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of Psychology, Shanghai University of Sport, Shanghai, China

The brain-computer interface (BCI) based on functional near-infrared spectroscopy
(fNIRS) has received more and more attention due to its vast application potential
in emotion recognition. However, the relatively insufficient investigation of the feature
extraction algorithms limits its use in practice. In this article, to improve the performance
of fNIRS-based BCI, we proposed a method named R-CSP-E, which introduces
EEG signals when computing fNIRS signals’ features based on transfer learning and
ensemble learning theory. In detail, we used the Independent Component Analysis
(ICA) algorithm for the correspondence between the sources of the two signals. We
then introduced the EEG signals when computing the spatial filter based on a modified
Common Spatial Pattern (CSP) algorithm. Experimental results on public datasets show
that the proposed method in this paper outperforms traditional methods without transfer.
In general, the mean classification accuracy can be increased by up to 5%. To our
knowledge, it is an innovation that we tried to apply transfer learning between EEG and
fNIRS. Our study’s findings not only prove the potential of the transfer learning algorithm
in cross-model brain-computer interface, but also offer a new and innovative perspective
to research the hybrid brain-computer interface.

Keywords: fNIRS signals, transfer learning, brain computer interface, ICA, RCSP

INTRODUCTION

The brain-computer interface (BCI) is a communication way between the brain of users and the
outside world, which can be used to exchange information between the brain and the equipment
(Khosrowabadi et al., 2011). It has been employed in many fields, such as neuronal rehabilitation
(Daly and Wolpaw, 2008), military (Rebsamen et al., 2007), traffic (Yue and Wang, 2019), and
entertainment (Royer et al., 2010). In BCI, motor imagery is the most investigated paradigm. Many
previous studies have demonstrated that the motor imagery brain-computer interface system (MI-
BCI) has a broad prospect in rehabilitation training and neural recovery (Pichiorri et al., 2015;
Bundy et al., 2017).

Among most studies about the MI-BCI system, researchers mainly focus on EEG signals, which
record neural activity in the brain (Wolpaw et al., 2006). Considering its non-invasiveness and high
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temporal resolution (milliseconds), EEG is the most popular
brain signal and provides encouraging results. fNIRS is a
functional brain imaging tool, which reflects the activation degree
of the cerebral cortex by measuring the level of oxygen in the
blood (Ferrari and Quaresima, 2012). In contrast to EEG, fNIRS
provides better spatial resolution and shows better tolerance to
motion artifacts. The fNIRS-based BCI was mentioned firstly by
Coyle et al. (2004). With the development of brain science and
breakthroughs in cognitive neuroscience technology, fNIRS has
developed rapidly as a tool to study cognitive neuroscience in
the past decades.

However, as we know, due to the lower time resolution
and lack of feature extraction algorithms, the fNIRS-based BCI
system usually has poor performance. Common Space Pattern
(CSP) is an effective method to extract features in the EEG-
based BCI (Spuler et al., 2014; Wu et al., 2017). However, fNIRS
signal is different from EEG. For EEG, it is a signal reflecting
brain electrophysiology with rich high-frequency fluctuations
while fNIRS is a slowly changing signal detecting cerebral
hemodynamic response. Therefore, applying the CSP algorithm
to fNIRS signals directly usually leads to poor effect. In article
(Zhang et al., 2017), CSP algorithm was utilized to integrate
multi-channel fNIRS signals into a single temporal sequence
with the usage of an optimal spatial filter and subsequently,
variance was extracted as part of the feature vector for brain
state classification. They reported this method can improve the
classification accuracy more than 9% in average. In our research,
to improve the CSP algorithm in fNIRS, we introduced EEG
signals based on the theory of transfer learning.

In addition, because fNIRS relies on cerebrovascular
dynamics, the response is not as sensitive as EEG. Taking
motor imagery as an example, the change of hemodynamic
concentration is delayed relative to the start and end of the
movement lasting about 5 s (Lachert et al., 2017). This results in
the fact that it takes longer than EEG to collect a certain amount
of data during the experimental session. Considering that the
experiment time is too long, the subjects will be tired, which also
limits the classification accuracy and application of fNIRS-BCI.
Previous studies often used deep learning technology to improve
classification accuracy. In the article (Trakoolwilaiwan et al.,
2017), a convolutional neural network (CNN) was utilized to
automatically extract features and classify in left or right-hand
motor execution task. Results showed that the CNN-based
methods improve the classification accuracy compared to
traditional methods. Another popular approach is integrating
the fNIRS signals with the EEG signals. EEG is one of the
electrophysiological signals, and fNIRS measures the level of
oxygen in the blood. Hence, combining the two signals could
offer us different types of data that involved the same brain
activity. Experimental results revealed that the fusion method
could indeed enhance the performance of BCI (Fazli et al., 2012;
Lee et al., 2019).

Recently, transfer learning (TL) has been widely discussed
in the BCI system and has gradually become a new research
hotspot (Jayaram et al., 2015). The existing methods are
mainly applied in the EEG brain-computer interface system,
which promotes learning a new subject/session/equipment/task

by utilizing the data or knowledge from similar or relevant
subjects/sessions/equipment/tasks (Wu et al., 2022). It
dramatically solves the dilemma of small training data,
significant individual differences, and few executable commands.
Transfer learning is currently the most crucial method to
reduce calibration in BCI. In this article (Khazem et al., 2021),
a transfer learning approach called MDWM was proposed,
which aims to reduce calibration time by transferring knowledge
from other subjects to the target user. Similarly, this paper
described a multi-source fusion transfer learning algorithm
(Liang and Ma, 2020). However, there is little research in the
multimodal brain-computer interface that involved the thought
of transfer learning.

In this paper, to achieve TL between EEG and fNIRS, we
proposed a method called R-CSP-E based on the Regularized
Common Spatial Pattern (RCSP) theory, which states that the
weighted covariance matrix can be transferred from EEG to
fNIRS. RCSP, as a variant of the CSP algorithm, is used for cross-
subject adaption (Xu et al., 2019). EEG signals and fNIRS signals
were recorded simultaneously under the same thinking task
activity. We believe that there is a certain amount of information
between the two signals that can be transferred and utilized.
Besides, our method also embodies the idea of ensemble learning.
The results of multi-experiments showed that our method could
recognize the characteristic patterns of the brain better and
improve the classification accuracy of motor imagination tasks.

In summary, the contribution of our paper lies in the following
three aspects. Firstly, we use the ICA algorithm to trace the source
and find the region with the highest activation level to establish
the correspondence between channels. Secondly, inspired by the
thought of TL, we consider the features of the EEG signals to
improve the performance of the brain-computer interface system
based on fNIRS. Finally, we provide a new perspective to research
the hybrid brain-computer interface.

The remainder of the sections of our paper is organized as
follows: section “Materials and Methods” describes the dataset
and methodology used in the experiment. Section “Experiments”
is devoted to showing the experimental design and results, and
sections “Results” and section “Discussion” are the discussion and
conclusion of this article.

MATERIALS AND METHODS

Dataset
An open-access dataset for EEG-fNIRS hybrid brain-computer
interface with two brain activities, motor imagery (MI) and
mental arithmetic (MA), was involved in our research (Shin et al.,
2017). In our work, we mainly made full use of the MI dataset.
For the EEG, the signals were recorded at 1000 Hz. As shown
in Figure 1, thirty EEG active electrodes were placed according
to the international 10-5 standard (AFp1, AFp2, AFF1h, AFF2h,
F3, F4, F7, F8, FCz, FCC3h, FCC4h, FCC5h, FCC6h, T7, T8, Cz,
CCP3h, CCP4h, CCP5h, CCP6h, CPz, Pz, P3, P4, P7, P8, PPO1h,
PPO2h, POO1, POO2, and Fz for ground electrode) (Oostenveld
and Praamstra, 2001). For fNIRS, fourteen sources and sixteen
detectors represented thirty-six channels with a 12.5 Hz sampling
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FIGURE 1 | Placement of EEG electrodes, NIRS sources and detectors. The solid black line represents the NIRS channel.

rate. The detail and specific placement of electrodes can refer
to this article (Shin et al., 2017). In general, placed channels
near the frontal, motor, and visual areas. In order to realize the
synchronous acquisition of signals, the fNIRS optodes and EEG
electrodes were fixed on the same fabric cap.

All subjects sat on a chair 50 inches from the screen and asked
to remain still and relaxed. Participants were instructed to execute
left or right-hand squeezing imagery (i.e., to imagine the finger’s
movement up and down in the brain) by visual stimulation. Each
subject performed three sessions (each session contains twenty
trials) of left or right-hand MI tasks. As is illustrated in Figure 2,
a single trial consisted of instruction (2s), task (10 s), and rest
(15 task (periods. The left or right arrow was displayed on the
computer screen during the instruction.

Pre-processing
All data processing was completed by MATLAB R2019b,
and the BBCI toolbox was also applied for further data
processing (Benjamin et al., 2010). The original EEG signals were

re-referenced firstly and filtered with a passband of 0.5–50 Hz.
When we collect EEG signals, there will be some unavoidable
noises, such as electrooculogram (EOG), electromyogram
(EMG). These signals will cause interference to our brain
electricity. Hence, in data processing, these interference signals
need to be eliminated. Then we performed the independent
component analysis (ICA)-based artifact rejection to remove
the ocular artifacts. This method assumes that the observed
signals are composed of clean EEG data and independent
noise components.

Down-sampled the EEG signals to 200 Hz and filtered between
8 and 30 Hz. Then normalized by Z-score and segmented into
epochs ranging from −3 to 7 s. After that, subtract the mean
value of the period ranging from−3 to 0s to correct the baseline.
Electrodes attached to the motor cortex (FCC5h, FCC6h, FCC3h,
FCC4h, CCP5h, CCP6h, CCP3h, CCP4h) were selected for
further analysis.

Raw fNIRS signal is filtered at 0.01–0.1 Hz to remove internal
noise generated by physiological activities such as respiration
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FIGURE 2 | Task sequence of experimental paradigm.

FIGURE 3 | The total structure of the proposed Algorithm. After the EEG signal and the fNIRS signal are preprocessed respectively, they are divided into a training
set and a test set. The training set data is adjusted by the ICA algorithm for channel order (A), then the RCSP framework is used for feature generation (B), and
finally combined with LDA and KNN for classification (C).

and heartbeat. After that, the filtered data are converted to a
concentration of deoxy- and oxy-hemoglobin (HbR and HbO)
according to the modified Beer-Lambert law (Kocsis et al., 2006).
Then, considering that the hemodynamic response of fNIRS
is relatively slow, the HbO and HbR signals are divided into
periods of 0–10 s. Finally, we conducted the baseline correction
by diminishing the mean value from 0 to 3 s. Similar to EEG,
twenty-four channels near the motor cortex were used for further
NIRS data processing.

Methods
This part will introduce the overall framework of our algorithm
and then describe the three essential components in detail. The
whole scheme of our algorithm is shown in Figure 3, which
consists of two parts. The first part is the model training. After
preprocessing, the synchronously collected multimodal data are
divided into the training and test datasets. After adjusting the
channel through the proposed ICA-based source distribution
association algorithm, the EEG training dataset is introduced
into the calculation of the spatial filter and then constructed
the composite spatial filters from the fNIRS data based on the

RCSP framework. In RCSP, regularization parameter selection
is crucial. In our study, this problem is solved by the idea
of ensemble learning. Finally, the features extracted by the
filter are input into Linear Discriminant Analysis (LDA) for
dimensionality reduction, and K-nearest neighbors (KNN) is
used for classification. Another part is the model testing. Test data
is fed to the model to calculate the accuracy.

Source Distribution Association Algorithm Based on
Independent Component Analysis
To realize the transfer between EEG and fNIRS signals, we first
need to adjust the positions and numbers of the two signals’
channels to be consistent. Although EEG and fNIRS channels
show one-to-many correspondence, which means that each EEG
channel is associated with multiple fNIRS channels. But for
the convenience of calculation, we need to make a one-to-one
correlation. Therefore, this paper proposes channel matching
from the perspective of source distribution. This section will
introduce the channel adjustment strategy in detail. ICA is widely
used as a popular technique to remove artifacts in the BCI field.
In addition, for the motor imagery task, because the interstitial
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activity is significant and its source can usually be considered
specific, the ICA algorithm is also suitable for extracting the
exciting regions. ICA is a generative model, which describes how
to generate observation data by mixing independent components
(Hyvarinen and Oja, 2000). Considering the calculation speed,
the ICA algorithm used in this article is FastICA (Dominic et al.,
2010).In our study, we first obtain the source signal through
the ICA algorithm. We believe that both EEG and fNIRS are
based on motor imagery tasks, and the brain regions where the
source signals generated have some certain consistency. We then
matched channels by correlation of source signals.

As described in Algorithm 1, we first used the ICA algorithm
on the EEG signals to get eight independent sources (the number
of channels is eight), which were marked as IC1∼IC8 in turn.
Then, draw the power spectral density of these independent
components. As shown in Figure 4, the power spectra of different
independent components vary greatly. Calculate the distance
between different types of power spectral density (PSD) curves
on the power spectrum (the distance is calculated as the mean
distance across all the frequencies). Then select the most obvious
components that distinguish the left and right hands, and treat
them as the most relevant source of classification, which is
marked as Seeg1, Seeg2.

Algorithm 1 | Source Distribution Association Algorithm Based on ICA.

Input: The multi-channel EEG signals, En; The multi-channel fNIRS signals, Fn;

Output: Channel layout with consistent number and location, ch;

1: Extract the set of independent sources of En based on ICA algorithm, named
ICi ;

2: Draw power spectral density on these independent components.

3: Select the two most obvious components that distinguish the left and right
hands, which are marked as Seeg1, Seeg2

4: Extract the set of independent sources of Fn;

5: Calculated the change of the source signals’ oxyhemoglobin concentration
between the task period and rest period;

6: Pick up the two components with the largest variation. Denoted these two
components as Sfnirs1, Sfnirs2;

7: Observe the columns in the mixing matrix belong to the four source signals,
and sort the channels according to their weights;

8: return ch;

As shown in Figure 5, in the fNIRS data, using the left
and right-handed tasks did not work because the response of
the fNIRS signal was slower than that of the EEG signal. For
the fNIRS signals, ICA decomposition was performed first and
then calculated the change of the source signal’s oxyhemoglobin

FIGURE 4 | The power spectra of the independent components.
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FIGURE 5 | The power spectrum comparison of left and right handed and task-resting in fNIRS data.

concentration between the task period and rest period. Like EEG,
the two components with the largest variation were picked up
as the most relevant sources of classification. Denoted these two
components as Sfnirs1, Sfnirs2.

Usually, when we compare the columns of the mixing matrix
A in ICA, we can analyze how much the source data contributes
to each channel of the observation data. Therefore, the columns
of the mixing matrix can be used to calculate and visualize the
topography of components. Motivated by the theory above, we
observed the columns in the mixing matrix belong to the four
source signals and sorted the channels according to their weights.
For example, the pattern diagram of Seeg1 is shown in Figure 6.
We sorted the channels according to the weight, the order of
the channels is “FCC5h,” “FCC6h,” “CCP4h,” “CCP5h,” “FCC3h,”
“FCC4h,” “CCP6h,” “CCP3h.” We deduced the channel sequence
corresponding to the other three source signals by analogy. By
combining them, the purpose of matching the EEG optode and
the fNIRS channel was achieved.

Spatial Pattern Transfer Algorithm Based on
Regularized Common Spatial Pattern
Common spatial patterns (CSP), which is regarded as the most
effective feature extraction algorithm in the MI task, aims to
extract the spatial distribution components of each class. The
core of CSP is designing a set of spatial filters, thus the variance

of one type of signal is maximized, and the other type is
minimized, to obtain the eigenvectors with higher discrimination
(Lu et al., 2009b).

Suppose X1 and X2 are the multi-channel signals during the
motor imagery task, and their dimensions are both N × T (N is
the number of channels, and T is the number of samples within
each channel). The average spatial covariance matrix of each class
can be expressed as Equation (1):

R1 =
1
k ∗

∑k
i

Xi
1(X

i
1)

T

trace
(
Xi

1(X
i
1)

T
) , R2 =

1
k∗
∑k

i
Xi

2(X
i
2)

T

trace
(
Xi

2(X
i
2)

T
) (1)

k represents the number of trials, XT means the transposition
of X, and trace (X) is the sum of the elements on the diagonal of
the matrix. By calculating the average covariance matrix of each
class separately, the composite spatial covariance is obtained.

R = R1 + R2 (2)

Then, according to Equation (3), the eigenvalue
decomposition is performed on the composite spatial covariance
matrix R.

R = UλUT (3)

Among them, U is the eigenvector matrix, and λ is the
diagonal matrix composed of the corresponding eigenvalues.
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Rearrange the eigenvalues in descending order, and then obtained
the whitening transformation.

P =
√

λ−1UT (4)

After the whitening transformation, R1 and R2 can be written
as S1and S2, respectively.

S1 = PR1PT, S2 = PR2PT (5)

Then, S1 and S2 can be factorized according to Equation
(6), where λ1 and λ2 are the diagonal matrices composed of
eigenvalues.

S1 = B1λ1BT1 , S2 = B2λ2B2 (6)

Through the above formula, it can be proved that the
eigenvectors of matrix S1 and S2 are equal, namely:

B1 = B2 = V (7)

Meanwhile, the sum of λ1 and λ2 is the identity matrix.
This attribute makes the eigenvectors B useful to distinguish the
different classes.

λ1 + λ2 = I (8)

B̃ is concatenated by the first m and last m feature vectors in B
(m is equal to 5). Next, calculate the projection matrix according
to Equation (9). It contains 2m spatial filters.

W = B̃TP (9)

The feature vectors of the ith trial as follows, where var (Zi) is
the variance.

Zi = W∗Xi, fi = log
(

var(Zi)
sum(var(Zi)

)
(10)

FIGURE 6 | The pattern diagram of Seeg1.

Based on the theory of CSP and matrix regularization,
researchers proposed the framework of RCSP to overcome the
shortcomings of the traditional CSP model (Lu et al., 2009b). In
our work, the regularized average spatial covariance matrix of
each class is given as Equation (11).

6̂c (β, γ) = (1− γ) �̂c (β) + γ
N tr

[
�̂c (β)

]
· I (11)

where β and γ are both regularization parameters (0 ≤ β ≤ 1,
0 ≤ γ ≤ 1), and I is N × N identity matrix. �̂c(β)concludes the
covariance matrices from the fNIRS signals as well as EEG signals.
It is defined as Equation (12).

�̂c (β) = (1−β)Rc + βR̂c
(1−β)Mc + βM̂c

(12)

where Rc is the sum of covariance matrices for all Mc training
trials of the fNIRS signals in class c, and R̂c is the sum of the
covariance matrices for M̂c generic training trials from EEG
signals in class c. The composite spatial covariance in R-CSP is
formed and factorized as Equation (13).

R = 6̂1 (β, γ) + 6̂2 (β, γ) = UλUT (13)

TABLE 1 | Classification accuracy (%) of all subjects of different algorithms
in experiment 1.

Subject Algorithm

CSP R-CSP-CV R-CSP-E

1 83.3 78.3 85.0

2 65.0 71.7 78.3

3 75.0 73.3 83.3

4 71.7 75.0 76.7

5 66.7 65.0 75.0

6 63.3 66.7 70.0

7 71.7 75.0 81.7

8 68.3 68.3 75.0

9 75.0 71.7 78.3

10 80.0 78.3 83.3

11 71.3 75.0 78.3

12 76.7 78.3 83.3

13 63.3 65.0 70.0

14 71.7 76.7 81.7

15 68.3 73.3 75.0

16 71.7 78.3 85.0

17 55.0 61.3 73.3

18 81.3 78.3 86.7

19 68.3 70.0 78.3

20 66.7 71.7 68.3

21 71.7 78.3 83.3

22 58.3 61.3 65.0

23 73.3 65.0 75.0

24 65.0 76.7 81.7

25 75.0 71.7 80.0

26 81.3 85.0 91.7

27 71.7 73.3 80.0

28 56.7 55.0 63.3

29 68.3 75.0 81.7

Frontiers in Psychology | www.frontiersin.org 7 April 2022 | Volume 13 | Article 833007

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-833007 April 1, 2022 Time: 14:33 # 8

Wang et al. Cross-Modal Transfer Learning in BCI System

FIGURE 7 | The average accuracy of classification on different k-value.

In this study, we tried to apply this approach in transfer
between EEG and fNIRS. the EEG signal is introduced according
to Equation (12) when computing the spatial filter for fNIRS
in the RCSP algorithm. The spatial pattern features of EEG are
incorporated into fNIRS to realize the transfer of feature patterns.

Regularization Parameter Selection Based on
Ensemble Learning
The critical problem of the RCSP algorithm proposed above
is the determination of the regularization parameters. This
question is crucial because it is challenging to know the optimal
values of the parameters in advance. In earlier work, this
problem is often solved through cross-validation. Our paper
adopts the approach of ensemble learning for regularization
parameter determination, named R-CSP-E. Ensemble learning
refers to training multiple individual learners for training data,
and finally we can form a powerful learner based on a certain
combination strategy (Zhang and Ma, 2012). The commonly
used combination strategy in regression tasks is the averaging
method; the outputs of several weak learners are averaged to
obtain the final predicted result. As for classification tasks, we
usually use voting methods. The simplest voting method is the
relative majority voting method, which is what we often say that
the minority obeys the majority.

In R-CSP-E, a set of regularization parameter pairs from
the interval [0,1] were utilized instead of applying fixed
parameters. We recorded the results from different regularization
parameters and combined them to form an aggregation
solution, which reveals the theory of ensemble learning.
Different regularization parameter pairs will produce different
discriminative characteristics. Such diversity is conducive to
training the classifier and improving the performance of the BCI
system, based on the principle of boosting. The combination
scheme originated from ensemble learning, which has been

mainly developed in the following ways: feature, matching score,
and ensemble-based learning, such as boosting (Lu et al., 2009a).
In our study, the KNN classification algorithm was employed.
This method embodies the idea of ensemble learning, but it is
not ensemble learning in the strict sense. The principle of KNN
is that if most of its K nearest neighbors in the training set
belong to a specific category, the sample also belongs to this
category. K is usually an odd number not greater than 20. In our
algorithm, KNN is used as a classifier, and the feature dimension
of training data (test data) is all 30 (the number of combinations
of regularization parameters). For the test data, the distances to
all dimensions of the training data are calculated and summed,
and finally the labels of the k nearest training data to the test data
are counted to complete the classification.

EXPERIMENTS

In this section, we carried out a set of experiments to investigate
how the accuracy of fNIRS signals classification is affected by
the EEG signals. As mentioned, the experiments were carried
out on an open-access dataset. We only used the MI data, and
the motor cortex was regarded as the region we were interested.
Considering the differences between trials, we applied the five-
fold cross-validation technique, which means that the training set
of each iteration contains 48 trials, and the test set contains 12
trials. Besides, based on the study in Xu et al. (2019),we selected
six values for β and five values for γ,which forms A = 6 × 5 = 30
different parameter combinations. This setting for R-CSP-E was
used in all experiments in the following.

β ∈ {0, 0.01, 0.1, 0.2, 0.4, 0.6}, γ ∈ {0, 0.001, 0.01, 0.1, 0.2} (14)

Two experiments are executed as detailed in the following.
(1) To evaluate the effect of the R-CSP-E, we applied

this method on EEG signals. R-CSP-E is a combination
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of cross-modal transfer learning and ensemble learning. In
experiment I, only EEG data was involved, which means both
Rc and R̂c are EEG data in Equation (12). Hence, the results
for experiment 1 showed the effectiveness of ensemble learning.
We compared the accuracy of R-CSP-E with the conventional
CSP algorithm as well as other classification algorithms, such as
R-CSP-CV. In R-CSP-CV, the training set is divided into n parts,
each part is used as a validation set in turn, and the remaining
n-1 parts are used as a training set. In this way, for n times of
training, the average value of the errors obtained in n times is
taken as the final error of the model, so as to select the optimal
model parameters. To investigate R-CSP-E, we also compared the
impact of different values of k on the classification results.

(2) To study the transfer learning in EEG and fNIRS, we
compared the correct classification rate of fNIRS before and
after adding EEG signals. In detail, we calculated the mean value
of the HbO concentration in each channel. Then, we extracted
the features of channel-wise, conventional CSP algorithm and
R-CSP-E separately.

TABLE 2 | Classification accuracy (%) of all subjects of different algorithms
in experiment 2.

Subject Algorithm

HbO CSP R-CSP-E R-CSP-CV

1 45.0 51.7 58.3 50.0

2 71.7 63.3 66.7 65.0

3 63.3 55.0 61.7 53.3

4 60.0 61.7 68.3 63.3

5 61.7 65.0 71.7 58.3

6 48.3 50.0 58.3 51.7

7 61.7 63.3 68.3 65.0

8 66.7 68.3 71.7 63.3

9 55.0 61.3 66.7 58.3

10 60.0 55.0 63.3 56.7

11 55.0 61.3 68.3 63.3

12 58.3 63.3 65.0 55.0

13 61.7 60.0 68.3 58.3

14 55.0 68.3 71.7 65.0

15 61.7 63.3 70.0 65.0

16 60.0 66.7 68.3 61.7

17 48.3 50.0 58.3 53.3

18 53.3 63.3 73.3 60.0

19 55.0 58.3 61.7 55.0

20 61.7 65.0 68.3 58.3

21 63.3 70.0 65.0 61.7

22 51.7 55.0 58.3 51.3

23 68.3 65.0 71.7 65.0

24 51.7 53.3 63.3 55.0

25 60.0 51.7 65.0 48.3

26 61.7 65.0 73.3 65.0

27 58.3 63.3 68.3 61.7

28 68.3 66.7 71.7 65.0

29 66.7 63.3 73.3 58.3

In the above experiments, in R-CSP-E, we chose the LDA
algorithm for dimensionality reduction. After LDA, the feature
dimension is [number of trials] by [number of regularization
parameters combinations]. KNN is used as the classifier. Finally,
the average accuracy was shown, because we applied five-fold
cross-validation. In other methods, such as CSP, KNN is also
used as the classifier to make sure the classifiers are consistent.
In R-CSP E, the input dimension for classification module is
60 × 30 (60 is the number of trials, 30 is the number of
regularization parameter combinations). In R-CSP-CV and CSP,
the input dimension for classification module is 60 × 10 (60 is
the number of trials, 10 is 2 m). In HbO, the input dimension for
classification module is 60 × 24 (60 is the number of trials, 24 is
the number of channels).

In order to prove whether the effect of the R-CSP-E algorithm
is significantly different, this paper uses the t-test (the full
name is independent sample t-test) to study the difference
in the accuracy of different algorithms for the results of
experiment 2. The independent samples t-test is used to compare
the means of two independent samples, which assumes that
the difference between the two-sample means is equal to 0.
Calculates the difference between two means and the confidence
interval (CI) for that difference. Next follow the test statistic t,
degrees of freedom (DF), and two-tailed probability P. When
the p-value is less than the usual 0.05, the null hypothesis is
rejected and it is concluded that the two means are indeed
significantly different.

TABLE 3 | Independent t-test between HbO and R-CSP-E.

Algorithm (Mean ± SD) t p

HbO (n = 29) R-CSP-E (n = 29)

Accuracy 59.08 ± 6.45 66.83 ± 4.81 −5.183 0.000**

*p < 0.05, **p < 0.01.

TABLE 4 | Independent t-test between CSP and R-CSP-E.

Algorithm (Mean ± SD) t p

CSP (n = 29) R-CSP-E (n = 29)

Accuracy 60.94 ± 5.81 66.83 ± 4.81 −4.203 0.000**

*p < 0.05, ** p < 0.01.

TABLE 5 | Independent t-test between R-CSP-CV and R-CSP-E.

Algorithm (Mean ± SD) t p

R-CSP-CV (n = 29) R-CSP-E (n = 29)

Accuracy 59.00 ± 5.21 66.83 ± 4.81 −5.946 0.000**

*p < 0.05, **p < 0.01.
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FIGURE 8 | 18th subject’s spatial patterns. (A,C) Are spatial patterns of LH, (B,D) are spatial patterns of RH. The spatial patterns in the first row are generated from
Conventional CSP, and the spatial patterns in the second row are generated from our algorithm.

RESULTS

Table 1 depicts the EEG classification performance of experiment
I. The overall average classification accuracy for CSP, R-CSP-
CV, and R-CSP-E are 70.2, 72.2, and 78.2%, respectively. As
shown in Table 1, in all participants, the R-CSP-E algorithm
outperforms the traditional CSP algorithm, with an average
improvement of 7% in the correct classification rate with respect
to the conventional CSP method. This result demonstrates the
effectiveness of the CSP regularization scheme and illustrates
the advantages of the proposed ensemble learning method over
traditional cross-validation. In addition, as shown in Figure 7, in
the R-CSP-E algorithm, different values of k will lead to different
results. When k = 15, the average performance is the highest.
Therefore, in subsequent experiments, we set k = 15.

The complete results for all subjects on the testing data set
for experiment II are summarized in Table 2. In general, the
classification rate of R-CSP-E showed superiority. Compared
with the channel-wise feature extraction method and the
conventional CSP algorithm, R-CSP-E can improve the
classification accuracy up at least 6% on average. In order to
clarify that the improvement of accuracy is derived from the
effects of transfer learning or ensemble learning. The R-CSP-CV,
which only includes effects of transfer learning, is tested for the
fNIRS data. As depicted in Table 2, the result of R-CSP-E is
better in the majority of subjects. This not only shows that the

proposed R-CSP-E method is effective, but also concludes that
the combination of the transfer learning and ensemble learning
is crucial to improve accuracy. Besides, an independent t-test
was performed to validate the outperformance of R-CSP-E over
HbO, CSP and R-CSP-CV, separately.

As shown in Tables 3–5, for mean value of R-CSP-E algorithm
compared with that of HbO, it shows a higher accuracy with
p = 0.00001 < 0.01, for mean value of R-CSP-E algorithm against
that of CSP, higher accuracy is observed with p = 0.001 < 0.01,
and for mean value of R-CSP-E algorithm against that of R-CSP-
CV, higher accuracy is observed with p = 0.00001 < 0.01.

To clarify the characteristics of the transfer algorithm, we
visualized and compared the spatial patterns generated by the
traditional CSP algorithm and our R-CSP-E method. Figures 8, 9
are the most convincing of them, extracted from the 18th and
8th subjects, respectively. In both figures, the first row is CSP,
and the second row is our algorithm. Applying traditional CSP
and our algorithm to the 8th subject, the accuracy rates are
68.3 and 71.7%, respectively, which is relatively high. Hence,
the optimization of our proposed algorithm has almost no
improvement. As for the 18th subject, the accuracy is 63.3 and
73.3%, respectively. The CSP algorithm has a low accuracy rate,
while the transfer algorithm achieves a significant increase in the
classification rate, which can be explained by the spatial patterns.
In Figure 7, the result reveals that our algorithm has a higher
discrimination weight on the CP3, FC4, and CP6 channels.
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FIGURE 9 | 8th subject’s spatial patterns. (A,C) Are spatial patterns of LH, (B,D) are spatial patterns of RH. The spatial patterns in the first row are generated from
Conventional CSP, and the spatial patterns in the second row are generated from our algorithm.

The R-CSP-E filter is more discriminative than the CSP filter
by introducing the EEG signal. More interestingly, it is expected
from the neurophysiology literature. For example, for subject
18, the CSP filter appears to be rough and noisy, with greater
weights at potentially different electrode positions, while the
corresponding R-CSP-E filter shows greater weight in a few areas
located on the motor cortex of the brain.

DISCUSSION

The main strength of our method is that the feature space of
EEG signals is considered when computing the features of fNIRS
signals. However, there are some limitations in this study that
could be addressed in future research:

(1) At present, our transfer learning framework is based
on the RCSP framework, which a simple but effective.
In recent years, many more advanced feature extraction
methods have been proposed successively, which can
improve the classification performance by exploiting more
spatiotemporal information (Lachert et al., 2017; Qi et al.,
2020). Therefore, in future work, we can try to utilize
these methods to further explore the application of transfer
learning in cross-modal BCI.

(2) In our experiments, the regularization parameters are
selected through the idea of ensemble learning. In the
future, we will try more parameter selection methods.

(3) Currently, our cross-modal transfer learning is from EEG
to fNIRS. However, in theory, transfer is mutual. In the

future, we will further explore reverse transfer, the transfer
of feature space from fNIRS to EEG.

CONCLUSION

In summary, we proposed an algorithm named R-CSP-
E based on the RCSP framework and transfer learning
theory. Instead of simply fusing them, we innovatively
applied transfer learning to the EEG-fNIRS multimodal
brain-computer interface. Our outcomes showed that the R-CSP-
E algorithm significantly improved the classification accuracy
compared with conventional CSP and channel-wise methods
in fNIRS.

As mentioned, MI-BCI has a broad prospect in rehabilitation
training and neural recovery. fNIRS has also shown its potential
in the investigation of functional brain activation patterns
and neurorehabilitation. For example, a study evaluated the
changes in cerebral cortex activation in stroke patients 2
months before and after rehabilitation (Arun et al., 2020).
This study proved the potential of fNIRS in detecting changes
in brain activation related to exercise recovery, which is
reflected in the hemispheres affected after rehabilitation that
increased activation of the premotor cortex. In this way, fNIRS
has shown great potential as a neurorehabilitation tool to
monitor the patient’s movement and cognitive improvement
over time. In addition, fNIRS can also be used in the
BCI system to treat movement disorders. Therefore, it is
necessary to enhance the performance of fNIRS BCI, which
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will promote the development of cognitive neuroscience and
neural plasticity.
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