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Abstract: The main purpose of this study is to develop an understanding of how Porphyromonas
gingivalis responds to subperiosteal implant surface topography. A literature review was drawn from
various electronic databases from 2000 to 2021. The two main keywords used were “Porphyromonas
gingivalis” and “Surface Topography”. We excluded all reviews and or meta-analysis articles, articles
not published in English, and articles with no surface characterization process or average surface
roughness (Ra) value. A total of 26 selected publications were then included in this study. All research
included showed the effect of topography on Porphyromonas gingivalis to various degrees. It was
found that topography features such as size and shape affected Porphyromonas gingivalis adhesion
to subperiosteal implant materials. In general, a smaller Ra value reduces Porphyromonas gingivalis
regardless of the type of materials, with a threshold of 0.3 µm for titanium.

Keywords: Porphyromonas gingivalis; surface topography; dental implants; subperiosteal implant;
surface roughness; depth profile

1. Introduction

Subperiosteal implants were first introduced in Sweden in 1942 as an alternative to
treat patients with severely atrophic bones [1]. These implants were designed to be placed
in between the bone and the periosteum. The main idea was to distribute stress from the
prostheses to a large area of bone support [2]. Although, in recent years, subperiosteal
implants have been gradually replaced by endosseous implants, for the patient with
severely atrophic bones, this type of implant is irreplaceable [3]. In addition, with advanced
technology such as computed tomography (CBCT), intraoral scanners, computer-assisted-
design/computer-assisted-manufacturing (CAD/CAM) software, and newly discovered
materials, the subperiosteal implant has started to regain its popularity [4]. However, the
subperiosteal implant has several disadvantages, such as a complex fabrication technique,
time-consuming procedures, and a higher risk of postoperative complications [2,5,6]. One of
the most common postoperative complications is an infection on the permucosal abutment
post. This infection has a clinical characteristic similar to peri-implantitis on the endosseous
implant. Once the infection spreads, the option is to perform tissue resection or complete
the implant removal [7].

Peri-implantitis is an inflammation around implants and induced progressive bone
loss [8]. The effect of peri-implantitis is generally to cause more significant bone loss
and more rapid progress than periodontitis [9]. It was found that microorganisms play a
vital role in peri-implantitis through biofilm formation [10]. After the implant surface is
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exposed to the oral environment, the biofilm starts to form in the peri-implant pocket [11].
The biofilm is formed through five stages: (1) reversible cell attachment; (2) irreversible
cell attachment facilitated by extracellular polymeric substance (EPS); (3) cells attached
on surfaces replicate and form microcolonies; (4) biofilm maturation by forming a three-
dimensional structure; (5) detachment of some cells from biofilm and dispersal to propagate
and produce biofilm renewal [12]. Overall, biofilm formation happens within 1–2 weeks
and reaches its stability after three months [11]. In addition, bacterial infections lead to
inflammation, and implant failure can occur at any time during treatment [13–15].

To date, to improve the cells and tissue attachment, the implant surface has been
modified by both chemical and or physical alteration, which includes creating grooves and
roughness [16]. However, implant surface characteristics are crucial not only for tissue
attachment but also for biofilm formation. In vitro and in vivo studies reveal that implant
surface properties regulate bacterial attachment, physiology, and biofilm formation [12,17].
This is because bacteria can sense chemical signaling and surface-associated mechanical
cues. The first clue regarding this phenomenon came in 1981 when Beachy found that
different bacteria in the same niche do not interact with the same surfaces. Streptococcus
salivarius, for example: S. salivarius binds to the tongue but not to the teeth, whereas
Streptococcus mutans acts reversely [18]. Similarly, with P. gingivalis, within the same salivary
pellicle, the addition of peptide base coating inhibits the attachment of these bacteria. On the
contrary, a non-coated implant disk showed a higher number of P. gingivalis attached [19].

The effect of topography on bacterial adhesion is like two sides of the same coin,
which depends on the size, patterns, and distribution of the topography. For example,
some studies suggest that implants with micro-roughness have higher biofilm and bacterial
accumulation than more refined surfaces [17,20,21]. At the same time, other studies found
the possibility of an antifouling effect from micro-topography by changing the surface
wettability [22]. Similar to microtopography, some nanotopography also affects bacterial
activity on implant surfaces. Studies showed that nanotopography could induce bacteria
to produce different types of EPS [23]. Nanotopography also affects bacterial membranes.
Nanopillars, for example, act like “a bed of nails”, which ruptures bacterial membranes
once it is in contact with this surface [22].

Like the microflora in tooth sulci, anaerobic bacteria such as Staphylococcus aureus,
Prevotella, Porphyromonas gingivalis, Bacteroid fragilis, and Fusobacterium are also associated
with periimplantitis [17,24,25]. Based on a systematic review, it was found that Porphy-
romonas gingivalis (P. gingivalis) was frequently found at the peri-implantitis site [17,26].
P. gingivalis is a Gram-negative, obligately anaerobic, non-motile, and non-spore-forming
bacterium with several virulence factors: hyaluronidase and chondroitin sulfatase enzymes,
lipopolysaccharide (LPS) capsule, fimbriae, collagenase, and aminopeptidase [27]. These
virulence factors enable P. gingivalis to invade the periodontal tissue surrounding the im-
plants locally. In addition, P. gingivalis can cause not only local inflammation on the implant
site but also systemic disease via four stages: (1) bacteremia, (2) activation of persistent
inflammatory cascades, (3) spread of specific toxins, and (4) pathogens trafficking by direct
infection and internalization in host immune cells throughout the body [28]. Thus, this
study systematically reviews the data for the effect of micro- and nano-topography on the
bacterial activity of P. gingivalis, aiming to provide a better understanding in designing
subperiosteal implant surfaces to reduce peri-implantitis.

2. Materials and Methods

A depth literature review was performed to answer the research question. Data
were collected from several online sources such as Google Scholar, Cochrane Library,
Science Direct, Wiley, and PubMed. The data taken were published from 2000 to 2021 with
the main keywords as “Porphyromonas gingivalis” and “Surface Topography”. A total of
1290 articles were found. However, no report specifically reviewed the effect of various
surface topographies regarding subperiosteal implants on the activity of Porphyromonas
gingivalis. From these findings, we excluded all reviews and or meta-analysis articles,
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articles not published in English, and articles with no surface characterization process or
Ra value. Further details on article selection can be seen in Figure 1.
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3. Discussion
3.1. Porphyromonas gingivalis Structure and Characteristic

Principally, bacterial surface components and their extracellular compounds, such
as fimbriae or pili, LPS, and EPS, combined with environmental conditions and quorum-
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sensing signals, are critical for biofilm formation [29]. Below, we will discuss the P. gingivalis
structure and its significance, especially in biofilm formation.

3.1.1. Fimbriae

Bacteria, as well as P. gingivalis, commonly express their extracellular polymer known
as pili or fimbriae, which are similar terms [30]. Fimbriae are considered significant factors
in determining P. gingivalis virulence, as fimbriae help in bacterial adhesion to the host sur-
face, antibiotic surface, and or in between bacterial cells [31–33]. In an in vitro polymerase
chain reaction assay (PCR), it was found that the number of fimbriae in a P. gingivalis strain
is equal to its ability to adhere [32]. A P. gingivalis mutant 33277 (MPG1) with minimum
fimbriae could not adhere to both epithelial cells or the gingival fibroblast [34]. Fimbriae are
also classified into several types based on several classification schemes. The most popular
one is a classification based on its morphology and function by Brinton in 1965. Brinton
classified six types of fimbriae and then, one year later, Duguid et.al. added a seventh (Type
1 to 6 and F) [33]. However, with P. gingivalis, the widely used classification is based on the
nucleotide sequences, in which six genotypes of the fimA gene have been identified (fimA I,
Ib, II, III, IV, and V) [35].

P. gingivalis, in general, has two types of fimbriae, which are FimA and Mfa1 fimbriae.
The FimA fimbriae are composed of FimA proteins encoded by FimA genes and called the
long fimbriae. Similarly, the Mfa1 fimbriae are composed of the Mfa1 protein encoded
by Mfa1 genes, and are called the short fimbriae [30,36,37]. These fimbriae help bind
specifically to and trigger various host cells, such as epithelial, endothelial, and spleen
cells, as well as peripheral blood monocytes in humans, resulting in the release of several
distinct adhesion molecules and inflammatory cytokines [30]. In addition, there are several
accessory proteins which are incorporated into fimbriae; for example, Mfa4 which are
incorporated into Mfa1 fimbriae. Mfa4 mediate the formation of Mfa1 by promoting the
maturation of Mfa3 and stabilizing Mfa5 within the cell surfaces; thus they are crucial in
biofilm formation [38].

3.1.2. Capsule

The P. gingivalis strain exhibits significant heterogeneity, in which some strains are
encapsulated, whereas others are non-encapsulated [39]. Previous studies have reported
that the encapsulated strain of P. gingivalis has higher virulence than the non-encapsulated
one. The capsule plays a major role in evading host immune system activation, reducing
phagocytosis, increasing bacterial activity survival ability within the host cells, and boosting
its virulence [39–41].

3.1.3. Cell-Wall

In the Gram-negative bacteria, such as P. gingivalis, the cell wall is formed from a single
layer of peptidoglycan covered by a membranous structure called the outer membrane
vesicles (OMVs). P. gingivalis expresses protease activity which can be extruded with the
OMVs [42]. OMVs enable bacteria and host communication as they can carry molecules
involved in immune modulation [43]. P. gingivalis OMVs are adherent and small, with the
ratio of cells to OMVs at approximately 1:2000 [44].

3.2. Biofilm Formation

Biofilm is a microbial community attached to the interface enclosed in an EPS that
exhibits a distinct phenotype correlated to its gene transcription and growth rate. It is
known that the biofilm has been shown to have a specific mechanism for initial attachment
to a surface, development, and detachment [45]. Overall, it is believed that biofilm forma-
tion begins with bacterial attachment on the surface, which transforms from reversible to
irreversible. Adhesive components of bacteria aid this transformation. This attachment
then advanced through EPS production, which later entrapped the whole structure. Finally,
some bacterial cells escape from the mature biofilm to form new colonies [46]. Once the



Materials 2022, 15, 4988 5 of 13

biofilm is developed, killing the bacteria inside or removing the biofilm from the surface
becomes difficult. Bacteria inside the biofilm are packed and resistant to the adverse en-
vironment, for example, antibiotics [47]. Hence, interspersing initial bacteria attachment,
including their sensing mechanism, is crucial to preventing biofilm formation and related
problems [48].

Biofilm formation on the subperiosteal implant is affected by several factors such
as (1) oral environment, (2) bacterial properties, and (3) material surface characteristics,
including chemical composition, surface free-energy, hydrophilicity, and surface topog-
raphy (roughness) [17,49]. Higher surface free energy has shown significant correlation
to bacterial adherence. Higher surface free energy favours bacterial attachment [50]. In
addition, the combination of surface free energy and surface roughness is the major factor
and proportional to surface hydrophilicity with low surface energy and smoother-surface-
producing higher hydrophobicity [51]. Almost all in vivo studies suggest that a smooth
surface reduces the amount of biofilm compared to a rough one. An increase in surface
roughness of more than 0.2 µm and or an increase in surface energy promotes biofilm
formation, with surface roughness being more dominant [49].

3.3. Surface Topography

Physical modification of surfaces can provide long-term effectiveness and is envi-
ronmentally friendly. Thus, the physical modification is believed to be a more promising
alternative compared to the chemical modification of surfaces [52]. One of the important
parameters in the identification of physical surface properties is surface topography, which
refers to both the profile shape and the surface roughness, including the waviness and the
asperity or the finish [53].

Furthermore, the most frequently used parameters for characterizing surface topogra-
phy are average surface roughness (Ra) and root-mean-square surface roughness (Rrms),
that stands for the average and root-mean-square deviation of height values from the mean
line, respectively. However, both Ra and Rrms provide no information on the spatial distri-
bution or shape of the surface features. Some researchers have offered new parameters for
a more comprehensive characterization of the surface topography, such as summit density
(Sds) and developed area ratio (Sdr) [52].

In the next paragraph, the surface roughness is presented in Ra or Sa. The average
roughness, Ra, provides a general measure of the height of the texture across a surface. It is
the average of how far each point on the surface deviates in height from the mean height,
while Sa is an absolute value that expresses the difference in height of each point to the
arithmetical mean of the surface [54]. In general, surface energy (often presented as water
contact angle) changes as the surface roughness changes [55]. However, one should keep in
mind that surface chemistry also plays key roles in the changes in surface energy [56–58].

3.4. Subperiosteal Implant Materials and Surface Modification

Material selection in subperiosteal implant placements plays a key role in implant
success [59]. In general, like the endosseous implant, subperiosteal implant material is
divided into three categories which are metal, ceramic, polymer, and composite [60]. To
improve materials properties, surface treatment is commonly applied. The addition of
surface treatment improves cell attachment and bacterial debridement. Surface treatment
is arguably the most studied topic regarding implant design alteration. There are various
types of surface treatment; however, they can be simplified into two types which are
chemical and physical. Both of these types showed efficacy in increasing bone attachment
and or bacterial debridement [61]. In this section, we will discuss the materials used for
subperiosteal implants and the various surface modification methods applied.

One of the widely used materials for subperiosteal implants is titanium and its al-
loys [59,62]. Titanium and its alloys are still a material of choice for dental implants, as they
have a high success rate, are durable, and display adequate osseointegration [63]. There are
several methods used for titanium surface modification such as sandblasting, acid etching,
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a combination of both sandblasting and acid etching (SLA), fluoride treatment, calcium
phosphate coating, and anodic oxidation [64,65]. Among these methods, sandblasting is
one of the most popular. Sandblasting or acid etching or a combination of both can increase
surface roughness, increasing the surface area for osteoblast attachments. Hence, it in-
creases bone healing, interfacial stress distribution, and bonding strength [66]. In addition,
Alagatu et al. [59], mentioned sandblasting as the best method for titanium and zirconia.

Recently, the popularity of zirconia as an alternative for implant materials has in-
creased. In their review, Alagatu et al. [59] showed that some clinical studies demonstrated
that zirconia has better anti-inflammatory properties than titanium. In addition, zirconia is
less prone to peri-implantitis than titanium. Zirconia also can be combined with titanium to
improve both properties. The addition of zirconia increases implant biocompatibility com-
pared to titanium alone [67]. Several attempts have been made to improve the properties of
zirconia such as the addition of hydroxyapatite [68] or calcium phosphate [69], sandblast-
ing [70], acid etching [71], laser treatment [72], and ultraviolet photo-functionalization [73].

3.5. How Porphyromonas gingivalis Responds to Topography

An increase in roughness can increase P. gingivalis attachment; for instance, with
ceramic material. The type of ceramic did not affect P. gingivalis’s LPS adherence; however,
surface roughness does [74]. Furthermore, Verran & Boyd have classified surface roughness
into three categories based on the roughness average (Ra): macro (Ra~10 µm), micro
(Ra~1 µm), and nano (Ra~0.2 µm) [75]. Previous research found that with bacteria with
relatively thin cell walls such as P. gingivalis, bacterial attachment is mainly affected by
roughness [76,77]. Moreover, it has been suggested that nano roughness is appropriate to
prevent microbial adherence. It is because most bacteria, as well as P. gingivalis, are about
1.51 µm long and 1 µm in diameter [77,78]. In addition, it has been reported that based on
numerous in vitro studies in fixed restorations, the degree of bacterial attachment increases
with increasing surface roughness greater that 0.2 µm [58]. In this section, we will discuss
the effect of various topographies on several subperiosteal implant materials on the activity
of P. gingivalis.

Using the profilometry method, Zortuk et al. [58] studied the surface roughness of cylin-
drical substrates based on various bis-acrylic composites, namely Dentalon
(Ra = 1.41 ± 0.36µm), Revotek LC (Ra = 2.30 ± 0.43µm), PreVISION CB (Ra = 1.82 ± 0.62 µm),
Protemp 3 Garant (Ra = 1.10 ± 0.49 µm), and glass as the control substrate (Ra < 0.01 ± 0.00 µm).
Using the spectro-fluorometric method, the authors then investigated how the topography
and the chemical nature of the substrates affect the attachment of P. gingivalis. The highest
and the lowest bacterial attachment were found on the roughest (Revotek LC) and the
smoothest (glass) surface, respectively. Interestingly, the bacterial adhesion was greater on
Protemp 3 Garant compared to both Dentalon and PreVISION CB. These findings demon-
strate that both the surface roughness and the chemical nature of the substrates play roles
in P. gingivalis attachment on surfaces.

Daw et al. [79] prepared various scales of roughness on a titanium surface by means
of hydrogen peroxide treatment from 0 h, 6 h, 24 h, 1 week, to 4 weeks, which resulted
in Ra = 0.83 ± 0.08, 1.03 ± 0.18, 1.22 ± 0.12, 2.78 ± 0.44, and 3.14 ± 0.53 µm, respectively.
It was found that the moderate- to high-scale surface roughness titanium surface with a
Ra value of 1.2 µm and 2.7–3.2 µm, respectively, increases P. gingivalis attachment in vitro
due to the presence of surface depression, edge, and pits. These features enhance contact
between P. gingivalis and the surface and protect P. gingivalis from hydrodynamic shear
forces [79]. Another article by Han et al. [64] reported various surface roughnesses on
zirconia ranging from Ra = 0.17 ± 0.03 µm (untreated), 0.56 ± 0.05 µm (grit-blasting),
1.47 ± 0.04 µm (HF-etching), to 1.48 ± 0.05 µm (grit-blasting followed by HF-etching).
Furthermore, the roughness data were complemented with water contact angle (WCA) data
that indicate the surface energy. It was shown that the WCA value decreases with increasing
surface roughness, meaning that the surface energy at a solid-water interphase decreases
(more hydrophilic) with increasing surface roughness. The bacterial assay showed that
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within the first 24 h, the surface with the highest Ra (the last two treated surfaces) exhibit
the highest P. gingivalis attachment. Interestingly, the corresponding surfaces exhibit the
lowest P. gingivalis biofilm after 3 × 24 h. The authors speculated that the low biofilm
accumulation after 3 days correlates to the low surface energy and hydrophilicity (indicated
by the low WCA). In agreement with previous studies, the authors then concluded that after
the maturation of the biofilm, the influence of surface roughness on bacterial attachment
diminishes [64].

Kim et al. [80] treated titanium disks with mechanical grinding, grit-blasting, sand-
blasting, and Mg ion implantation. The mentioned treatments resulted in 4 (four) different
surfaces, namely ground/control (G), sandblasted (S), ground with Mg ions (Mg-G), and
sandblasted with Mg ions (Mg-S) surfaces. SEM and profilometry data showed significant
increases in surface roughness when sandblasting was applied to the ground sample, that
is from Ra = 0.61 ± 0.03 to Ra = 1.14 ± 0.19. The in vitro experimental results showed a
clear, positive relationship between surface roughness and P. gingivalis attachment; that
is, significantly more bacteria attached to the rougher surface compared to the smoother
one. Interestingly, implantation of Mg ions did not alter the surface roughness of each
surface; however, it significantly altered the P. gingivalis attachment. These phenomena
demonstrate that roughness does play a role; however, it is not the only factor affecting
P. gingivalis attachment to surfaces.

Moreover, Batsukh et al. [81] showed that the surface debridement method using ultra-
sonic scaler resulted in a rougher surface with Ra = 0.5174 ± 0.12 µm compared to the rubber-
polished, Ga-Al-As-lasered, and chlorhexidine-treated surfaces with Ra = 0.1772 ± 0.04,
0.2119 ± 0.02, and 0.2028 ± 0.01 µm respectively. The highest P. gingivalis attachment was
found on the roughest surface (highest Ra). In line with this result, the lowest growth
of biofilm was found on the smoothest surface. An interesting finding was reported by
Mukaddam et al. [82], in which a titanium surface with nanospikes of 0.5 µm in height
prepared from helium sputtering exhibited lower P. gingivalis attachment compared to
smooth-machined and sandblasted and acid-etched titanium surfaces. It was found that
the nanospikes of 0.5 µm in height induced dysmorphisms within P. gingivalis cultures
following the incubation period because when attached to the surface, P. gingivalis appears
to be stretched or deflated [82]. Another study reported that both titanium and zirconia
with similar Ra of 0.21 ± 0.06 and 0.22 ± 0.03 µm, respectively, exhibit similar resistance
to P. gingivalis compared to a bovine enamel surface with Ra = 0.05 and 0.1 µm. Although
the bovine enamel surface is significantly smoother, it attracts more P. gingivalis due to
the charges present on the surfaces, which have boosted the electrostatic interaction with
P. gingivalis’s cells [83].

A series of in vivo studies have reported that surfaces with roughness above the Ra
threshold of 0.2 µm are prone to bacterial attachment and biofilm formation [84]. This is
because rougher surfaces provide both more attachment sites and “shelter” to the bacteria
against shear forces [84]. Moreover, smoother surfaces tend to have higher surface energy at
the solid-water interphase (more hydrophobic) [85]. Low surface energy at the solid-water
interphase hinders bacterial attachment [56]. This view is supported by Bermejo et al. [17],
who reported that the attachment of P. gingivalis was significantly higher on a titanium
surface with Sa = 1.1–2.0 µm compared to that with Sa = 0.5–1.0 µm.

It was found that laser treatment on titanium Grade 4 effectively reduces P. gingivalis
biofilm formation. Laser treatment causes a unique surface topography, which appears as
craters surrounded by relatively rougher areas (Figure 2). The diameter of the craters is
approximately 0.10 µm with a depth of about 0.07 µm [86]. Another article by Xu et al. [76]
reported the synthesis of 3 (three) different titanium dioxide surfaces by means of electro-
chemical anodization, that resulted in nanotubes with 0.03, 0.10, and 0.20 µm-diameter,
respectively. Based on atomic force microscopy (AFM) experiments, the surface with
0.1 µm-diameter nanotubes exhibited the lowest roughness (Sa < 0.5 µm) compared to
the two other studied surfaces. The application of a suitable range of voltage was be-
lieved to result in highly ordered and smooth titania nanotubes (TNT) [76]. Furthermore,
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plate-counting and SEM methods showed a reduced attachment and a round morphology,
respectively, of the P. gingivalis on the smoothest TNT surface [76]. In contrary, a titanium
oxide surface without any treatment presented the greatest roughness (Sa > 1.3 µm) and
the highest P. gingivalis attachment.
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Specific nanotopography and a hierarchical arrangement of micro- or nanopatterns
on titanium surfaces are proven to alter P. gingivalis attachment. A configuration of
100–50–20–10–5 µm width grooves arranged in a parallel direction at 2 µm depth effectively
reduces P. gingivalis adhesion. It was found that the diameter and the arrangement of
0.055 µm nanotube topography changes the surface contact angle from 87–100◦ to 35–50◦

after enlargement of the groove depth from 2 µm to 3.6 µm. A lower contact angle increases
surface hydrophilicity [86]. Furthermore, titanium surfaces with different compositions
and similar Ra of 0.029 µm also showed bactericidal activity against P. gingivalis [87].

On the contrary, nanocavities formed by etching using a H2SO4/30% H2O2 mixture
resulted in a diameter from 0.01 to 0.02 µm and failed to show an antibacterial effect against
P. gingivalis [78]. Corrosion also causes a Ra increase in pure titanium or titanium alloy.
Valentim et.al (2014) showed that although pH 3.0 corrosion resulted in the highest Ra
compared to the rest of the group for both pure titanium (cp-Ti) and titanium-aluminum-
vanadium alloy (Ti-6AI-4V) (Figure 3), there was no significant increase in P. gingivalis
attachment [88]. In addition, a similar titanium Ra of about 0.0023 µm showed no differences
in P. gingivalis growth. Furthermore, various titanium surface modifications with Ra of
0.025 and 0.035 µm also did not show significant bactericidal activity against P. gingivalis,
with various modifications such as oxide nitride or hydroxyapatite [89]. However, the key
factor in determining P. gingivalis adhesion within those Ra is the surface chemistry [89,90].
These results support a previous study which showed that a Ra value below 0.2 µm resulted
in no further decline in bacterial adhesion [91].
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Figure 3. Six-hour attachment of P. gingivalis to cp-Ti and Ti-6Al-4V alloys as a function of corrosion
at different pHs [88].

This also accords with ceramics material, which showed that zirconia toughened
alumina (ZTA) with Ra of 0.031 ± 0.10 µm has lesser P. gingivalis attached compared to the
ZTA after sandblasting with a Ra of 0.465 ± 0.06 µm [92].

4. Conclusions

We reviewed the influence of the surface topography, from a configuration and size
perspective, on the attachment of P. gingivalis on subperiosteal implant materials regardless
of the type of materials. Methods to obtain various surface roughnesses included both
physical and chemical treatments, such as mechanical grinding, grit blasting, sandblasting,
ultrasonic scaling, electrochemical anodization, plasma implantation, hydrogen peroxide
treatment, hydrofluoric acid treatment, and so on. The parameters used as the quantification
of surface roughness were Ra and Sa, obtained from profilometer and/or AFM. Methods
to obtain bacterial attachment data include optical microscopy (fluorescence microscopy)
and electron microscopy (SEM). The latter was also used by many authors to acquire the
surface topography images. In general, the rougher the surface (higher Ra or Sa), the higher
the bacterial attachment. Some studies show, however, that the mature biofilm is no longer
affected by surface roughness, but rather by surface energy. Some authors highlighted
the fact that both surface roughness and surface energy affect P. gingivalis attachment on
surfaces, but the influence from surface roughness is greater compared to the surface energy,
especially before the maturation of the biofilm. It is also important to highlight the fact that
surface roughness is not the only factor affecting P. gingivalis attachment on the surface.
The inherent chemistry of the substrates also affects the attachment due to variation in
polarity, charges, steric repulsion, and so on.

The configuration and size of the surface topography affect the P. gingivalis attachment
on subperiosteal implant materials regardless of the type of materials. Nano-topography
with a size below 0.2 µm is more likely to have more bactericidal effects on P. gingivalis
than a rougher surface. However, in titanium, the Ra below 0.03 µm causes no further
reduction in P. gingivalis. Due to limited information on other parameters for surface
topographical characterization in cell adhesion, this research only includes the Ra value.
Further research should include other parameters such as summit density (Sds), developed
area ratio (Sdr), and root-mean-square surface roughness (Rms). These parameters combined
might explain the shape and spatial distribution of surface features. Furthermore, to
improve subperiosteal implant survival, it is advisable to design a surface treatment in
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accordance not only with the cell attachment but also to pay attention to its effect on the
bacterial attachment.
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