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Abstract

We performed phylogeographic and genetic structure analyses of Neothraupis fasciata

joined with species distribution modelling to evaluate whether: (1) the distribution of genetic

variability shows a pattern expected by the isolation-by-distance model; (2) the influence of

the Pleistocene climate changes on species distribution; and (3) climate/climatic stability

(hypothesis of climatic stability) as a predictor of population genetic diversity. Based on two

molecular datasets (ND2 and FIB-5), the isolation-by-distance hypothesis was not sup-

ported. The mitochondrial haplotype network indicated the existence of historically isolated

populations at the southern range of the species distribution, and recent population expan-

sion was identified by both neutrality tests and extended Bayesian skyline plot analysis.

Thus, the climatic changes during the Pleistocene might have promoted the reconnection of

the partially isolated southern populations, which may have persisted in the plateaus during

the cycles of savanna contractions. Subsequently, this species (re)colonized northern areas

of the species present distribution, following the continuous vegetation on the São Francisco

and Central plateaus about 60 kyr, and also reached the Amazonian savannas likely via the

central corridor. Thus, our results indicated that the intrinsic relationship between the relief

heterogeneity (plateaus and depressions) and the climatic fluctuations, mainly in the Pleisto-

cene, promoted population reconnection and demographic expansion of N. fasciata.

Introduction

Tertiary geological events and the Quaternary climatic changes have been considered the key

events related to the biodiversity diversification (e.g. [1–5]). Specifically, the Quaternary

PLOS ONE | https://doi.org/10.1371/journal.pone.0212876 March 20, 2019 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Lima-Rezende CA, Rocha AV, Júnior AFC,
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climatic cycles had great importance in South American forest and nonforest vegetation (e.g.

Savannas) range dynamics [1,3,6–12]. Briefly, it is postulated that during moist and warm peri-

ods (interglacial periods), forests expanded their ranges, while during the cold and dry periods

(glacial periods) the savannas reached their maximum extension (see [9]). Events of both range

contraction and expansion during glacial periods have been hypothesized for the "morphocli-

matic domain of the Cerrado" [13,14], hereafter referred to as the Cerrado. For instance, dur-

ing the glacial period the current range of this savanna was replaced by Araucaria forests at its

southern edge and by xeric forests at its northern edge, while it was expanded throughout east-

ern and central Amazonia [14]. According to Werneck et al. [3], during the Last Interglacial

(LIG, c. 120,000 years ago or 120 kyr) the Cerrado expanded, while during the Last Glacial

Maximum (LGM, c. 21 kyr) the Cerrado reached its smallest range. It is also postulated that

during the Pleistocene the forest and nonforest vegetation range dynamics may have led to the

establishment of biogeographic corridors currently connecting the isolated savanna blocks in

northern Amazonia Forest (Llanos and Amazonian savannas) and Cerrado [1,9,15–20]. The

dynamic of range shifts of the Cerrado is complex and there is still no clear pattern related to

the diversification of the Cerrado biodiversity that has emerged driven by Pleistocene climatic

fluctuations. Considering that the Cerrado is one of the biodiversity hotspots [21–23], under-

standing the processes that led to the diversification of its biodiversity is also fundamental for

its conservation.

The demographic history of the South American species occurring in open vegetation for-

mations was probably influenced by the climatic fluctuations, with expected events of popula-

tion expansion (see leading-edge model [24,25]) following the expansion of suitable habitats

and population bottlenecks or extinctions (see rear-edge model [24,25]), in response to the

retraction of habitat suitability [3,11]. Cycles of population expansion and/or contraction may

promote secondary contact among allopatric populations or different episodes of colonization,

resulting in different genetic signals. For events of secondary contact, an increase in genetic

diversity in the population that received more migrants is expected, since migrants are likely

to carry new alleles to the receiver population (see [26]). On the other hand, colonization

events from a core population lead to a gradual reduction in genetic diversity towards newly

colonized areas due to genetic drift operating through repeated founder events or bottlenecks

[24–27]. Additionally, when the equilibrium between migration and genetic drift is reached,

patterns of genetic diversity may be also explained by the isolation-by-distance model, in

which geographically close individuals tend to be genetically more similar than individuals

that are further apart [28,29]. Finally, areas that remained climatically stable through the Qua-

ternary climatic changes are expected to exhibit higher genetic diversity than unstable ones,

since unstable areas must have experienced more extinction and recolonization events than

stable areas [30,31].

Herein, we performed phylogeographic and population genetic analysis of Neothraupis fas-
ciata (Lichtenstein, 1823) to evaluate the response of this savanna-adapted bird to environ-

mental changes during the late Quaternary (last 120 kyr). Commonly known as a White-

banded Tanager, it is a passerine species from the Thraupidae family, and is the only represen-

tative of the genus. This tanager is widely distributed and very common in the undisturbed

Cerrado, occurring mainly in cerrado sensu stricto and grassy cerrado [32–35]. This species is

resident and territorial [36,37], has a low dispersal capacity, with a mean dispersal distance of

200 meters per breeding season [37,38]. A previous study using a set of microsatellite markers

found moderate genetic structure in N. fasciata and the distribution of the genetic variability

was not explained by the isolation-by-distance hypothesis, habitat heterogeneity or by the

core-periphery effect [39]. Similarly, the intense biome fragmentation by anthropic activity

has not contributed significantly to the current pattern of genetic structure found in this
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species [39]. These findings suggest the influence of historical processes on the distribution of

genetic diversity of this tanager.

Based on molecular data sets and ecological niche modeling, we evaluated: (1) the isolation-

by-distance hypothesis, with an increase in genetic differentiation among locations being

expected due to an increase in geographic distances; (2) the influence of late Quaternary cli-

mate changes on the species distribution and demographic history, with events of population

expansion being expected in response to the increase in suitable areas and a reduction in

genetic diversity following population expansion; and (3) climate/climatic stability (hypothesis

of climatic stability) as a predictor of population genetic diversity, with greater genetic diver-

sity in stable areas being expected than in unstable ones.

Materials and methods

Species distribution modeling

The species distribution models were estimated compiling occurrence records of N. fasciata
from fieldwork of the Laboratório de Genética e Biodiversidade da Universidade de Brası́lia,

scientific articles, museums, and using the two online databases (Global Biodiversity Informa-

tion Facility: http://www.gbif.org/; SpeciesLink: http://splink.cria.org.br/). We filtered the 176

unique occurrence points found by excluding redundant records in each pixel on the scale of

the bioclimatic variables, resulting in 158 points. A set of 19 bioclimatic variables and elevation

for the present were downloaded from WorldClim website in a 2.5 arc-min resolution (http://

www.worldclim.org/). The highly correlated variables (|r|�0.75) were eliminated, and vari-

ables with |r|<0.75 were retained using findCorrelation function available on caret (Classifica-

tion And Regression Training) package [40] in R 3.4.2 [41]. The correlation between the

retained bioclimatic variables (Bio2, Bio3, Bio10, Bio13, Bio15, Bio18, and Bio19) ranged from

-0.579 (Bio10 ~ Bio18) to 0.531 (Bio3 ~ Bio 15).

The maximum entropy approach implemented in MAXENT 3.4.1 [42] was used to build

distribution models [43]. Distribution models were run with 20 replicates subsample, using

20% of the points for test, 10,000 background points, 1,500 maximum iterations and other

parameters set as default. Discrimination capacity models were evaluated based on the average

values of the area under the curve (AUC), sensitivity, specificity and accuracy. We used a set of

seven non-correlated bioclimatic variables to estimate the species distribution under mid-

Holocene (6 kyr), LGM, and LIG climate scenarios. Past conditions were based on two general

circulation models (CCSM4 and MIROC-ESM) for Holocene and LGM, and the data simu-

lated by Otto-Bliesner et al. [44] for the LIG. All bioclimatic datasets were downloaded in a 2.5

arc-min resolution, except for LIG, which was downloaded at 30 arc-sec resolution and

exported to a 2.5 arc-min resolution by calculating the mean value for each variable using the

aggregate tool in ARCMAP 10.1 (Esri).

To convert habitat suitability into presence/absence binary maps, we used the equal training

sensitivity and specificity threshold. For Holocene and LGM we combined the two binary

maps obtained with the CCSM4 and MIROC-ESM general circulation models into a single

map, in which only areas with predicted occurrence in both projections were highlighted as

potential distribution area. Stable areas over the last 120 kyr were delimited based on binary

maps and were defined as areas with potential distribution concordant in all projected periods.

To explore the relief, we used the Global Multi-resolution Terrain Elevation Data 2010

(GMTED 2010 - https://earthexplorer.usgs.gov/), which provides a high level of detail in global

topographic data 30 arc-sec, suitable for various regional and continental applications [45].

From the mean elevation data (~ 1km in the equator), we derived the slope (percent) and min-

imum curvature (˚.m-1) of Brazil using the System for Automated Geoscientific Analyses
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(SAGA) software, version 6.2 [46]. We used the elevation, slope and minimum curvature as

input grids to run K-mean clustering based on the combined minimum distance [47] and

Hill-climbing [48] algorithm, aiming to divide two geomorphological compartments: plateaus

and depressions. Considering the habitat preference of N. fasciata, we evaluated the continuity

of the plateaus, based on the categories by Riitters et al. [49,50] and the geomorphologic fea-

tures to delimit the historical population by digital vectorization on a computer screen.

Genetic sampling

Tissue samples were collected from 105 N. fasciata individuals (Fig 1B and 1C) from 12 loca-

tions covering a broad range of the species distribution throughout the Cerrado: Área de Pro-

teção Ambiental das Bacias do Gama e Cabeça de Veado (AGCV), Estação Ecológica de Águas

Emendadas (EEAE), Ouro e Prata Farm at Nova Xavantina (NXAV), Nova Aliança Farm at

Ponte Alta do Tocantins (PATO), Parque Nacional Grande Sertão Veredas (PGSV), Parque

Nacional Chapada dos Guimarães (PNCG), Parque Nacional da Chapada das Mesas (PNCM),

Parque Nacional das Emas (PNEM), Parque Nacional Serra da Canastra (PNSC), and in an

Fig 1. Sample sites of Neothraupis fasciata in the Cerrado (red circles) and in the Amazonian savannas of Amapá

(red star). (A) The geographic distribution of the species is delimited by a dashed line [51], while the main South

American savannas are shown in gray [52]. The green arrows indicate the savanna connections (revised by [1]) (a)

along the Andes region [20], (b) following the Madeira River [18], (c) directly across central Amazonia [15] and (d)

along the Atlantic coast [15]. Sample sites: 1- Área de Proteção Ambiental das Bacias do Gama e Cabeça de Veado

(AGCV); 2- Brasilândia de Minas (BRMI); 3- Estação Ecológica de Águas Emendadas (EEAE); 4- Embrapa Macapá

Experimental Farm (MACA); 5- Ouro e Prata Farm at Nova Xavantina (NXAV); 6- Nova Aliança Farm at Ponte Alta

do Tocantins (PATO); 7- Parque Nacional Grande Sertão Veredas (PGSV); 8- Parque Nacional Chapada dos

Guimarães (PNCG); 9- Parque Nacional da Chapada das Mesas (PNCM); 10- Parque Nacional das Emas (PNEM); 11-

Parque Nacional Serra da Canastra (PNSC); and 12- Uruçuı́ (URUC). (B) Lateral profile of an adult male of N. fasciata
captured in AGCV. (C) Dorsal profile of the adult male captured in AGCV.

https://doi.org/10.1371/journal.pone.0212876.g001
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Amazonian Savanna patch at Embrapa Macapá Experimental Farm (MACA) (Fig 1A and

Table 1). In these areas, individuals were attracted by playback and captured using mist-nets.

Blood samples (50–100 μL) were taken from each individual by pricking the brachial vein with

a sterile needle and collected with a microcapillary tube, then stored in absolute ethanol. All

captured birds were ringed with standard ornithological metal rings supplied by Centro Nacio-

nal de Pesquisa e Conservação de Aves Silvestres (CEMAVE) and afterwards released at the

capture site. Seven ethanol-preserved muscle from individuals sampled at Brasilândia de

Minas (BRMI) and Uruçuı́ (URUC) were kindly provided by Museu Paraense Emı́lio Goeldi

(Table 1). All work was conducted under the approval of the Ethics Committee of the Univer-

sidade de Brası́lia (UnBDoc n˚ 75111/2013) and research permits were issued by the Brazilian

Environmental Agency Instituto Chico Mendes de Conservação (ICMBio) (SISBIO n˚ 27682–

1).

Total DNA was extracted from blood samples using proteinase K digestion followed by

phenol-chloroform extraction [53], while for museum samples, total DNA was extracted using

a PureLink Genomic DNA Kit. We amplified the mitochondrial NADH dehydrogenase sub-

unit 2 gene (ND2) by PCR, using primers LMET (J. Groth apud [54]) and H6313 [55] and a

fragment of the nuclear beta-fibrinogen gene intron 5 (FIB-5) using the primers FIB5 and

FIB6 [56]. The ND2 and FIB introns are markers commonly used in phylogeographic studies

of birds and have proven to be informative. PCR reactions were performed in a 10 μl volume

containing 30 ng of template DNA, 1X PCR buffer, 0.25 mM of each dNTP, 1 mM of each

primer, 1.5 mM MgCl2, and 0.5 unit of Taq polymerase (Invitrogen). Thermocycle conditions

were set as: 95˚C for 7 min, then 35 cycles at 95˚C for 1 min / 52˚C for 45 s / 72˚C for 1 min,

followed by a final extension at 72˚C for 10 min. We used the Shrimp Alkaline Phosphatase

and Exonuclease I protocol for cleanup PCR products according to the manufacturer’s instruc-

tions. Sequencing reactions were performed with BigDye Terminator v3.1 Cycle Sequencing

Kit according to the manufacturer’s instructions and PCR products were sequenced in both

Table 1. Summary statistics for NADH dehydrogenase subunit 2 gene (ND2) and beta-fibrinogen gene intron 5 (FIB-5) for Neothraupis fasciata from the Cerrado

and an Amazonian savanna (MACA). Overall estimate of genetic diversity (S, H, Hd and Nd) was obtained by grouping all individuals as a single population. For sample

site names see Fig 1.

Sample site Label N ND2 FIB-5

S H Hd Nd (%) S H Hd Nd (%)

AGCV 1 13 9 8 0.897 0.291 4 5 0.702 0.222

BRMI 2 3 10 2 0.667 0.708 9 4 0.867 0.817

EEAE 3 7 7 6 0.952 0.253 4 5 0.824 0.269

MACA 4 9 1 2 0.500 0.053 3 5 0.712 0.234

NXAV 5 2 3 2 1.000 0.318 2 3 0.833 0.240

PATO 6 14 9 8 0.890 0.185 9 11 0.810 0.540

PGSV 7 22 17 8 0.840 0.656 7 7 0.809 0.579

PNCG 8 8 7 6 0.893 0.216 3 4 0.592 0.195

PNCM 9 5 4 2 0.400 0.170 2 3 0.644 0.224

PNEM 10 9 12 4 0.583 0.283 9 8 0.745 0.513

PNSC 11 9 11 3 0.722 0.478 7 5 0.719 0.492

URUC 12 4 1 2 0.500 0.053 7 5 0.857 0.506

Overall 105 53 36 0.868 0.452 16 23 0.772 0.435

Sample size (N), number of segregating sites (S), number of haplotypes (H), haplotypic diversity (Hd) and nucleotide diversity in percentage (Nd%) are given for each

sample site.

https://doi.org/10.1371/journal.pone.0212876.t001
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directions with an ABI PRISM 3130 DNA genetic analyzer (Applied Biosystems) at the Uni-

versidade Católica de Brası́lia.

We edited the sequences in GENEIOUS 6.0.6 (Geneious Co., Wellington, New Zealand)

and coded double peaks in both strands of FIB-5 sequence electropherograms using the

IUPAC nucleotide code ambiguous positions. In the FIB-5 sequences, we identified alleles

with different sizes (14 bp), generating sequences with mixed traces [57] in heterozygous indi-

viduals. To solve this sequencing problem, the readable part of the forward sequence trace in

which the pair of allelic sequences properly aligned was concatenated with the complement

and reverse of the readable part of the reverse sequence trace. The resulting sequence was

aligned with the dataset containing homozygous sequences for the indel and the gap between

forward and reverse traces was completed with the IUPAC code for any base “N”. The align-

ments of consensus sequences of each dataset were done using the Muscle algorithm imple-

mented in GENEIOUS. For FIB-5 we resolved the gametic phase using the algorithm Phase

implemented in DnaSP 5.10 [58] with default configurations.

Molecular analyses

The number of polymorphic sites, number of haplotypes, number of unique haplotypes, haplo-

type and nucleotide diversities were estimated using DnaSP (Table 1). We estimated genetic

diversity indices considering the ND2 and FIB-5 gene fragments separately for each sample

site. We constructed haplotype networks for each gene fragment using the median-joining

algorithm [59] implemented in POPART 1.7 [60] with all parameters set to default. For FIB-5

network we used the phased dataset inferred in DnaSP.

Genetic differentiation between all sample sites was estimated using F-statistics (FST) in

ARLEQUIN 3.5.1.3 [61]. Calculations of FST were done using Tamura-Nei model for ND2

alignment and Jukes-Cantor model for FIB-5 alignment. The best-fit model of evolution of

each dataset was selected according to the Bayesian Inference Criterion in JMODELTEST

2.1.10 [62]. We used a total of 50,000 permutations to assess the statistical significance of each

pairwise comparison. Genetic groups across the landscape were identified employing a Bayes-

ian approach. The Bayesian Analysis of Population Structure (BAPS) was performed at the

population level (spatial clustering of groups), considering each locality as a population and

using their respective geographic coordinates in BAPS 6.0 program [63]. To determine the

optimal number of genetic groups, BAPS analysis was performed for each marker with the

maximum number of groups (K) set to 12, and 20 replicates for each K-value.

To verify whether the genetic differentiation among each pair of individuals sampled in the

Cerrado is associated with the geographic distance, we performed a Mantel test. The Euclidean

geographic distances were obtained using an on-line distance calculator from the Instituto

Brasileiro de Pesquisas Espaciais (http://www.dpi.inpe.br/calcula/). We conducted the test

using the corrected genetic distance (PhiST/(1-PhiST)) and the logarithm of the geographic

distance in IBDWS 3.23 [64], considering each locus separately and 30,000 randomizations.

We also evaluated the influence of geographic gradients on genetic diversity performing a

regression analysis of genetic diversity indices (percentage of nucleotide diversity and haplo-

type diversity) and geographic variables of all sample locations (latitude and longitude,

expressed as decimal degrees). All regressions were done using Spearman’s rank-order correla-

tion coefficient in PAST 3.11 [65].

To evaluate whether climatic stability influenced the genetic diversity, we investigated

whether the genetic diversity of Cerrado sample locations was higher in the Quaternary stable

areas compared to unstable areas. We classified all locations as belonging to stable or unstable

areas based on the stability map. Comparisons were done for each locus using the non-
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parametric Kruskal-Wallis test in PAST, in which the stability was considered the explanatory

variable and the genetic indices (percentage of nucleotide diversity or haplotype diversity) the

response variables.

We performed Tajima´s D [66] and Fu´s Fs [67] neutrality tests and estimated the R2 statis-

tic [68] to infer past population expansion considering the structure found by BAPS. All tests

were performed in DnaSP using 10,000 coalescent simulations and a significance level of 0.05.

We also inferred the dynamic of population size as a function of time performing a coalescent

extended Bayesian skyline plot (EBSP) analysis implemented in BEAST 1.8.4 [69]. We used

the TN93+I substitution model for ND2 and HKY+I model for the FIB-5. Analyses were done

implementing the lognormal relaxed clock model, since the null hypothesis of equal evolution-

ary rate throughout the tree was rejected for both markers. We set a mutation rate of 9.0x10-9

per base pair per year for ND2 [70] and 3.6x10-9 per base pair per year for FIB-5 [71]. We used

a total of 400 million runs and saved parameters every 40 thousand runs and looked at the pos-

terior effective sample size (ESS) in TRACER 1.6 [72] using a threshold of 200. Finally, we plot-

ted the median of population size in log scale through time and displayed the 95% high

posterior density intervals using R.

We evaluated the genetic differentiation (FST) and the mitochondrial haplotype sharing

between pairs of populations to evaluate whether the proposed biogeographic corridors served

as dispersal routes for N. fasciata, considering: 1) MACA and PNCG—as an indicator of his-

torical connection throughout the Andes region and/or Madeira River; 2) MACA and PATO,

AGCV, or EEAE as an indicator of historical connections across central Amazonia; and 3)

MACA and URUC or PNCM as an indicator of historical connection along the Atlantic coast.

Genetic differentiation was estimated using F-statistics as previously described.

Results

Species distribution models

A total of 158 occurrence records of N. fasciata were used to construct the species distribution

models (Fig 2D and S1 Table), with most of these records being distributed in Brazilian terri-

tory and few of them in Paraguay, Suriname, and Bolivia. The climatic niche model for the

present showed a high predictive power, based on the high average AUC value (0.906, S2

Table).

Based on paleoclimatic models, suitable areas during the LIG were more fragmented and

restricted to the southern part of the distribution, compared with the projection for the present

time (Fig 2). The LGM was characterized by the expansion of suitable areas, mainly in the cen-

tral and northern Cerrado distribution compared to the LIG. The Holocene seems to be the

less favorable climatic period for the species, characterized by a remarkable reduction of suit-

able areas compared to the LGM. Suitable area patches concordant with the central Amazonia

belt of low precipitation were observed during the LIG and Holocene, while small suitable

areas concordant with the Andean slopes were found only during the LIG.

The distribution of the stable areas over the last 120 kyr is roughly concordant with some

Brazilian plateaus: Parecis, Paraná-Guimarães, Serra da Canastra, Chapadão do São Francisco

and Central (Fig 3B). All of these plateaus have characterized the landscape since the Paleogene

(43–20 million years ago—myr) [73,74]. In the last 20 myr, these plateaus have been dissected

and denuded as a result of temperature and precipitation increases [74,75], forming depression

compartments between the relict relief. The duality between depressions and plateaus gener-

ates discontinuous or fragmented compartments. In Central Brazil, the relict relief with the

greatest territorial extension is identified as Core (Fig 3). Depressions and valleys are located

between Core compartments where Interior and Edge classes can be identified (Fig 3B).
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Currently, patches are observed in the north of the Brazilian Cerrado where the plateaus are

less frequent in this region. Considering the distribution of the stable areas, the sampling sites

AGCV, EEAE, PGSV, PNEM, PNCG, and PNSC were assigned to stable areas, while URUC,

PATO, and PNCM corresponded to areas without climatic suitability (or unstable areas) in at

least one of the projections (Fig 3A).

Molecular data

We obtained ND2 (942 bp) and FIB-5 (487 bp) sequences for all 105 N. fasciata samples,

observing 36 haplotypes for ND2 and 23 for FIB-5 (Table 1). Sequences were deposited in

GenBank under accession numbers MH277700—MH277804 (ND2) and MH277805—

MH277909 (FIB-5) (S3 Table). Haplotype diversity was lower for the nuclear dataset (0.772)

Fig 2. Species distribution models of Neothraupis fasciata for different time projections: (A) Last Interglacial; (B)

Last Glacial Maximum; (C) Holocene; and (D) present. Habitat suitability (green areas) was obtained by applying the

equal training sensitivity and specificity threshold. Blue and red dots in D represent occurrence points used in species

distribution modelling, while red dots also represent sample sites used in genetic analyses.

https://doi.org/10.1371/journal.pone.0212876.g002
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compared to the mitochondrial (0.868) dataset, while nucleotide diversity was similar for both

markers (ND2: 0.46%; FIB-5: 0.44%) (Table 1).

The ND2 haplotype network was represented by one broadly distributed and common hap-

lotype connected by a few mutational steps with several less frequent haplotypes in a star-like

pattern (Fig 4). This pattern can be interpreted as a signal of recent population expansion.

Moreover, the ND2 network also showed a haplotype group composed exclusively of individu-

als sampled in PGSV and BRMI, and a second group comprised of individuals sampled in

PNSC and PNEM. Both haplotype groups were separated from the common haplotype by sev-

eral mutational steps. The FIB-5 haplotype network showed three of the most common haplo-

types connected by a maximum of three mutational steps from each other and widely

distributed across sample locations (Fig 4). The genetic structure obtained by BAPS analysis

was similar for both markers and showed support for only one genetic group.

The results of Mantel tests for both ND2 (r = 0.0059, Z = 53.8917, p = 0.5218) and FIB-5

(r = -0.069, Z = 3.7704, p = 0.662) indicated that the geographic distances do not correlate with

the genetic differentiation among sample locations. The analyses of the influence of geographic

gradients in genetic diversity using the ND2 indicated a negative correlation between nucleo-

tide diversity and latitude (rs = -0.728, p = 0.007), characterized by a south-to-north trend of

declining genetic diversity (Table 2). For FIB-5 there is an east-to-west trend of declining

nucleotide diversity (rs = 0.580, p = 0.048) (Table 2). There is a significant difference between

ND2 nucleotide diversity sample medians of stable and unstable areas, with greater values in

Fig 3. Areas of historical climatic stability, relief continuity and population expansion hypothesis for Neothraupis fasciata. (A) Stable areas

(orange) correspond to areas with climatic suitability overlap between the Last Interglacial, Last Interglacial Maximum, Holocene and present time

projections. Sample sites were categorized as belonging to stable (blue stars) or unstable areas (blue diamonds). (B) Relief continuity (gray and black

areas), historical population structure (delimited in red) and recent population expansion in Neothraupis fasciata (delimited in orange). The arrows

indicate the routes of demographic expansion (about 60 kyr) observed for Neothraupis fasciata.

https://doi.org/10.1371/journal.pone.0212876.g003
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stable areas compared to unstable ones (χ2 = 5.4, p = 0.020) (Table 3). For the remaining com-

parisons, the differences between stable and unstable areas were not statistically significant

(Table 3).

Based on the genetic structure found, neutrality tests were carried out considering all sam-

ple sites as a single genetic population. Deviations from neutrality were found in Tajima’s D

(D = -2.9729; p = 0.009), Fu’s Fs (Fs = -20.1994; p = 0.000), and R2 (R2 = 0.0374; p = 0.011)

tests for the ND2, suggesting recent population expansion. For FIB-5, deviation from

Fig 4. Median joining networks and haplotype distribution maps obtained using NADH dehydrogenase subunit 2 gene (ND2)

and beta-fibrinogen gene intron 5 (FIB-5) datasets. In the networks, each haplotype is represented by a numbered and colored

circle: colors correspond to the sample sites, and circle size and pie charts are proportional to the number of individuals (see Table 1

and Fig 1 to interpret). Mutational steps are represented by hatch marks and missing haplotypes are indicated by small black circles.

In the haplotype maps, colors correspond to haplotypes in the sample site, and the size of circle and pie charts are proportional to the

number of individuals (see Table 1 and Fig 1 to interpret). Non-shared haplotypes (unique) are shown in gray.

https://doi.org/10.1371/journal.pone.0212876.g004

Table 2. Calculation of Spearman rank order correlation coefficient (rs) using genetic diversity indices of NADH dehydrogenase subunit 2 gene (ND2) and beta-

fibrinogen gene intron 5 (FIB-5) and geographic gradients for Neothraupis fasciata.

Marker Genetic variable Geographic variable rs p
ND2 nucleotide diversity latitude -0.728 0.007�

haplotype diversity latitude -0.322 0.307

nucleotide diversity longitude 0.154 0.632

haplotype diversity longitude -0.371 0.235

FIB-5 nucleotide diversity latitude -0.238 0.457

haplotype diversity latitude -0.067 0.829

nucleotide diversity longitude 0.580 0.048�

haplotype diversity longitude 0.468 0.124

Significant p-values are marked with asterisk (�).

https://doi.org/10.1371/journal.pone.0212876.t002
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neutrality was found for Fu’s Fs (Fs = -10.226; p = 0.005), but not for Tajima’s D (D = -0.7600;

p = 0.235) and R2 (R2 = 0.0636; p = 0.317) tests. EBSP analysis considering both markers

together showed a signal of population expansion starting about 60 kyr (Fig 5).

Discussion

In the present study, we assessed the levels of genetic diversity and structure in Neothraupis
fasciata based on samples from a wide geographic area in the Cerrado. Our data support a sin-

gle population (supported by BAPS results) with a weak genetic structure (global FST), in

which southernmost locations showed more genetic variability than those sampled in the

northern Cerrado. Considering that areas of greater genetic diversity are commonly associated

with the origin center of a species (e.g. [25,27,76]), it is plausible to assume that the origin cen-

ter of the N. fasciata lineage is in the southern part of the Cerrado. The southern Cerrado

encompasses some topographical relief core areas, such as Parecis, Paraná-Guimarães and

Serra da Canastra plateaus, which are, at least in part, concordant with some predicted stable

areas (see Fig 3). These historically stable areas may have played an important role in the speci-

ation process and also served as refugia favoring higher levels of genetic diversity for this spe-

cies. Additionally, according to the phylogeny of the Thraupidae family [77], the distribution

range of the N. fasciata sister species (Lophospingus pusillus, Lophospingus griseocristatus,
Gubernatrix cristata, and Diuca diuca) is restricted to southern South America [78].

The observed genetic structure in N. fasciata does not seem to be related to the isolation-

by-distance hypothesis. This is an unexpected result, given the low dispersal from the birth

area reported for this species (around 300 meters; [37]). However, a previous study of the

genetic structure of this tanager using microsatellite markers also found no effect of geographic

distance under the genetic differentiation among these same sampled locations [39]. The isola-

tion-by-distance pattern occurs when the migration-drift equilibrium is reached, but it can

take a relatively long time [79]. Therefore, the demographic history of a species should be con-

sidered, since the isolation-by-distance pattern is most commonly found in older populations

and may be absent in populations established in a more recent time [80]. Considering that our

results suggest a recent population expansion in N. fasciata, it seems reasonable to assume that

the mutation-drift equilibrium has not been reached yet, and this may be masking the effect of

the low dispersion capacity of this species in the spatial distribution of its genetic diversity.

The Cerrado landscape is characterized by large blocks of plateaus (Fig 3) separated from

each other by peripheral depressions, probably formed at least 2–3 million years ago [13]. Our

ecological niche models associated with the topographical information showed that the major

stable areas were associated with different plateau areas, akin to previous studies that found

stable areas along central Brazilian plateaus [3,17,19,81–83]. Although Ab’Saber [81] suggested

the existence of a large and continuous stable area along the plateaus in the southern Cerrado

during the Quaternary, this hypothesis was not supported by our findings (Fig 3) and by other

Table 3. Kruskal-Wallis tests (H(χ2)) for comparison of genetic diversity vs. habitat stability. Medians of genetic diversity indices of NADH dehydrogenase subunit 2

gene (ND2) and beta-fibrinogen gene intron 5 (FIB-5) are given for stable and unstable areas.

Marker Genetic indices Stable Unstable H(χ2) P
ND2 nucleotide diversity 0.287 0.170 5.4 0.020�

haplotype diversity 0.867 0.500 2.4 0.121

FIB-5 nucleotide diversity 0.381 0.506 0.267 0.601

haplotype diversity 0.732 0.810 0.6 0.439

Significant p-values are marked with asterisk (�).

https://doi.org/10.1371/journal.pone.0212876.t003
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studies that found small and isolated stable areas along the southern Cerrado [3,82,83], plausi-

bly representing isolated species refugia.

Our paleodistribution models also showed an increase in suitable area and connection from

LIG to LGM, and a decrease and fragmentation from the LGM to the Holocene, followed by

an expansion from the Holocene to the present distribution of N. fasciata. The shifts in the dis-

tribution of habitat suitability for N. fasciata presumably accompanied the shifts in the distri-

bution of the Cerrado itself, since this species is strictly associated with cerrado sensu stricto
and grassy cerrado [32–35]. In this sense, our results are consistent with the predicted expan-

sion of South American open biomes during cold and dry periods, and retraction during

warmer periods (e.g. [1,7,8,10,11,84]).

According to our results, N. fasciata underwent a recent population expansion event start-

ing about 60 kyr (neutrality tests and Figs 4 and 5) likely favored by the increasing in area and

connection of suitable habitats between LIG and LGM. Although the increase in connection of

suitable areas was detected in the projection for 21 kyr, it is possible that this change started

earlier. The period from 75 to 12 kyr (marine isotope stages 4–2) was marked by climatic

changes reflecting a decrease of the average temperature, characterized by minor glacial cycles

[85,86], which may have contributed to the increase in the connection of suitable habitats for

N. fasciata. Although our results indicated an event of population expansion, studies encom-

passing open-vegetation vertebrates of South America showed different trends for the LGM,

with events reported of decrease (mammals and birds), expansion (mammals), or even con-

stant effective population size (mammals and lizards) (see [4]).

We found greater genetic diversity in those individuals from the southern sample sites: (I)

PNCG, (II) PNSC + PNEM, and (III) PGSV + BRMI, and a low number sharing haplotypes

with each other (Fig 4). These results suggest that these populations were partially isolated

before the expansion event. Events of population expansion may result in a gradual reduction

in genetic diversity toward newly colonized areas due to successive founder effects (leading-

edge expansion model) and the increase in genetic diversity in populations that received

Fig 5. Extended Bayesian skyline plot representing the changes in Neothraupis fasciata effective population size (log transformed) over time (in

thousand years ago—kyr). (A) the historical demographic trend for the last 2 myr; (B) a detail of the historical demographic trend from the Last

Interglacial (~120 kyr) until now. The dashed line represents the median estimate of the effective population size, with the 95% high posterior density

interval shown in blue.

https://doi.org/10.1371/journal.pone.0212876.g005
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migrants [26,27]. Thus, our results indicate that the process of population expansion promoted

the reestablishment of gene flow in the southern part of the species distribution, reconnecting

genetic groups historically isolated in different plateaus (Fig 3). Additionally, the gradual

reduction in genetic diversity following a south-to-north trend indicates that the species may

have survived in isolated refugia in the southern part of its distribution during less favorable

periods with subsequent colonization events towards the northern Cerrado. This process was

likely favored by the continuity of vegetation formed in the core Central plateau and a possible

extension of the cerrado sensu stricto-like vegetation toward northern residual relief (see tran-

sitional and patch areas in Fig 3B) in the interplateau depressions promoted by the decrease in

temperature between LIG and LGM. Plateaus have deep and well-drained soils that are favor-

able to the establishment of the cerrado sensu stricto vegetation, while interplateau depressions

have younger soils and, consequently, a more heterogeneous landscape than the plateaus (see

Silva 1995 for a review). As in the plateaus, intraplateau depressions are composed of planning

surfaces covered predominantly by Oxisols, which favor the establishment of cerrado sensu

stricto-like vegetation in response to climatic changes. In this regard, the interplateau depres-

sions are possibly more prone to vegetation range shifts due to climatic changes than the pla-

teaus, as denoted by our paleomodelling results and the literature that have associated the

Cerrado stable areas with plateaus and residual relief [3,17,19,81–83].

We observed higher genetic diversity and a signal of historical differentiation between pop-

ulations located in different stable areas. Thus, the mitochondrial results reinforce the hypoth-

esis that high levels of divergence and population structure are expected across refugia [31]

and the genetic diversity is expected to be higher in stable areas compared to unstable areas

[19,30,31,83]. In addition, we stress that N. fasciata sample locations categorized as unstable

are in the northern part of the distribution, and the effects of range expansion may act as a

confounding factor. Therefore, additional sampling mainly in unstable areas is necessary to

disentangle the effects of population range expansion and historical stability.

Connections among the South American savannas are postulated to have occurred through

biotic corridors: along the Andes region [20]; right across central Amazonia, following a belt

of low precipitation [15]; and along the Atlantic coast [84] (see [1] for a review). Additionally,

a fourth corridor crossing Amazonia from the southwest to the northeast following the

Madeira River was postulated as an alternative dispersal route [18]. Our results showed that

MACA and PATO hold the lowest level of genetic differentiation (S4 Table) and are the only

ones to share haplotypes, suggesting that N. fasciata dispersal may have occurred mainly

through central Amazonia corridor, besides we were not able to dismiss the use of the other

hypothesized corridors. Additionally, the niche models indicated a region of habitat suitability

concordant with the low precipitation belt during the LIG. In accordance, Bueno et al. [17]

and Buzatti et al. [19] reported the existence of suitable climatic conditions to establish differ-

ent Cerrado tree species throughout central Amazonia, reinforcing the existence of the central

Amazonian corridor. However, our results are not in accordance with the literature that sug-

gests the corridors along the Atlantic coast [1] or the Madeira River [18] as the main dispersal

routes used by N. fasciata. The pattern observed in our results and the growing literature about

the importance of the central Amazonian corridor (e.g. [17,19]) highlight the need for more

studies to understand the importance of the hypothesized Quaternary savanna corridors to the

South American avifauna dispersal.

Conclusion

Genetic groups of N. fasciata located in the southern part of the species distribution (likely its

center of origin) might have persisted in partially isolated populations restricted to the plateaus

Phylogeography of the White-banded Tanager

PLOS ONE | https://doi.org/10.1371/journal.pone.0212876 March 20, 2019 13 / 19

https://doi.org/10.1371/journal.pone.0212876


during the cycles of savanna contractions. Subsequent events of savanna expansion promoted

the reestablishment of gene flow among these isolated populations and the increase in the dis-

tribution range through the (re)colonization of the northern portion of the species distribu-

tion. Thus, the intrinsic relationship between the relief heterogeneity (plateaus and

depressions) and the climatic fluctuations, mainly in the Pleistocene, promoted population

reconnection and demographic expansion of N. fasciata, reinforcing previous studies (e.g.

[82]) that suggest that this relation of cause and effect (the interaction between climate and

relief defining vegetation dynamic) may have been decisive in the diversification of the Cer-

rado biodiversity.
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33. Alves MAS. Dieta e táticas de forrageamento de Neothraupis fasciata em cerrado no Distrito Federal,

Brasil (Passeriformes: Emberizidae). Ararajuba. 1991; 2: 25–29.

34. Sick H. Ornitologia Brasileira (Edição rev.). Rio de Janeiro: Editora Nova Fronteira; 2001.

35. Hilty S, de Juana E. White-banded Tanager (Neothraupis fasciata). In: del Hoyo J, Elliott A, Sargatal J,

Christie DA, de Juana E, editors. Handbook of the Birds of the World Alive. Barcelona: Lynx Edicions;

2017.

36. Alves MAS. Social system and helping behavior in the White-banded tanager (Neothraupis fasciata).

Condor. 1990; 92: 470–474.

37. Duca C, Marini MA. Territorial system and adult dispersal in a cooperative-breeding tanager. Auk. 2014;

131: 32–40.

38. Manica LT, Marini MA. Helpers at the nest of White-banded Tanager Neothraupis fasciata benefit male

breeders but do not increase reproductive success. J Ornithol. 2012; 153: 149–159.

39. Lima-Rezende CA, Souza RO, Caparroz R. The spatial genetic structure of the White-banded Tanager

(Aves, Passeriformes) in fragmented Neotropical savannas suggests two evolutionarily significant

units. Biotropica. 2019; doi:Forthcoming

40. Kuhn M. Building Predictive Models in R Using the caret Package. J Stat Softw. 2008; 28: 1–26. https://

doi.org/10.18637/jss.v028.i07

41. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation

for Statistical Computing; 2017.

42. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distribu-

tions. Ecol Modell. 2006; 190: 231–259.

43. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate sur-

faces for global land areas. Int J Climatol. 2005; 25: 1965–1978.

44. Otto-Bliesner BL, Marshall SJ, Overpeck JT, Miller GH, Hu A, CAPE LIP members. Simulating Arctic cli-

mate warmth and icefield retreat in the last interglaciation. Science. 2006; 311: 1751–1753. https://doi.

org/10.1126/science.1120808 PMID: 16556838

45. Danielson JJ, Gesch DB. Global multi-resolution terrain elevation data 2010 (GMTED2010) [Internet].

2011. Available: https://pubs.usgs.gov/of/2011/1073/pdf/of2011-1073.pdf

46. Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, et al. System for Automated Geoscientific

Analyses (SAGA) v. 2.1.4. Geosci Model Dev Discuss. 2015; 8: 2271–2312.

47. Forgy E. Cluster analysis of multivariate data: Efficiency vs. interpretability of classification. Biometrics.

1965; 21: 768–769.

48. Rubin J. Optimal classification into groups: An approach for solving the taxonomy problem. J Theor

Biol. 1967; 15: 103–144. PMID: 6034157

49. Riitters K, Wickham J, O’neill R, Jones B, Smith E, Coulston J, et al. Fragmentation of Continental

United States Forests. Ecosystems. 2002; 5: 815–822.

50. Riitters K, Wickham J, O’neill R, Jones B, Smith E. Global-scale patterns of forest fragmentation. Con-

serv Ecol. 2000; 4: 3.

51. Birdlife International, NatureServe. Bird species distribution maps of the world. The IUCN Red List of

Threatened Species Version 2015–3. [Internet]. 2014 [cited 14 Nov 2013]. Available: http://www.

iucnredlist.org/

52. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, et al. Terres-

trial ecoregions of the world: A new map of life on earth. Bioscience. 2001; 51: 933–938.

53. Bruford MW, Hanotte O, Brookfield JFY, Burke T. Single-locus and multilocus DNA fingerprinting. In:

Hoelzel AR, editor. Molecular genetic analysis of populations. IRL Press; 1992. pp. 225–269.

54. Ribas CC, Gaban-Lima R, Miyaki CY, Cracraft J. Historical biogeography and diversification within the

Neotropical parrot genus Pionopsitta (Aves: Psittacidae). J Biogeogr. 2005; 32: 1409–1427.

55. Sorenson MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP. Primers for a PCR-based approach to mito-

chondrial genome sequencing in birds and other vertebrates. Mol Phylogenet Evol. 1999; 12: 105–14.

https://doi.org/10.1006/mpev.1998.0602 PMID: 10381314

Phylogeography of the White-banded Tanager

PLOS ONE | https://doi.org/10.1371/journal.pone.0212876 March 20, 2019 17 / 19

https://doi.org/10.1126/science.1166955
https://doi.org/10.1126/science.1166955
http://www.ncbi.nlm.nih.gov/pubmed/19197066
https://doi.org/10.18637/jss.v028.i07
https://doi.org/10.18637/jss.v028.i07
https://doi.org/10.1126/science.1120808
https://doi.org/10.1126/science.1120808
http://www.ncbi.nlm.nih.gov/pubmed/16556838
https://pubs.usgs.gov/of/2011/1073/pdf/of2011-1073.pdf
http://www.ncbi.nlm.nih.gov/pubmed/6034157
http://www.iucnredlist.org/
http://www.iucnredlist.org/
https://doi.org/10.1006/mpev.1998.0602
http://www.ncbi.nlm.nih.gov/pubmed/10381314
https://doi.org/10.1371/journal.pone.0212876


56. Marini M, Hackett S. A multifaceted approach to the characterization of an intergeneric hybrid manakin

(Pipridae) from Brazil. Auk. 2002; 119: 1114–1120.

57. Dmitriev DA, Rakitov RA. Decoding of superimposed traces produced by direct sequencing of heterozy-

gous indels. Plos Comput Biol. 2008; 4: e1000113. https://doi.org/10.1371/journal.pcbi.1000113 PMID:

18654614

58. Librado P, Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bio-

informatics. 2009; 25: 1451–1452. https://doi.org/10.1093/bioinformatics/btp187 PMID: 19346325
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81. Ab’Sáber A. O domı́nio dos cerrados: Introdução ao conhecimento. Rev do Serviço Público. 1983; 111:

41–55.

Phylogeography of the White-banded Tanager

PLOS ONE | https://doi.org/10.1371/journal.pone.0212876 March 20, 2019 18 / 19

https://doi.org/10.1371/journal.pcbi.1000113
http://www.ncbi.nlm.nih.gov/pubmed/18654614
https://doi.org/10.1093/bioinformatics/btp187
http://www.ncbi.nlm.nih.gov/pubmed/19346325
https://doi.org/10.1093/oxfordjournals.molbev.a026036
http://www.ncbi.nlm.nih.gov/pubmed/10331250
https://doi.org/10.1111/j.1755-0998.2010.02847.x
https://doi.org/10.1111/j.1755-0998.2010.02847.x
http://www.ncbi.nlm.nih.gov/pubmed/21565059
https://doi.org/10.1007/978-1-59745-251-9_5
http://www.ncbi.nlm.nih.gov/pubmed/19378141
https://doi.org/10.1186/1471-2156-6-13
https://doi.org/10.1186/1471-2156-6-13
http://www.ncbi.nlm.nih.gov/pubmed/15760479
http://www.ncbi.nlm.nih.gov/pubmed/2513255
http://www.ncbi.nlm.nih.gov/pubmed/9335623
https://doi.org/10.1093/oxfordjournals.molbev.a004034
http://www.ncbi.nlm.nih.gov/pubmed/12446801
https://doi.org/10.1093/molbev/mss075
http://www.ncbi.nlm.nih.gov/pubmed/22367748
https://doi.org/10.1093/molbev/msr014
http://www.ncbi.nlm.nih.gov/pubmed/21242529
https://doi.org/10.1093/molbev/msh157
http://www.ncbi.nlm.nih.gov/pubmed/15140948
https://doi.org/10.1016/j.ympev.2005.01.015
http://www.ncbi.nlm.nih.gov/pubmed/15955514
https://doi.org/10.1016/j.ympev.2014.02.006
http://www.ncbi.nlm.nih.gov/pubmed/24583021
http://www.ncbi.nlm.nih.gov/pubmed/12663537
https://doi.org/10.1371/journal.pone.0212876


82. Santos MG, Nogueira C, Giugliano LG, Colli GR. Landscape evolution and phylogeography of Micrable-

pharus atticolus (Squamata, Gymnophthalmidae), an endemic lizard of the Brazilian Cerrado. J Bio-

geogr. 2014; 41: 1506–1519.

83. Buzatti RS de O, Lemos-Filho JP, Bueno ML, Lovato MB. Multiple Pleistocene refugia in the Brazilian

cerrado: evidence from phylogeography and climatic nichemodelling of two Qualea species (Vochysia-

ceae). Bot J Linn Soc. 2017; 185: 307–320.
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