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Abstract

Three-dimensional (3D) bioprinting is a cutting-edge technology that has come to light recently and shows a
promising potential whose progress will change the face of medicine. This article reviews the most
commonly used techniques and biomaterials for 3D bioprinting. We will also look at the advantages and
limitations of various techniques and biomaterials and get a comparative idea about them. In addition, we
will also look at the recent applications of these techniques in different industries. This article aims to get a
basic idea of the techniques and biomaterials used in 3D bioprinting, their advantages and limitations, and
their recent applications in various fields.
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Keywords: fixed deposition modelling, three-dimensional bioprinting, synthetic polymers, selective laser sintering,
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Introduction And Background

Three-dimensional (3D) printing of biological material is a revolutionary technology through which we can
print various materials ranging from simple muscle tissue, neural tissue, and cartilage, to an entire organ. In
this process, we first construct a 3D model of the structure we want to print using patient's scans such as X-
ray, CT, or MRI, which will then be printed in a layer-by-layer model taking care of every microscopic as well
as macroscopic detail of the tissue. This model is then printed in a layer-by-layer fashion, which is then
further processed to hold it together to function as a single unit [1]. While printing a particular structure, we
need to keep in mind the properties of biomaterials used, such as biocompatibility, strength, stability, and
immunogenicity, before selecting the correct biomaterial [2].

Bioprinting is not a single-step process; it involves various complex processes to print customized 3D
structures for the patient, such as designing the structure with the help of computers using the patient's
radiological imaging reports and then prototyping using a technique known as solid free form fabrication,
which will take care of every microscopic as well as macroscopic detail of the tissue. With the progress in
bioprinting technology and the qualities of biomaterials, 3D bioprinting can lead to various advantages in
the short and long run. Although, at present, it seems scary to a normal person to think about having a
printed organ in his own body, if this technology succeeds, it can save so many people waiting for years for
organs [3,4].

Other uses of 3D bioprinting are the treatment of burn wounds using artificial skin, bioprinting of bones and
cartilage, drug testing, preparing diseased tissue models to check the treatment's efficacy before actually
giving it to a patient, bladder implants, and heart valve implants. Besides so many advantages that we can
have from 3D bioprinting, there are many challenges ahead of us, such as the technology being too
expensive. This technology will only be advantageous for only a few people, leaving behind the poor who will
have to wait for a donor. Also, as this technology is not yet so advanced, that makes it a very risky procedure
as we still do not have all the information about the types of complications that can occur from this
procedure. Also, there is still a long road ahead of us, which requires years of research to make this
procedure successful [5].

The main goal of 3D bioprinting is to replace the non-functioning or defective tissue/organ with the new
bioprinted one, which will function the same as the native organ structurally and functionally. This
bioprinted tissue must know how to regenerate and differentiate on its own when implanted inside the
patient's body. With the proper use of technology and the correct type of biomaterial, adequate tissue can be
printed, which will perform all these required functions; therefore, adequate research in the field of
biomaterials is needed to find the correct material that can work as native tissue. In this review article,
commonly used bioprinting technology, their application, advantages, and limitations, along with types of
biomaterials used in the field of 3D printing (both natural and synthetic) and their advantages and
limitations have been discussed, as well as their application in the various industries [6].
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Typically used techniques in bioprinting

Among all the types of techniques used in bioprinting, the most commonly used methods are described in
Figure I and the biomaterials used in them are described in Table 1.

Extrusion based
printing

FIGURE 1: Different Types of Techniques Used in Bioprinting

Techniques Procedures Biomaterials Applications
Regeneration of cartilage
Fixed deposition ~ Heat-sensitive plastic filaments are melted down and Nylon, PVA, i 9 K g.
. . . . . tissues, bone tissue; delivery
modelling arranged in a layer-by-layer fashion to build a 3D object [2] polycarbonate o .
of antibiotics; prosthetics [3]
Collagen, hyaluronic Aortic valve; neural tissue;
Extrusion-based Extrusion of the material using pressure through the R 9 X 4 i i
o i K K acid, alginate, PEG, muscle tissue; bones; implants
printing nozzle of the printer is done to form the desired shape [2] . )
gelatin, chitosan [2]
Selective laser Solid 3D structures are formed using a powder arranged Ceramics, metals, Drug delivery; tissue
sintering in a layer-by-layer fashion using a high-power laser [4] polyamide engineering

Photopol f high itivit bound togeth i
Stereolithography otopolymers ot igh sensitivity are bound fogether using Photopolymers Medical models and prototypes
a beam of UV laser, heat, or electron beam

L . Hydroxyapatite, Alpha- - .
. Alternate powder and liquid binding material layers are Printing of biomolecules such
Inkjet i i TCP, beta -TCP, PVA, i K i
added in a layer-by-layer fashion [5] as protein and nucleic acid
PEG, PEG hydrogel

Thin sheets are coated with adherent material, glued
together in a layer-by-layer fashion, and then cut into the Metals, Plastic, Paper Prototypes
desired shape using a laser or metal cutter [2]

Laminated object
manufacturing

TABLE 1: Summary of Commonly Used Techniques in Bioprinting

PEG, polyethylene glycol; PVA, polyvinyl alcohol; TCP, tricalcium phosphate; UV; ultraviolet; 3D, three-dimensional

The advantages and limitations of the methods are illustrated in Table 2.
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Techniques Advantages Limitations
Fixed deposition  Low cost, quick processing, easy to operate, high Less compatibility, high temperature destroys the material, lack
modelling porous materials can be made of mechanical strength, only thermoplastics can be used

Extrusion-based  Long viability, can print highly dense material, low . X i
Pressure may affect cell viability, cannot print complex tissue

printing cost
Selective laser Good support offered from a powder bed, many Highly expensive, printers are large and complex to install,
sintering types of materials can be used process is slow
. High resolution, high viscous material can be Ultraviolet rays used are toxic and make skin cancer-prone,
Stereolithography e
printed [3]. slow process, cell viability is short
Quick processing, high resolution, long viability, Low mechanical strength, nozzle gets blocked frequently

Inkjet
! more compatible, multicolor printing is possible [5] because of the highly dense material used

Laminated object . . e . . .
) Low cost, quick processing, easy to operate Difficulty in manufacturing complex tissues
manufacturing

TABLE 2: Summary of Advantages and Limitations of Different Bioprinting Techniques

Biomaterials

Typically used biomaterials used in 3D printing have been illustrated in Figure 2.

e Alginate 2 IjoLy;?ene
e Hyaluronic gy
acid o L ;
e Collagen S apg‘:;o L
: Siilr?:n e Polyuretha
: ne
e Chitosan e PLGA

FIGURE 2: Classification of the Biomaterials Used in Bioprinting

PCL, polycaprolactone; PLGA, polylactic-co-galactic acid

Natural Polymers

Naturally occurring polymers can be derived using various physical, biochemical, or chemical methods.
Natural polymers are compatible, can hold the fluid, and can be easily dissolved in different solvents such as
phosphate buffers and cell culture solutions, making them more tissue friendly. Due to these qualities, it is
possible to print it in a layer-by-layer manner, producing a model that will mimic a natural organ if placed in
a stable environment [6,7]. One of the critical properties of these naturally occurring polymers is that when
provided with a controlled environment such as normal temperature, adequate water, and proper medium to
grow, they can mimic cells or tissue, undergo proliferation, maturation, and differentiation, and coordinate
with surrounding structures [8-10]. One major drawback of natural polymer is that all these activities are
majorly affected if the surrounding environment becomes unstable, such as an increase in temperature,
dehydration, or the nature of the solvent in which it is dissolved. Some commonly used natural polymers are
alginate, gelatin, collagen, chitosan, and hyaluronic acid, and are described below.

Alginate

2022 Sachdev et al. Cureus 14(8): €28463. DOI 10.7759/cureus.28463 30of12


https://assets.cureus.com/uploads/figure/file/422502/lightbox_754b20600ee911ed89cfc5917536dbd6-Screenshot_20220727-111802.png

Cureus

Alginate is derived from the cell walls of Phaeophyceae (brown algae) and is used in the form of salts of
alginic acid. Wang first used alginate in the form of sodium alginate, but the problem faced was its gelation
point, which is 0°C, while 3D bioprinting was done at room temperature; therefore, it was crosslinked with
other metals such as calcium and barium to increase its compatibility and mechanical strength [11]. An
important thing to take care of while using alginate is to use it in adequate concentration because if used in
less concentration, the model's strength is majorly affected. All the activities such as proliferation, growth,
and maturation are affected if used in high concentration. Therefore, it is crucial to use the proper
guidelines regarding the concentration of alginate to be used for 3D bioprinting. Also, as alginate shows the
property of delayed degradation, it is recommended to use alginate in an oxidized form, which is expected
to show increased degradability and will be more suited for 3D bioprinting [12]. The chemical structure of
alginate is given in Figure 3.

ALGINATE

FIGURE 3: Chemical Structure of Alginate

Hyaluronic Acid

Hyaluronic acid is an integral part of the extracellular matrix, which plays a major role in the proliferation of
cells and angiogenesis. Due to its high cell adhesive property and water-absorbing quality, it can be used to
change the viscosity of other polymers such as gelatin. As with other natural polymers, hyaluronic acid is
crosslinked with synthetic polymers to increase its compatibility. One example is the crosslinking of
hyaluronic acid with methyl acrylate forming a rigid non-biodegradable polymer known as HAMA
(hyaluronic acid methylacrylate) [13,14]. Another polymer formed via crosslinking is GeIMA which, when
used in combination with HAMA (HAMA-GeIMA), will increase its mechanical strength and compatibility. It
has been proven that the 1:4 ratio of GeIMA:HAMA is an adequate ratio to improve the compatibility of the
polymer formed (np 101). As this Combination shows superior qualities, it has been applied in the
bioprinting of musculoskeletal, cardiac, and neural tissues [15]. The chemical structure of Hyaluronic acid is
given in Figure 4.

2022 Sachdev et al. Cureus 14(8): e28463. DOI 10.7759/cureus.28463

4 0of 12


https://assets.cureus.com/uploads/figure/file/422513/lightbox_d61495500eeb11edb085d94f0ce892a7-IMG-20220726-WA0013.png

Cureus

HYALURONIC ACID
Co0~ CH,0H

H 6 H o 0
OE H\\O H
\/ H

W— H OH H

H OH H NHCOCH,

Glucoronic acid  N-Acetyl glucosamine

FIGURE 4: Chemical Structure of Hyaluronic Acid

Collagen

Collagen is widely known to support the skin, ligaments, bone, tendon, and cartilage due to its resistance
and toughness. Type 1 and type 2 are most often used in musculoskeletal repair using 3D printed models.
Collagen has been observed to promote proliferation, maturation, and differentiation of bone and cartilage
cells [16]. As seen in other polymers, using collagen in bioprinting is best done when combined with other
polymers to increase its viscosity and decrease its degradation compared to using collagen only. It is
commonly crosslinked with alginate, agarose, hyaluronic acid, and fibrin [17]. To increase its compatibility,
collagen has also been crosslinked with heparin sulfate and polyurethane for printing conduits, which can
help nerve repair [18-19]. However, the drawback of using collagen is its easy solubility in acids, making it
temperature- and pH-dependent. Also, the rapid degradation of collagen by collagenase and
metalloproteinase in the body makes it difficult to use [20]. The chemical structure of collagen is given in
Figure 5.

NH,

{NHZ

H°~Jﬂww§§ﬂi@

NH

COLLAGEN

FIGURE 5: Chemical Structure of Collagen

Gelatin

Gelatin is a linear molecule that is obtained by breaking collagen. Being a natural substance, it is not toxic,
and is low in immunogenic properties, hydrophilic, and highly degradable, which makes it a special polymer.
Before printing gelatin, it is combined with culture media to make it denser [21-26]. Many agents, such as
hormone growth-promoting factors, can be crosslinked with gelatin molecules. Heparin, at the time of
gelation, and other naturally occurring polymers such as hyaluronic acid, agarose, fibrin, collagen, and
chitin will increase its mechanical strength and compatibility [27]. The combination of gelatin with synthetic
polymers in the presence of UV light has led to the formation of GeIMA, which, when used in combination
with HAMA (HAMA-GeIMA), will increase its mechanical strength and compatibility. It has been proven that
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the 1:4 ratio of GeIMA:HAMA is an adequate ratio to increase the polymer formed compatibility. Another
combination of gelatin is crosslinking of gelatin with chemical agents such as calcium chloride to improve
the stability and degradation properties of gelatin hydrogels such as gelatin-fibrin or gelatin-alginate
combination [28,29]. The chemical structure of gelatin is given in Figure 6.
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FIGURE 6: Chemical Structure of Gelatin

Fibrin

Fibrin is a natural polymer as it is formed in blood in the presence of thrombin due to the rapid
polymerization of fibrinogen [30]. Although fibrin has been found superior in its properties such as
compatibility compared to other natural polymers to increase its efficacy, it is combined with other natural
polymers to overcome its low strength, less viscosity, high degradation, and gelation properties when used
alone [31]. The recent trend is to combine natural polymers and crosslink them using chemical agents to
form a hybrid type of polymers in various combinations such as gelatin-chitosan-alginate-fibrinogen and
gelatin-hyaluronic acid-glycerol-fibrin. This combination helps create a more stable structure that can print
quickly, and those models can survive longer in the body's environment. Fibrin and its combination with
other polymers are being used in bioprinting of skin, which will be helpful in early wound closure in many
cases and early regeneration of tissue and its vasculature [32]. The formation of fibrin is illustrated in Figure

7.
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QD:QZQD fibrinogen
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FIGURE 7: Diagram lllustrating Formation of Fibrin

Chitosan

Chitosan is usually derived from shrimp shells and is formed from the hydrolysis of chitin. Like other natural
polymers, it is low in strength and has degradable properties; therefore, a similar combination of
crosslinking with chemical agents is done with collagen, alginate, and gelatin to increase its viscosity and
biodegradability, and to make it more compatible, it is used to repair rigid structure such as skin, bone, and
cartilage [33-38]. The chemical structure of chitosan is given in Figure 8.

CH-OH NH;
| Q HO s

HO —| '8)
NH CH,OH

CH; CHITOSAN

FIGURE 8: Chemical Structure of Chitosan

Synthetic Polymers

Synthetic polymers are made artificially by humans in a laboratory using chemicals in the appropriate
environment required for their production; they are high in strength and resistance. The main advantage of
synthetic polymers is that we can modify them easily as they can withstand changes in temperature and pH
and can be processed according to our needs due to their increased resistance and mechanical strength.
Since the gelation temperature of synthetic polymers is shallow compared to natural polymers with a very
high melting temperature, they are very suitable for models for 3D bioprinting; therefore, formed polymers
are inert, are difficult to degrade, and have a high tensile strength.

Polyethylene Glycol
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Polyethylene glycol is a linear synthetic polymer that is compatible, is low in immunogenicity, and has a
high affinity for water, making it well qualified for bioprinting. Another name for polyethylene glycol is
polyethylene oxide [39,40]. Polyethylene glycol cannot adhere appropriately to the cells; it is crosslinked
with other molecules such as carboxyl group, acrylate, or thiol group to make it more suitable for use in the
repair of soft tissues. Polyethylene glycol can also be polymerized in the presence of UV light to increase cell
encapsulation rate and its mechanical strength. Using the Inkjet bioprinting technique, PEG has also been
crosslinked with GeIMA to increase its strength for the bioprinting of rigid structures such as cartilage and
bone [41,42]. Since polyethylene glycol is not degraded on its own, hydrolytic blocks such as
polycaprolactone and PGA is used to increase its degradation rate. The chemical structure of polyethylene
glycol is given in Figure 9.

POLYTHENE GLYCOL

H:;C =
3 @)
O CH3

"o

FIGURE 9: Chemical Structure of Polyethylene Glycol

Polycaprolactone

Polycaprolactone is a partially crystalline polymer that can be easily degraded naturally in our body [43]. It is
a thermoplastic polymer produced at the temperature of -60°C when combined with other agents to change
its mechanical structure and degradation rate. It can be called an ideal material to be used in fused
deposition modelling technology of 3D bioprinting [44,45]. As it is done in all other synthetic polymers,
polycaprolactone is crosslinked with other bioagents such as polycaprolactone-alginate to increase its cell
adhesive property for regeneration of cartilage. Polycaprolactone has also been combined with GeIMA using
UV light to increase the strength and stability of the scaffold. GeIMA concentration is proportional to the
hardness of the scaffold and is widely used in cartilage and bone regeneration [46]. Other uses of
polycaprolactone are to form sutures and in devices such as drug delivery system [47]. The chemical structure
of polycaprolactone is given in Figure /0.

0
|

A NcH, CCHy  CHy N

POLYCAPROLACTONE

FIGURE 10: Chemical Structure of Polycaprolactone

Polyurethane
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Polyurethane is a linear biodegradable polymer that shows outstanding compatibility and mechanical
properties [48]. Polyurethane, when used alone, is inert and cannot be degraded. Therefore, it is crosslinked
with other materials to increase its compatibility and stability. Waterborne polyurethane is one such type
that removes its problem of temperature and pH dependency, which is mainly dependent on its short
segment (diol segment). Waterborne polyurethane is now used to repair chondrocytes and nerve cells [49-
51]. Polyurethane has also been crosslinked with other bioagents such as adipose stem cell-fibrin-alginate-
gelatin and cryoprotectant to protect against the damage from low temperatures to synthesize them.
Another form of polyurethane is an elastic variety of polyurethane, which has been widely used for nerve
repair and vascular repair conduits. Combining polyurethane with polycaprolactone and polyethylene glycol
increases its mechanical strength, stability, compatibility, and biodegradability [52]. The chemical structure
of polyurethane is given in Figure /1.

Structure of Polyurethane

Q i
H H
n
Polyurethane

FIGURE 11: Chemical Structure of Polyurethane

Polylactic-Co-Galactic Acid

Polylactic-co-glycolic acid is formed using two polymers, lactic acid and glycolic acid, by copolymerization.
It is usually seen that the transition temperature of polylactic-co-glycolic acid is around 40-60°C, and
glycolic acid and lactic acid are used in the ratio of 1:3 [53]. It has been observed that the degradation rate of
polylactic-co-galactic acid depends on the concentration of glycolic acid used while synthesizing.
Polylactic-co-galactic acid is mainly used where high mechanical support is required [54]. It can also be
combined with other agents such as growth-promoting factors or adipose stem cells to make it more useful
and compatible for making the complicated structure of 3D bioprinted organs. PLGA can also be synthesized
at low temperatures to create a complex organ structure with fibrin hydrogel to act as a native organ when
transplanted [55]. The chemical structure of poly-co-galactic acid is given in Figure 12.

POLYLACTIC CO GLYCOLIC ACID

O
o) H
CHy *O g

FIGURE 12: Chemical Structure of Polylactic-Co-Glycolic Acid

Recent advances in bioprinting technology

The application of the internet of things (IoT) with the technology of bioprinting has led to breakthroughs in
surgical techniques [56]. The ultimate goal is to break the chain of years and years of waiting for a donor
organ and to print an entire organ that will be structurally and functionally similar. The main organs on
focus to print are our heart, bone, skin, cartilage, and tendon. Besides focusing on printing an entire organ,
3D bioprinting has been used in various other branches, which have been described in Table 5 [57-60].
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Industries Uses

Dental Crowns, filling, implants, fixtures

Pharmacy Drug delivery

Medicine Pharmacy, prosthetics, hearing aids, orthopedic screws/plates
Food Cookie, candy, pizza

Automobile industry Prototypes, spare parts

TABLE 3: Summary of Application of Bioprinting in Different Industries

Conclusions

Even though there is still a long road ahead of us to print an organ, this cutting-edge technology has shown
a promising potential that will change the lives of thousands of people dying every day because of the need
for a donor organ. However, implanting a printed organ in a human body is still scary for many people. If
successful, it will solve many problems, such as a long waiting list for a transplant and issues of organ
rejection, and will completely change the face of medicine. Since, at present, there are not enough
biomaterials that can be used in 3D bioprinting, there is a high need for research in this matter as this
shows the potential of saving the lives of many patients who require a transplant. Still, in its early phases,
bioprinted organs have already proved functional in labs, but there is a long road in front of us until they
will be transplanted into an actual human body.
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