train. By

contrast, if there were higher-order correlations in the spike

probabilities, as would be the case in any deterministic model of

clustered spiking, then the conditional probabilities would differ

for each spike and no single set of conditional spike probabilities

would fully characterize the spike train [45].

Transient Increases in Spike Probability Following AHPs
Are Associated with an Inward Shift in the Balance of
Membrane Currents

In principle, the transient increase in the probability of action

potential firing that occurs following recovery from the AHP could

arise though a number of mechanisms: (1) A transient shift in the

balance of membrane currents that together determine the overall

direction and rate of change of the membrane potential; (2) A

change in the stochastic current fluctuations that act as the noise

source that enables probabilistic spike firing; or (3) A reduction in

the threshold for spike initiation.

To address the first possibility, we evaluated the membrane

current at a narrow range of membrane potentials (250.5 to

249.5 mV), just below the voltage threshold for spike initiation

(Figure S8). In the stochastic model the membrane potential enters

this range during silent epochs when spikes are not initiated,

immediately before initiation of the first spike in a cluster and in

the epoch following recovery from the AHP when a subsequent

spike may or may not be triggered. We therefore assigned each

membrane potential measurement to one of three different classes

(Figure 7A): a 50 ms windows prior to spike initiation from steady

state (red); during AHP recovery of all spikes without regard to

their position within a cluster (blue); and silent epochs during

which no spiking occurred during or in the subsequent 100 ms

(black). For each point within these time windows we sampled the

Figure 6. A transient increase in firing probability during recovery from the AHP is sufficient to account for clustered spiking.
Spiking was modeled as a stochastic point process. (A) According to the point process model the stellate neuron makes stochastic transitions
between a silent and spiking state with a probability determined by P(st|st0) and an instantaneous transition from spiking back to silence (see text for
explanation). (B) We considered 4 possible P(st|st0) functions (left panels). The ‘‘Wild-type’’ and ‘‘Knockout’’ P(st|st0) curves are taken directly from data
obtained with the corresponding stochastic models. In addition, Poisson processes with refractory periods of 80 and 125 ms were considered. ISI
histograms were generated from long simulations (1000 s) (right panels). For comparison an ISI distribution from the wild-type stochastic stellate
model is also plotted (gray bars). (C) For each of the spike trains simulated with the stochastic point-process model (‘‘WT model’’ and ‘‘KO model’’) Pc

was calculated and plotted along with the Pc values in the 1–2 Hz bin of simulations in the wild-type (‘‘WT’’) and knockout (‘‘KO’’) versions of the
stochastic stellate model.
doi:10.1371/journal.pcbi.1000290.g006

Patterned Spiking from Stochastic Channel Gating

PLoS Computational Biology | www.ploscompbiol.org 10 February 2009 | Volume 5 | Issue 2 | e1000290



membrane current if the membrane voltage was within the range

250.5 mV to 249.5 mV and then generated histograms of the

membrane current for each epoch. Comparison of these three

cases revealed that spike initiation from steady state is associated

with a small but significant inward shift in the net ionic current

relative to periods of silence (Figure 7A). The small shift in the

mean current is consistent with the low average firing frequency

at steady state (i.e. low P(st)). By contrast, the recovery from the

AHP is associated with a larger shift (,8 pA) of the net

membrane current in the inward direction (Figure 7A), consis-

tent with the increase in P(st|st0) relative to P(st) following

AHP recovery and with the shift observed for spikes that

initiate clusters (Figure S8). Thus, during the period following

recovery of the AHP, the membrane experiences on balance a

greater net inward current at potentials approaching threshold,

driving further depolarization of the membrane potential and

spiking.

We also evaluated whether other mechanisms might contribute

to the change in firing probability following recovery from the

AHP. Importantly, we found no difference in the standard

deviation (s) of the membrane current prior to initiation of spikes

from steady state (s= 16.6 pA), compared with AHP recovery

(s= 16.6 pA) or silence (s= 16.5 pA), indicating that stochastic

current fluctuations have a similar magnitude in each condition

(Figure 7A). Moreover, there was no correlation between the

membrane potential at which we detected spike initiation (see

Materials and Methods) and the preceding ISI for either the wild-

type or knockout models (R,161024; Figure S7), indicating that

the brief elevation in P(st|st0) is not due to an alteration in the

voltage threshold following a previous spike. Thus, the shift in

average membrane current, as opposed to a change in the

stochastic current fluctuations or spike threshold, appears to be the

major determinant of increased firing probability following the

AHP.

Figure 7. Ih during AHP recovery enhances spike probability and clustering. (A) Probability density plots for the magnitude of the net ionic
current within the voltage range 249.5 to 250.5 mV taken from epochs in which no action potentials occurred (‘‘Silent’’; black), preceding the initial
spike of a cluster (‘‘Initial Spike’’; red), or, during recovery from the spike AHP (‘‘AHP’’; blue). Each plot is fit with a Gaussian function, which was used
to estimate the standard deviation of the distribution. Areas were normalized to P = 1 and all distributions had nearly identical properties
(ssteady-state = 16.6 pA, sAHP = 16.6 pA, ssilence = 16.5 pA). (B–C) Probability density plot for Ih (B) and for INaP (C) during the same simulation epoch as
in A. (D) Color-coded plot of the average membrane potential for all action potentials. Transition from red to blue color applies to E and F. Solid lines
are derived from fits of Gaussian functions. (E) Phase plot of the mean Ih during the spike. (F) Phase plot of the mean INaP during the spike. (E–F) Insets
focus in on the region of membrane potential selected for the plots in A–C.
doi:10.1371/journal.pcbi.1000290.g007
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Slow Activation and Deactivation of Ih Determines the
Time Window for Increased Spike Probability Following
an AHP

Since our experimental and modeling data indicates that HCN

channels influence both the AHP and clustered spiking, we asked

whether changes in Ih during the AHP could account for the shift

in membrane current that underlies the increase in P(st|st0) relative

to P(st). Importantly, the shift can be fully explained by an increase

in the amplitude of Ih during AHP recovery (Figure 7B). By

comparison another current important for spike initiation, the

persistent sodium current (INaP), shows no change (Figure 7C).

Consistent with this explanation, phase plots for Ih (Figure 7E) and

INaP (Figure 7F) during an action potential, reveal an increased Ih

density associated with recovery from the AHP.

Are the kinetics of Ih important for the relatively brief increase

in P(st|st0) that appears to underlie generation of clustered patterns

of activity (Figures 5 and 6)? Simulated voltage-clamp of isolated Ih

using a command potential based upon the action potential

waveform (Figure 8), revealed an increased density of Ih following

recovery from the AHP (Figure 8B). Comparison of the observed

Ih (Iobs) with the current density predicted from the steady-state I–

V relationship for Ih (Iss), revealed that while Iobs was less than Iss at

time points corresponding with the peak of the AHP, during the

return phase of the AHP Iobs is larger than Iss (Figure 8C amd 8D).

This transient elevation in Ih relative to steady-state precedes the

time course of P(st|st0) with an expected lag for action potential

initiation and detection (Figure 8D). To determine if this shift in

net membrane current could cause the shift in firing probability,

we simulated an increase in the injected current by the peak value

of Iobs2Iss. The increase in P(st) (dashed red line; Figure 8D)

during this simulation relative to P(st) under the control simulation

(dashed blue line; Figure 8D) accurately predicts the peak of

P(st|st0). Thus, a brief change in the net inward current due to Ih

during the AHP appears to be sufficient to explain the magnitude

and time course of P(st|st0).

The Slow Gating Kinetics of Ih Are Important for
Clustered Spiking in the Model

To directly test the influence of the slow gating kinetics of Ih on

action potential clustering we scaled the forward and reverse rates

of the closed-open transition of Ih (Figure S9). While scaling the

kinetics did not alter the magnitude of the steady-state current, it

did allow Ih to equilibrate to the membrane potential during

recovery from the AHP (Figures 8E and S9) and significantly

reduced the short-latency (,100 ms) peak in P(st|st0) (Figures 8F

and S9). This reduction in spike probability following a prior spike

resulted in a 33% reduction in Pc for a 1–2 Hz average firing rate.

However, changing the kinetics of Ih complicates this analysis and

likely leads to an underestimate of the effect. For example, the

change in kinetics leads to a 10% reduction in the AHP half-width

and increases the stochastic fluctuations in Ih about its mean, both

of which effects could increase Pc. Stochastic gating of HCN

currents is not necessary for clustered spiking (Figure S6). Thus, we

also ran simulations with fast, deterministic HCN channels to

prevent the increase in fluctuations and found that Pc was reduced

40% to 0.33, close to the theoretical minimum of 0.29 for a

refractory Poisson process where P(st|st0) is equal to P(st) (Figure 6).

Together, these data suggest that activation of Ih during the

AHP is an important determinant of both the AHP half-width and

the clustering of action potentials. Given the relatively slow kinetics

of Ih the closing of HCN channels lags the depolarization of the

membrane on the tail of the AHP and Ih fails to equilibrate to the

membrane potential. As a result, the AHP recovery is associated

with a transient increase in Ih relative to steady-state that

contributes to an increase in the probability of action potential

initiation. Moreover, this effect is robust across a range of channel

kinetics tested (Figure S9). However, due to their relatively small

single channel conductance [48], changes in mean HCN current

act primarily as a DC bias current, rather than as a noise source.

The Stochastic Model Can Account for Firing Properties
of MEC Neurons In Vivo

Could the stochastic model that we outline here also explain

aspects of the firing patterns of neurons in behaving animals?

Consistent with this possibility, spike times obtained from in vivo

single unit recordings [49] show elevations (made clear by

exponential bin spacing [50]) in their ISI distribution at around

100 ms (Figure 9E). This ISI resembles the peak of P(st|st0) in

simulations of our stochastic model, but unlike the responses of our

model to constant current input, the in vivo spike trains contain a

much broader overall distribution of ISIs. To provide a more

realistic comparison between the model and in vivo data, we

therefore carried out stimulations of the response of the model

neuron to simulated synaptic drive.

To reduce the uncertainty of comparing the model output with

in vivo recordings during which the physiologically relevant inputs

are unknown, we first examined a wide region of stimulus space by

varying the standard deviation and offset of a band-limited, white

noise stimulus (Fmax = 50 Hz). In this way, we obtained a

description of the relationship between properties of the simulated

input to the model and the mean frequencies (Figure 9A) and

coefficient of variation (CV; Figure 9B) of the ISI distributions

generated by the spike outputs from the model. Based on

comparison of these data with the frequency and CV of spike

trains recorded in vivo (Figure 9C), we selected for use in further

simulations parameters that generated spike trains with CV and

ISI spanning the space covered by the in vivo spike data (Figure 9D).

For inputs with a large standard deviation and a small offset there

were only small differences between output responses of the

stochastic and deterministic versions of the wild-type model

(Figure 9F; x2-test, P = 0.01). In contrast, for inputs with a large

offset and small standard deviation, striking differences were

apparent between the responses of the stochastic and deterministic

models (Figure 9G; x2-test, P,0.0001). In both cases the stochastic

model tends to redistribute the average ISI distribution such that it

is enriched for 100–200 ms ISIs, but this effect is greater for the

responses to weakly varying inputs (Figure 9H).

Unlike the in vivo experimental data, the simulations above did

not generate high frequency (.25 Hz) bursts of spikes. However,

examination of the stimulus space indicated that high variance

stimuli with substantial DC offsets could produce spikes at high

frequency (Figure 9A). Since recordings of the local field potential

in the medial temporal lobe in vivo indicate that the network is

characterized by long periods of relatively uncorrelated activity

interspersed with brief epochs of highly correlated activity [51], we

attempted to mimic these stimulus statistics by assuming that the

stimulus can be characterized by a relatively low average variance

(characteristic of uncorrelated presynaptic activity) interspersed at

random (Poisson) delays (l= 1 s) with random duration

(l= 200 ms) epochs of high average variance (characteristic of

correlated presynaptic activity). This pattern of stimulation is

illustrated graphically as a transition between two points in

stimulus space (Figure 9D) and resulted in a much broader ISI

distribution that more closely matched the in vivo data (Figure 9I).

Under these stimulus conditions, simulations of the stochastic

model also resulted in an ISI histogram enriched for intervals
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Figure 8. Elevated Ih during AHP recovery correlates with increased spike probability. (A) The voltage command (Vc) waveform used for
voltage-clamp simulations (left). The voltage command in the region indicated by the box is also shown on an expanded scale (right). Horizontal line
indicates initial value of the command potential. Vertical line indicates time at which command returns to its initial value. (B) Isolated Ih during
voltage-clamp of the model to the command potential in A (average of 10 simulations). (B, right) Isolated Ih during voltage command return to steady
state. The plot corresponds to the region of the voltage command highlighted in the right hand panel of A. Solid black line indicates average of 10
simulations shown individually in gray. Vertical and horizontal lines as in A. (C) Observed Ih (red) is plotted along with the steady-state Ih density
expected at each potential in the command waveform. (D) Plot of the difference between the observed and expected steady-state Ih (Iobs2Iss) during
the period of AHP recovery in the command potential. Superimposed is the plot of the probability of an action potential, P(st|st0), for the clustering
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around 100 ms consistent with clustered spiking (Figure 9J; x2-test,

P,0.0001).

Finally, we sought to determine predictions the model could

make for the in vivo distribution of ISIs for MEC stellate neurons in

HCN1 knockout mice. Assuming the stimulus conditions reflect

properties of the inputs to the MEC in vivo, the stochastic model

predicts that stellate neurons from HCN1 knockout mice should

show reduced average firing rates (FWT = 3.77 Hz;

FKO = 1.01 Hz) and less clustered firing (Figure 9K and 9L), but

an increase in the fraction of spikes emitted in high frequency

bursts (Figure 9K). While we have not found evidence for

compensatory changes following HCN1 deletion [18,27,28,38],

we nevertheless also considered the possibility that differences in

excitability between wild-type and HCN1 knockout mice may be

compensated for by homeostatic changes in the average strength

of synaptic inputs in vivo [52]. Thus, compensating for the shift in

the current threshold for spike firing following HCN1 deletion by

altering the average offset amplitude of the simulated in vivo

synaptic input, the stochastic model predicts that MEC stellate

neurons from HCN1 knockout mice should show a slight shift in

the peak of their ISI distribution of approximately +100 ms

(Figure 9K and 9L). In addition, over a range of compensation

values all of our simulations (data not shown) suggest that the peak

of the ISI distribution in the range of clustered spiking should

actually increase in the knockout mice presumably due to the

increased impedance of the membrane near threshold (Figures 2,

3, and S2).

Discussion

Stellate neurons from layer II of the MEC have distinctive

membrane properties that are proposed to be central to their

function of integrating cortical inputs to the hippocampal dentate

gyrus [14]. We find that a biophysical model neuron in which the

ionic currents are represented as a population of discrete,

stochastically gating individual ion channels provides a unified

biophysical account of intrinsic oscillations of membrane potential

and clustered patterns of action potential firing recorded from

entorhinal stellate neurons. Whereas passive properties at

hyperpolarized potentials can be explained when ionic conduc-

tances are assumed to be deterministic (Figure 1), the dynamic

properties of the membrane potential near the threshold for spike

initiation require that ionic conductances be modeled as

populations of individual ion channel proteins subject to random

fluctuations in conformation (Figures 2 and 3). Patterned action

potential firing arises spontaneously in the stochastic model,

whereas it is absent from the deterministic model (Figure 4).

Clustered spike patterns result from the modification of the

probability of action potential initiation for a brief epoch following

a spike (Figure 5). The model of stellate cells that we developed

implements an example of a general mechanism for controlling

patterns of action potential firing by activity dependent changes in

spike probability (Figure 6) that can be mediated by HCN

channels (Figures 7 and 8). Further simulations with this model

suggest conditions in which this mechanism could account for

patterns of action potentials recorded from stellate neurons in

behaving animals (Figure 9).

The Patterns of Spike Output from Neurons with
Stochastically Gating Ion Channels Can Be Controlled by
Activity Dependent Changes in Spike Probability

The rules that determine transformation of synaptic input into

patterns of spike output are fundamental to computations carried

out within the central nervous system. While models of many

cortical neurons take advantage of simplifying assumptions that

characterize spike output as an invariant function of synaptic input

(e.g. [53,54]), experimental recordings suggest that stellate neurons

from layer II of the MEC generate clustered patterns of spike

output through intrinsic mechanisms that may not be reducible in

this way. In the biophysical model of a stellate neuron that we

develop here, a brief increase in spike probability immediately

following recovery from a preceding action potential can

substantially modify the pattern of spike output. In the low firing

frequency regime, spikes can be initiated by random fluctuations

of the net membrane current. As a result of the balance of currents

near threshold, the low effective membrane conductance, and the

relatively large currents that can be produced by individual ion

channels, small bias currents can substantially alter the probability

of firing by shifting the mean of the net membrane current. This

model is sufficient to explain the clustered patterns of spikes that

are recorded from stellate cells during injection of constant current

(Figure 6). This mechanistic account also provides some suggestion

that the tendency of neurons in layer II of the MEC in behaving

animals to fire spikes at 5–10 Hz may result from the transient,

spike-dependent increase in spike probability that can influence

spiking even in the presence of a continuously varying barrage of

synaptic inputs (Figure 9).

The model that we develop here differs from a number of other

models proposed to explain the integrative properties of stellate

neurons. Two previous, biophysically-detailed deterministic mod-

els have proposed that cyclic interactions between INaP and Ih are

necessary and sufficient to produce perithreshold oscillations

[25,26]. However, this conclusion is not supported by experimen-

tal observations from stellate neurons following genetic deletion of

HCN1 [18], or pharmacological block of Ih [22]. One of these

previous biophysical models also produces patterned spiking,

although quantitative comparisons of the patterns produced with

experimental data have not been reported [26]. This previous

model requires slow deterministic changes in model parameters to

produce clustered patterns of spiking, whereas the model we

propose here demonstrates that such slow changes are not

necessary for the emergence of clustered spike firing. Nevertheless,

it is possible that in entorhinal stellate neurons slow changes in ion

channel states could further influence spike firing patterns in

addition to the activity-dependent changes in spike probability that

we describe here.

A conductance-based stochastic model [21] and a more abstract

stochastic resonate-and-fire (SIF) model [44] have also been

developed to account for the properties of stellate neurons. These

models successfully account for the complex spectral properties of

perithreshold fluctuations of membrane potential that are

recorded experimentally and that are also generated by the

stochastic model we describe here. It was previously suggested that

a simplified, stochastic INaP is sufficient to produce patterened

simulations in Figure 5. Dashed blue line indicates the average spike probability during the simulation. Red dashed line indicates the expected
spiking probability when the injected current is increased by 7 pA. Shaded grey area indicates standard error of the mean of Iobs2Iss. (E) The observed
Ih (red) after increasing the microscopic gating rates is plotted along with the steady-state Ih density expected at each potential of the command
waveform. (F) Plot of Iobs2Iss during the period of AHP recovery in the command potential for the case for the fast Ih shown in E. Superimposed is the
plot of the probability of an action potential (P(st|st0)) for a clustering simulation (150 s DC stimulus) with the same injected current as the data in D.
doi:10.1371/journal.pcbi.1000290.g008

Patterned Spiking from Stochastic Channel Gating

PLoS Computational Biology | www.ploscompbiol.org 14 February 2009 | Volume 5 | Issue 2 | e1000290



Figure 9. Effects of stochastic channel gating alter the response to stellate cells to naturalistic stimuli. (A,B) Plot of mean spike
frequency (A) and coefficient of variation of the ISI distribution (B) as a function of the mean and standard deviation of band limited white noise
inputs obtained from 5 s duration simulations (N = 384). (C) CV plotted as a function of mean firing frequency for the same data shown in A and B.
The frequency and CV of several recordings (see [49]) from neurons in the superifical layers of the medial entorhinal cortex in vivo are plotted for
comparison (red dots). These values from in vivo data were used to define a region of stimulus space selected for further analysis (red box). (D) A
masked plot of stimulus space shows the simulations that resulted in values within the red box defined in C. Longer simulations (150 s) were run for
the points indicated in red using both the deterministic and stochastic models. (E) The mean ISI probability density for experimental recordings
plotted in C. Gray shaded region indictates the range of ISIs for spike clusters (see text). (F, G) ISI histograms obtained from simulations with the
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spiking [21] through random threshold crossings and spike

omissions [8,9]. However, the spiking patterns produced due to

a stochastic INaP alone are nearly identical to a stochastic point

process with a refractory period and thus do not provide a good

match to the patterning observed experimentally (see Figure 4 in

[21]). By contrast, the stochastic model we describe here produces

more complex spike patterning that is a better match to the

characteristics of clustered firing observed experimentally and not

well described by a refractory Poisson process (Figure 6). The

mechanism that we suggest for generation of clustered firing

patterns also differs markedly from a recently proposed resonate-

and-fire model that also reproduces clustered firing patterns of

stellate cells [44]. The resonate and fire model explicitly states that

sub-threshold resonance mechanisms are required to generate

clustered spike patterns, whereas recent experimental studies

clearly dissociate sub-threshold resonance from clustered spike

firing patterns of stellate cells [18,24]. Consistent with this data,

the probabilistic model that we propose does not require sub-

threshold resonance for generation of clustered spike firing and

can provide a mechanistic explanation for dissociation of these two

properties.

Limitations of the Stochastic Model
There remain features of the firing patterns recorded experi-

mentally from stellate neurons that are not well captured by any

model proposed so far. A striking feature of some stellate neurons

is a fairly regular intercluster interval even in the absence of

coherent subthreshold oscillations (e.g. Figure S10). Our model

stellate neuron, however, appears to exhibit more widely

distributed intercluster intervals. One likely cause of this

discrepancy is the simplification of the AHP current used in the

model. Indeed, early results demonstrated that blockade of

calcium entry can reduce the tendency of spiking to be clustered

[15]. Since neuronal morphology can influence patterns of spike

output [55], a further important limitation to the model that we

propose here is that it is composed of only a single compartment.

On the one hand, this could lead to an underestimate of the

influence of stochastic gating, as in an extended dendritic structure

fewer ion channels would contribute to ionic currents in any single

compartment and thus the influence of stochastic channel gating

on the membrane potential would be greater, as has been argued

to be the case for thin axons [56]. On the other hand, comparison

between our simulations and experimental data suggest that the

magnitude of perithreshold oscillations and extent of spike

clustering are comparable or perhaps larger in the model.

Assessing the contribution of stochastic ion channel gating to the

spatially distributed properties of stellate neurons will require

future studies with more detailed computational models developed

in parallel with more detailed electrical measurements from

spatially distinct regions of the neuron. Nonetheless, the general

principles that we establish here are likely to be robust to

differences in morphology and although further morphological

data may improve the similarity between our model data and the

experimental data, simple models of neurons, neural circuits, and

behavior can provide important functional insights in the absence

of exhaustive detail [57].

HCN Channels Support Patterned Spiking
Analysis of the stochastic model supports a key role for HCN

channels in controlling the pattern of spike output from stellate

neurons and suggests how the unique biophysical properties of

HCN channels enable this role to be achieved. Thus, HCN

channels active during the AHP fail to completely deactivate as the

membrane potential returns to the steady-state (Figures 7 and 8).

As a result, HCN channels briefly introduce a small bias current

that substantially increases the probability of initiating a

subsequent action potential (Figure 8). To the best of our

knowledge this is a unique function of HCN channels that

depends critically upon both their activation by membrane

hyperpolarization and their deactivation kinetics (Figures 7, 8,

and S9). Such an interaction, between a bias current introduced by

a slowly gating ionic current with a small single channel

conductance such as Ih and rapidly varying currents composed

of ion channels with larger single channel conductances, may be a

general mechanism by which neurons produce changes in firing

properties that pattern action potential output. Importantly, under

naturalistic stimulus conditions, patterned spiking in the stochastic

model can still provide significant modifications to the response

properties of stellate neurons (Figure 9). Several neuronal subtypes

have been reported to display perithreshold oscillations of

membrane potential [58,59]. If intrinsic oscillations in other

neurons also arise from stochastic channel gating, then patterned

action potential firing driven by the interaction between multiple

stochastic currents may also be a more general feature of neuronal

spiking.

Relevance of Stochastic Channel Gating to Activity In
Vivo

The entorhinal cortex is the last stage at which cortical

information is processed prior to entering the hippocampal

formation. Stellate cells in layer II constitute a major excitatory

projection to the dentate gyrus and may correspond to the recently

discovered ‘grid cells’, which encode an animal’s location in its

environment through grid-like spatial firing fields [49,60,61].

While unreliable synaptic transmission is often considered as a

noise source in neural circuits [6], less attention is usually given to

the possible impact of stochastic ion channel fluctuations. Using

stimulus parameters selected to obtain output firing properties

similar to those recorded in vivo, we found that the presence of

stochastically gating ion channels reliably increased the number of

action potentials emitted with an ISI characteristic of intra-cluster

intervals (Figure 9). This tendency depended on the stimulus

statistics used, but is consistent with the peak in the in vivo ISI

histograms around 100 ms and with our explanation for clustering

as a transient increase in spike probability during the ,70–150 ms

following an action potential. Since the trains of synaptic stimuli

used for these simulations have random statistics, these data

support the idea that the effects of stochastic ion channel gating

deterministic (‘‘D’’) and stochastic (‘‘S’’) versions of the model using input statistics at the extrema of the plot in D (indicated by ‘‘F’’ and ‘‘G’’). (H) The
difference in spike counts between the D and S simulations for the data plotted in F (blue) and G (red). The stochastic model shows a selective
redistribution in the probability of spiking that produces an increase in the clustering interval (shaded region) and a decrease at longer ISI intervals. (I)
ISI histograms obtained from simulations with deterministic (blue) and stochastic (black) versions of the model using input statistics that fluctuate
randomly between the two states indicated by the double-headed arrow in D. (J) The difference in spike counts between the D and S simulations for
the data plotted in I. (K) ISI histogram for response of the knockout model to the unscaled (‘‘us’’; blue) and the scaled (‘‘s’’; red) poisson stimuli (see
text). Gray shaded region is the data from I replotted. (L) The difference in count between the ‘‘us’’ and ‘‘s’’ simulations for the data plotted in K. All
histograms use exponentially spaced bins.
doi:10.1371/journal.pcbi.1000290.g009
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may in some conditions be superimposed on, rather than

overwhelmed by, synaptic noise sources. Thus, stochastic ion

channel gating may have to be accounted for in order to explain

the firing of grid cells in behaving animals. However, further

evaluation of this hypothesis will require much more information

about the actual synaptic inputs received by grid cells. In addition,

to better compare in vitro and in vivo data future studies will be

required to establish whether in vivo data sets obtained from

superficial layers of the MEC are indeed enriched for stellate

neurons [49,60].

We also attempted to predict the responses of wild-type and

HCN1 knockout neurons to naturalistic stimuli. These simulations

suggested that in the absence of changes to the input stimulus,

stellate neurons lacking HCN1 will have an approximately 65%

reduction in average firing rate (Figure 9). This reduced firing rate

is characterized by an increase in the fraction of spikes emitted in

high frequency bursts, or a sparsening of the response properties.

There have been several suggestions that high frequency bursts

convey unique information [62–64] about input stimuli and thus,

this change could contribute to the enhancement of hippocampus-

dependent learning in mice with deletion of HCN1 channels [28].

Conclusion
Whereas initiation of action potentials in deterministic model

neurons is a binary process with a clearly definable threshold, in

more realistic neuronal models containing stochastically gating ion

channels spike initiation is probablistic. Here we show that one

general consequence of stochastic ion channel gating is that firing

of an action potential can transiently modify the spike probability

leading to the emergence of intrinsically generated patterns of

spike output. In the case of the model we develop here, activation

of HCN channels, during recovery from the action potential

afterhyperpolarization, drives a brief increase in spike probability

that leads to the emergence of clustered patterns of spike firing. As

well as providing an account of both the resting and active

integrative properties of stellate neurons in the medial entorhinal

cortex, analysis of responses of this model to simulated in vivo

synaptic inputs, suggests conditions in which stochastic ion channel

gating might impact firing patterns of behaving animals. Thus, our

results suggest a mechanism by which random changes in the

conformation of small numbers of individual ion channel proteins

could impact neural computations that underlie cognitive

processes such as spatial navigation and memory.

Materials and Methods

Model Implementation
Modeling experiments were implemented in Matlab 7 (Natick,

MA) using kinetic formalisms described in Text S1. The model has

also been completely replicated in NEURON 5.9, but Matlab

simulations were used for the data reported. The model cell was a

sphere with a diameter of 50 mm and a specific capacitance of

1.67 mF/cm2 (to account for the lack of a dendritic arbor). The

model included implementations of a fast, transient sodium

current (NaT), a persistent sodium current (NaP), a delayed

rectifier-type postssium current (Kdr), a fast inactivating A-type

potassium current (KaF) and a slowly inactivating potassium

current (KaS), a ‘‘calcium-activated’’ potassium current (KCa), a

linear potassium leak (Kl) and a fast or slow hyperpolarization-

activated current (Hf or Hs). Hf, Hs and KCa are implemented as

two-state channels, which is sufficient to capture their dominant

kinetics, although additional states would be required to more fully

capture details of their gating. NaP, KaF, and KaS, were modeled

with a cyclical four state inactivation model. NaT and Kdr

currents were modeled according to the original Hodgkin-Huxley

formalism with 5 and 8 states, respectively. The total current

density of each channel was closely matched to existing data.

In order to model stochastic channels, it was assumed that the

states obeyed a first order Markov-type probabilistic description

[2]. To track channel populations in each state a random number

was generated for each channel in a given state (a ‘‘particle’’) at

each time step (Dt). Assuming that the time step is sufficiently small

the probability of a transition is equal to rate6Dt, with a transition

occurring in the event that a random number, evenly distributed

between 0 and 1 is less than rate6Dt. For particles with multiple

possible transitions (i.e. multistate channels that have multiple

transitions into and out of a given state), a unique transition was

chosen using non-overlapping distributions of transition probabil-

ities. Briefly, a uniformly distributed collection of random numbers

between zero and one, thresholded by the value P (transition) will

give N, the number of transitions that occur. In the case where

multiple transitions are possible, we observe that a given ‘‘particle’’

can only undergo a single transition. We know from probability

theory that:

P A|Bð Þ~P Að ÞzP Bð Þ{P A\Bð Þ

However, if there can only be a single transition then:

P A\Bð Þ~0

and thus,

P A|Bð Þ~P Að ÞzP Bð Þ

The probability that a given transition occurs is then the sum of

the elementary probabilities. Dividing the probability space

between 0 and 1 into bins of size P(A), P(B) and 1- P(A<B), and

placing random variables uniformly distributed between 0 and 1,

gives the desired values for the number of transitions. This brute

force method is similar to the simple Monte Carlo method

described elsewhere [65] and to the method used elsewhere to

model stochastic channels [9].

The time step used was 10 ms (corresponding to the approxi-

mate minimum dwell time of NaT) and numerical integration was

accomplished using a 4th order Runge-Kutta method (most results

were confirmed using the Backward Euler integration method).

Simulations were run in Matlab and all analysis was completed

using Igor Pro (Wavemetrics; Eugene, OR). A complete

description of parameters used for the model currents and

justification of parameters can be found in Text S1. Further,

each channel was implemented as either stochastic or deterministic

and it was ensured that in all cases the two solutions converged.

For some simulations a partially stochastic model was used to

speed simulation times and provide a good estimate of the fully

stochastic model (data in Figures 4 and 9). This was justified by

directly examining the contribution of each conductance (Figures

S4 and S6).

Definitions
Throughout the text we have made reference to a number of

descriptions of the biophysical properties of the neuron that are

elaborated upon here for clarity. The passive membrane

properties we characterize are the resting membrane conductance

and resting membrane potential. Typically these values are

obtained by analyzing the response of the membrane potential
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to small current steps. By convention we assume that the state of

the voltage-dependent currents is unaltered. The values are then

obtained by application of Ohm’s Law. However, during active

states, when the neuron or model is depolarized away from its

resting potential, the assumption that the underlying conductances

are unaltered by small changes in injected current are generally

less safe. At depolarized potentials we use a modified definition of

the membrane conductance and consider the ‘‘effective’’ mem-

brane conductance. Here we define the effective membrane

conductance as the slope of the relationship between the

membrane current and the membrane potential. This definition

thus explicitly takes in to account the change in membrane

conductance in response to a change in membrane voltage [2,5].

Analysis
All simulation data were analyzed in IGOR Pro (Wavemetrics)

using both built-in analysis functions and custom written routines.

Unless indicated otherwise mean values are 6standard error of the

mean (SEM). Statistical tests were accomplished using Excel

(Microsoft) and IGOR Pro (Wavemetrics).

Analysis of perithreshold fluctuations in membrane

potential. To analyze the spectral properties of perithreshold

fluctuations in membrane potential the built-in sonogram function

of IGRO Pro was used to estimate the short-time fourier transform

(STFT) of the membrane potential response to 20 s epochs of DC

current injection to the model. We further used the fast Fourier

transform (FFT) function to determine the spectral properties for

the entire epoch and selected 1 s sub-epochs of the response. For

the full 20 s analysis the FFT result was smoothed using a

Savitzky-Golay algorithm (35 point) for improved display.

Representative epochs were chosen from the central 10 s of data

based upon the appearance of coherent oscillatory behavior and

consistent with the changes in the power spectrum observed by

analyzing all such brief epochs. To compare the amplitude of

oscillations the mean of the integrated power spectra between 5–

10 Hz was calculated for all epochs.

Analysis of spike patterning. To quantify the tendency for

neurons to generate clustered patterns of spikes, we used previous

‘relaxed’ and ‘stringent’ definitions [18] for the data in Figure 4.

Subsequently, we used a single intermediate definition (400 ms

intercluster interval) to allow a single value to be reported where

helpful. Thus, a cluster of spikes was defined as two or more

consecutive spikes with interspike (intracluster) interval ,250 ms,

preceded and followed by silent periods (intercluster intervals) of

duration .300 ms (relaxed), 400 ms (intermediate), or 500

(stringent) ms. We estimated the probability that a spike occurs

as part of a cluster Pcð Þ from the ratio of the number of spikes that

occur within clusters to the total number of spikes. Data were

binned according to the average firing rate (inverse of the mean

interspike interval) for all spikes during the entire 150 s simulation

or for each repetition of a 16 s trial (Figure 4D). Following the data

in Figure 4D, all subsequent analysis used the single, intermediate

definition of clustering.

Generation of P(st|st0) distributions. We collected all

spike triggered membrane potential epochs for each simulation by

thresholding the first derivative of the membrane potential. The

spikes were aligned such that t = 0 at the threshold crossing, which

was operationally defined as 10% of the maximum of the first

derivative of the membrane potential. Using this ensemble of

spike-triggered membrane potential epochs we detected spikes

(using the same thresholded derivative) following the initial aligned

spike to create a spike-triggered raster plot. The rasters were then

binned (10 ms bins) and divided by the number of traces in the

ensemble to generate a spike-triggered spike probability

distribution as a function of time, t, following the time of the

aligned spike, t0, or ‘‘P(st|st0)’’.

Estimate of passive membrane properties. Simulations

of responses to current steps (amplitude65pA; duration 5 s) were

run to estimate passive parameters of the stellate models. Input

resistance (Ri) was defined as the ratio of the steady state voltage in

response to positive (‘‘+’’) or negative (‘‘2’’) current injection to the

resting potential. Monoexponential fits to the initial voltage

response were used to obtain the membrane time constant (tm).

The sag ratio is calculated as the ratio of the peak instantaneous

voltage difference divided by the steady-state voltage difference for

the negative current injection.

Experimental Data from In Vivo Recordings
Analysis of in vivo recordings of cortical neurons from the

superficial layers of the medial entorhinal cortex was based upon

data obtained from: http://commonweb.ntnu.no/cbm/moser/

gridcell.

Synaptic Stimulation
For Figure 9 we attempted to provide a general, readily

parameterized model of synaptic drive that might occur in vivo.

Because we used a single compartment model, appropriately

scaled current stimulation can be equivalent to conductance-based

stimuli [66]. Further, in order to provide a readily parameterized

stimulus to explore the space of possible responses we chose to use

colored white noise. Again, over the range of frequencies where

the impedance of the cell membrane is maximal, random barrages

of synaptic input show approximately white stimulus statistics [66].

For our stimulus we thus create a broadband, white noise stimulus

that was bandlimited to 50 Hz. The standard deviation and DC

offset of the current stimulus were scaled according to the

parameters in Figure 9A and 9B and applied directly to the model.

The ISI histogram of responses to the broadband stimulus was

not as broad as for the in vivo experimental data. Examining the

experimental data revealed that this was primarily due to a lack of

high-frequency (.50 Hz) bursting in the model. We made the

assumption that occasional changes in stimulus statistics could give

rise to this high frequency bursting. By examining the approximate

length of such periods we determined that ,200 ms long changes

in stimulus statistics were consistent with the experimental data.

We assumed a Poisson distribution for the duration of these epochs

of high frequency activity. We chose an interval between the high

frequency epochs that gave an approximately correct balance in

the ISI distribution (mean = 1 s; Poisson distributed). Finally, the

amplitude of the changes in the DC component and standard

deviation were taken from the survey of parameter space to match

the central peak of the bursting ISIs (see Figure 9).

Supporting Information

Figure S1 Stochastic gating can produce substantial channel

noise

Found at: doi:10.1371/journal.pcbi.1000290.s001 (0.70 MB PDF)

Figure S2 Membrane impedance determines the increased

membrane potential fluctuations in the HCN1 knock-out model

Found at: doi:10.1371/journal.pcbi.1000290.s002 (3.38 MB PDF)

Figure S3 Ih is not required for perithreshold oscillations

Found at: doi:10.1371/journal.pcbi.1000290.s003 (2.78 MB PDF)

Figure S4 Necessity and sufficiency of stochastic conductances

Found at: doi:10.1371/journal.pcbi.1000290.s004 (4.69 MB PDF)

Figure S5 Spiking properties of the deterministic model
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Found at: doi:10.1371/journal.pcbi.1000290.s005 (0.14 MB PDF)

Figure S6 Partially stochastic model does not significantly differ

from completely stochastic model

Found at: doi:10.1371/journal.pcbi.1000290.s006 (0.19 MB PDF)

Figure S7 Voltage threshold for spike initiation is not correlated

with ISI

Found at: doi:10.1371/journal.pcbi.1000290.s007 (0.08 MB PDF)

Figure S8 Determining the critical point for spike initiation

Found at: doi:10.1371/journal.pcbi.1000290.s008 (0.34 MB PDF)

Figure S9 A wide range of HCN kinetics are sufficient for AHP

enhancement

Found at: doi:10.1371/journal.pcbi.1000290.s009 (0.58 MB PDF)

Figure S10 A regularly spiking MEC stellate neuron

Found at: doi:10.1371/journal.pcbi.1000290.s010 (0.80 MB PDF)

Text S1 Components of the stellate model

Found at: doi:10.1371/journal.pcbi.1000290.s011 (0.18 MB PDF)
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