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Abstract: Given the unprecedented rise in the world’s population, the prevalence of prominent age-
related disorders, like cardiovascular disease and dementia, will further increase. Recent experimental
and epidemiological evidence suggests a mechanistic overlap between cardiovascular disease and
dementia with a specific focus on the linkage between arterial stiffness, a strong independent predictor
of cardiovascular disease, and/or hypertension with Alzheimer’s disease. In the present study,
we investigated whether pharmacological induction of arterial stiffness and hypertension with
angiotensin II (1 ug-kg~!-min~! for 28 days via an osmotic minipump) impairs the progression of
Alzheimer’s disease in two mouse models (hAPP23+/~ and hAPPswe/PSEN1dE9 mice). Our results
show increased arterial stiffness in vivo and hypertension in addition to cardiac hypertrophy after
angiotensin II treatment. However, visuospatial learning and memory and pathological cerebral
amyloid load in both Alzheimer’s disease mouse models were not further impaired. It is likely
that the 28-day treatment period with angiotensin II was too short to observe additional effects on
cognition and cerebral pathology.
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1. Introduction

The average age of the world’s population is steadily increasing. The number of people
aged 65 and older is estimated to reach 1.4 billion in 2030 and 2.1 billion in 2050, up from
1 billion in 2020 [1]. This unprecedented rise in the world’s elderly population will increase
the prevalence of age-related disorders, such as cardiovascular disease (CVD) and dementia.
Globally, CVD was the number one cause of death in 2019 with an estimated death toll
of 17.9 million people, of which 85% were due to heart attack and stroke [2]. Dementia,
on the other hand, was the seventh leading cause of death in 2019 with an estimated
death toll of 1.6 million people, with Alzheimer’s disease (AD) being the most prominent
dementia syndrome [3] presenting a broad range of symptoms from motor dysfunctions to
psychobehavioral manifestations [4]. The most common early manifestations of AD are
loss of short-term memory, visuospatial dysfunction, impaired reasoning and language
dysfunction, with cerebral 3-amyloid accumulation and neurofibrillary tangles as the two
major neuropathological hallmarks of the disease [5,6].
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Historically, CVD and AD were considered separate entities based on clinical clas-
sification criteria. However, an increasing number of epidemiological studies report an
independent convergence between the two diseases, suggesting a mechanistic overlap.
Hypertension is the most prevalent form of CVD occurring in nearly one-third of adults
and two-thirds of older adults worldwide [7,8] and is classified as a risk factor for AD [9].
More specifically, clinical research has associated hypertension with increased cerebral
amyloid-f3 (AB) plaque burden [10-12], neurofibrillary tangle density [13-15] and cerebral
atrophy [16]. Accordingly, recent research on the impact of hypertension on post-mortem
AD neuropathology has shown that hypertension increases AD neuropathology indirectly
through its effect on atherosclerosis of the circle of Willis. The authors presumed that
this effect is due to persistent cerebral hypoperfusion leading to A3 production and tau
phosphorylation or diminished clearance of A3 [7]. Moreover, we have previously demon-
strated that altered stress hormone levels affect in vivo vascular function in the hAPP23*/~
overexpressing AD mouse model [17]. Therefore, it has been argued that mental stress
is an important factor not only in CVD, e.g., hypertension but also in neurodegenerative
diseases, such as AD [18-22].

In addition, previous research demonstrated that blood pressure elevation appears
decades before the onset of AD, followed by a gradual reduction in blood pressure years
before the onset of AD [23,24]. This phenomenon makes studying the link between hy-
pertension and AD challenging and less accurate. In this perspective, class-specific and
dose-dependent antihypertensive therapies have been shown to reduce AD pathogen-
esis [25]. However, a global clinical trial, which included 18,017 hypertensive patients,
concluded that only 32% of patients treated with antihypertensive drugs achieved systolic
blood pressure (SBP) control [26]. Later, the REASON study [27] was able to explain this
poor clinical outcome by finding a positive correlation between SBP and arterial stiffness
(AS), a strong independent predictor of CVD.

There is evidence that increased pulse wave velocity (PWV), an in vivo marker of
AS, is associated with more rapid cognitive decline [6,28] and neuroanatomical changes
associated with AD [29-31]. Hughes et al., showed that AS, as measured by PWYV, is
associated with the amount of cerebral Ap deposition and that AS is an independent
predictor of progressive A3 deposition [32]. In contrast to blood pressure measurements,
PWYV increases [33] in a sustained manner over several decades prior to the diagnosis
of dementia [34], suggesting that AS is a driving factor linking hypertension, cognitive
impairment and consequent neuroanatomical changes.

The aim of the present study was to investigate whether pharmacological induction
of AS and hypertension with angiotensin II (AnglI) is able to alter visuospatial learning
and memory and cerebral amyloidosis in two different AD mouse models. Moreover, we
aimed to investigate in depth AS, both in vivo and ex vivo, in relation to the imposed Angll
treatment in these mouse models. A schematic overview of the study design is shown
in Figure 1. From a translational point of view, we study the exposure to Angll in adult
rodents (6 months of age) to mimic early-onset hypertension, since early-onset rather than
late-onset hypertension appears to be related to mild cognitive impairment [35].
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Figure 1. Schematic representation of the study design. Mice were (sham)-operated at the age
of 5 months by subcutaneously implanting an osmotic minipump releasing AnglI at a rate of
1 pg-kg~!-min~!. After approximately 14 days, the experimental test battery started with Mor-
ris water maze (MWM) trials on day 15 to day 18 followed by the MWM probe trial on day 22. On
day 23 and day 24, blood pressure measurements with the CODA tail-cuff technique were performed,
immediately followed by an echocardiographic analysis in the afternoon on day 24. From day 25 to
day 28, the animals were humanely killed and ex vivo assessment of arterial stiffness and a histo-
logical assessment of cerebral amyloidosis were performed. This figure was created in BioRender
(www.biorender.com, accessed on the 30 January 2022).

2. Results
2.1. AnglI Treatment Affects hAPP23*/~ and hAPPswe/PSEN1dE9 Mice Differently

Assessment of general characteristics of the mice showed significantly decreased body
weights for hAPP23*/~ mice (p < 0.001) compared to their WT controls in contrast to
hAPPswe/PSEN1dE9 animals, which had almost the same weight compared to their WT
controls (Table 1). AnglI treatment reduced body weight in hAPPswe/PSEN1dE9 animals
and their WT controls (p = 0.005, Table 1). Interestingly, hAPPswe/PSEN1dE9 WT mice
were significantly more prone to develop abdominal aortic aneurysms (AAA) compared to
hAPPswe/PSEN1dE9 (p < 0.0001) whose incidence was similar in hAPP23*/~ mice and
their WT controls (Table 1).

Table 1. General information about animals. The p-value columns indicate the factorial effect of
‘Treatment’, ‘Genotype’ and “Treatment x Genotype’ as calculated with a factorial ANOVA (** p < 0.01,
*** p <0.001). Statistical differences between AnglI-treated and sham-treated C57BL/6 animals are
indicated by the ‘£’ symbol as the result of the respective Sidak post hoc test (* p < 0.05). Statistical
differences between Angll-treated and sham-treated AD murine models are indicated by the ‘$’
symbol as the result of the respective Sidak post hoc test ¢ p < 0.05). Differences in AAA incidence
between AnglI-treated and sham-treated groups were calculated with a binomial test of the AngII-
treated group against the respective sham-treated group with a 50/50% expectation (*** p < 0.0001).
Non-significant results are indicated as ‘ns’. Data are presented as mean + SEM. AAA = Abdominal
aortic aneurysm.

C57BL/6 hAPP23+/~
PBS AnglI PBS AnglI
(n=14) =12 n=11) (n=11) Ptreatment  Pgenotype Ptreatment x genotype
Body weight (g) 27+1 27+1 27 £1 24+1°% ns *>* ns
Survival, genotype (%) 74 - 80 - - ns -
Survival, treatment (%) 100 57 76 80 - ns -

AAA incidence (%) - 25 - 31 ns - -
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Table 1. Cont.

hAPPswe/
C57BL/6 PSEN1dE9
PBS Angll PBS AnglI
(n=14) (n=13) n=12) (n=11) Ptreatment  Pgenotype Ptreatment x genotype

Body weight (g) 34+1 32+1F 33+1 32+1 * ns ns
Survival, genotype (%) 90 - 75 - - ns -
Survival, treatment (%) 100 58 95 72 - 0.09 -
AAA incidence (%) - 69 - 31 b - -

2.2. Angll Treatment Induces Hypertrophic Cardiomyopathy

Echocardiography revealed signs of cardiac hypertrophy in hAPP23*/~ (Table 2) and
hAPPswe/PSEN1dE9 Angll-treated mice (Table 3) although the effect of AngllI treatment
was more pronounced in Angll-treated hAPPswe/PSEN1dE9 animals. Signs of cardiac
hypertrophy included increased heart weights, left ventricular masses, inner-ventricular
septum thicknesses and left ventricular posterior wall thicknesses. In addition, evidence
of decreased diastolic heart function was obtained for the hAPP23*/~ murine model by
means of increased E/E’ ratios (p = 0.008), IVRT and deceleration times.

Table 2. Systolic and diastolic heart function analysis of sham- and Angll-treated C57BL/6 and
hAPP23*/~ mice. The p-value columns indicate the factorial effect of ‘Treatment’,'Genotype’ and
‘Treatment X Genotype’ as calculated with a factorial ANOVA (* p < 0.05, ** p < 0.01, *** p < 0.001).
Statistical differences between Angll-treated and sham-treated C57BL/6 animals are indicated with
the “£” symbol as the result of the respective Sidak post hoc test (* p < 0.05). Statistical differences
between Angll-treated and sham-treated AD murine models are indicated by the ‘$’ symbol as the
result of the respective Sidak post hoc test (**% p < 0.001). Non-significant results are indicated as
‘ns’. Data presented as mean + SEM. IVS,d = inner-ventricular septum thickness during diastole,
LVID,d = left ventricular inner diameter during diastole, LVPW,d = left ventricular posterior wall
thickness during diastole, LV mass/BW = left ventricular mass corrected for body weight, EF = ejec-
tion fraction, FS = fractional shortening, E/A = peak velocity blood flow in early diastole (E) to peak
velocity flow in late diastole (A), E/E’ = mitral peak velocity of early filling (E) to early diastolic
mitral annular velocity (E’), IVRT = isovolumetric retention time.

C57BL/6 hAPP23+/~

PBS AnglI PBS AnglI Ptreatment

=19 =12 (=11 (=11 Pueatment  Peenotype _ otype
Heart weight (mg) 165+5 188 £ 5% 141 +£3 183 + 8 %% ok * ns
Heart weight (%) 0.53 + 0.01 0.58 4 0.01 0.51+0.01  0.69 4 0.04 5% ok * o
IVS,d (mm) 12401 1.1+£0.1 1.1+01 1.3+0.1 ns ns ns
LVID,d (mm) 37+0.1 37+0.1 3.6+0.1 34+02 ns 0.06 ns
LVPW,d (mm) 11+0.1 1.1+0.1 1.1+0.1 14+0.1 0.08 0.07 ns
LV mass (mg) 172 £ 11 167 + 10 157 £ 11 187 + 18 ns ns ns
LV mass/BW (1073) 55+03 52+0.3 57+05 71+£0.7 ns * ns
LV volume,d (1L) 60 + 4 61+5 54+ 4 49+ 6 ns 0.08 ns
Stroke volume (u1L) 42+3 42+3 39+2 33+3 ns 0.08 ns
EF (%) 71+2 70+ 3 73+£2 71+3 ns ns ns
FS (%) 40+2 39+2 4242 40+2 ns ns ns
E/A (none) 14+0.1 14+0.1 1.5+03 1.6 £0.1 ns ns ns
E/E’ (none) 3243 29+ 4 35+4 51+7 ns * ns
IVRT (ms) 19+1 21+1 23+2 24+3 ns 0.07 ns
Deceleration (ms) 17+1 15+1 16 +2 21+2 ns ns ns
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Table 3. Systolic and diastolic heart function analysis of sham- and AnglI-treated C57BL/6 and
hAPPswe/PSEN1dE9 mice. The p-value columns indicate the factorial effect of “Treatment’, ‘Geno-
type” and “Treatment x Genotypee’ as calculated with a factorial ANOVA (* p < 0.05, ** p < 0.01,
*** p <0.001). Statistical differences between AnglI-treated and sham-treated C57BL/6 animals are
indicated with the “£” symbol as the result of the respective Sidak post hoc test (£ p < 0.05, £ p < 0.001).
Statistical differences between Angll-treated and sham-treated AD murine models are indicated by
the ’$’ symbol as the result of the respective Sidak post hoc test (5%% p < 0.001). Non-significant results
are indicated as ‘ns’. Data presented as mean 4+ SEM. IVS,d = inner-ventricular septum thickness
during diastole, LVID,d = left ventricular inner diameter during diastole, LVPW,d = left ventricular
posterior wall thickness during diastole, LV mass/BW = left ventricular mass corrected for body
weight, EF = ejection fraction, FS = fractional shortening, E/A = peak velocity blood flow in early
diastole (E) to peak velocity flow in late diastole (A), E/E’" = mitral peak velocity of early filling (E) to
early diastolic mitral annular velocity (E’), IVRT = isovolumetric retention time.

hAPPswe/
C57BL/6 PSEN1dE9
PBS Angll PBS AnglI Ptreatment
(n=14) (n=13) (n=12) (n=11) Pueatment  Pgenotype 1 oe
Heart weight (mg) 182+5 218 + 7 £££ 158 + 3 204 £ 9 % o - ns
Heart weight (%) 0.53+0.01  0.68+0.02%¢  048+£001  0.65+0.02 %% o * ns
IVS,d (mm) 12401 14401 11+0.1 1.340.1 * ns ns
LVID,d (mm) 3.6 +0.1 38401 3.6+0.1 3.6+02 ns ns ns
LVPW,d (mm) 1.040.1 12401 1.0 £ 0.1 11401 * ns ns
LV mass (mg) 170 £ 21 224 +£17 148 + 15 186 + 18 * ns ns
v r(rl‘gisg/)BW 49406 7.0 £05% 45405 59405 e ns ns
LV volume,d (uL) 57 + 4 63+ 4 55+ 4 54+6 ns ns ns
Stroi"u‘i‘;lume 42+3 2+2 38+3 39+3 ns ns ns
EF (%) 7342 68+ 3 70 +£2 74+ 4 ns ns ns
FS (%) 42+2 38+3 3942 43+ 4 ns ns ns
E/A (none) 1.6 0.2 1.7 +£0.1 14+03 1.5+0.1 ns ns ns
E/E’ (none) 3245 2344 3145 2+4 ns ns ns
IVRT (ms) 2142 22+1 22+1 24+3 ns ns ns
Deceleration (ms) l6+1 18+2 17+1 17+1 ns ns ns

2.3. Angll Treatment Induces Hypertension

Peripheral blood pressure measurements showed hypertension by significant increases
in systolic blood pressure (Figure 2A,D; p < 0.001 and p < 0.001), diastolic blood pressure
(Figure 2B,E; p < 0.001 and p < 0.001) and pulse pressures (Figure 2C,F; p = 0.02 and
p = 0.02) upon Angll treatment in both AD murine models. In contrast to the hAPP-
swe/PSEN1dE9 animals, hAPP23*/~ mice showed genotype-dependent increments in
systolic blood pressure (p = 0.004), diastolic blood pressure (p = 0.01) and pulse pressure
(p = 0.04). Furthermore, sham- and Angll-treated hAPPswe/PSEN1dE9 animals presented
with decreased pulse pressures compared to WT controls (Figure 2F).
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Figure 2. Peripheral blood pressure measurements. (A) Systolic blood pressure (SBP), (B) diastolic
blood pressure (DBP) and (C) pulse pressures (PP) of sham- and AnglI-treated C57BL/6 (sham: n = 14;
Angll: n =12) and hAPP23*/~ mice (sham: n = 13; Angll: n =10). (D) SBP, (E) DBP and (F) PP of sham-
and AnglI-treated C57BL/6 (sham: n = 14; AnglI: n = 12) and hAPPswe/PSEN1dE9 (sham: n = 13;
Angll: n = 10). Factorial ANOVA for the factor’s “Treatment’, ‘Genotype’ and “Treatment x Genotype’,
*p <0.05,** p < 0.01, ** p < 0.001 with a Sidak post hoc test, (* p < 0.05, ¥ p < 0.01, &£ p < 0.001)
compared to respective sham-treated animals. Data are presented as mean + SEM.

2.4. Angll Treatment Induces In Vivo Arterial Stiffness

In vivo assessment of AS upon Angll treatment showed significantly elevated alPWV
in both AD murine models and their respective WT controls (Figure 3A,C; p < 0.001 and
p <0.001). However, Angll treatment of hAPPswe/PSEN1dE9 and their WT control an-
imals resulted in a significantly increased incidence of AAAs, with the AAA incidence
of Angll-treated WT control animals doubling compared to that of Angll-treated hAPP-
swe/PSEN1dE9 mice (Table 1), causing a significant genotypic effect (Figure 3C, p = 0.007).
Ex vivo assessment of AS revealed elevated genotype-dependent Ep-values in hAPP23*/~
mice (Figure 3B; p = 0.01) but not in hAPPswe/PSEN1dE9 AD (Figure 3D). A genotype
effect was observed in hAPPswe/PSEN1dE9 mice, as Angll-treated WT control animals
showed significantly increased Ep-values compared to sham-treated WT control animals
(Figure 3D, p < 0.0001). This observation parallels the high AAA incidence observed in
these animals after AngllI treatment (Table 1).
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Figure 3. In vivo and ex vivo measurements of AS. (A) In vivo measurements of abdominal PWV
(aPWYV) and (B) ex vivo measurements of Ep over a pressure range of 80-120 mmHg of sham- and
Angll-treated C57BL/6 (sham: n = 15; Angll: n = 12) and hAPP23*/~ animals (sham: 1 = 9; AngI:
n =13). (C) In vivo measurements of aPWV and (D) ex vivo measurements of Ep over a pressure
range of 80-120 mmHg of sham- and AnglI-treated C57BL/6 (sham: n = 14; Angll: n = 13) and
hAPPswe/PSEN1dE9 animals (sham: n = 11; Angll: n = 12). Factorial ANOVA for the factor’s
‘Treatment’, ‘Genotype” and ‘“Treatment x Genotype” (* p < 0.05, ** p < 0.01, *** p < 0.001) with a Sidak
post hoc test (£ p < 0.05, £ p < 0.001, #£££ p < 0.0001) compared to respective sham-treated animals.
Data are presented as mean + SEM.

2.5. Angll Treatment Does Not Lead to Impaired MWM Acquisition Trial Performance

Angll treatment did not result in impaired MWM acquisition trial performance in
terms of total path length and escape latency for both hAPP23*/~ (Figure 4A-C) and
hAPPswe/PSEN1dE9 (Figure 4D-F) animals and their respective WT controls. Moreover,
Angll treatment caused a slower swimming speed in hAPP23*/~ and their WT control mice
(Figure 4C) in contrast to hAPPswe/PSEN1dE9 mice, which showed a faster swimming
speed compared to WT controls after treatment (Figure 4F; p = 0.001).
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Figure 4. MWM acquisition trial results. (A) Total path length, (B) escape latencies and (C) swimming
speed of sham- and AnglI-treated C57BL/6 (sham: n = 14; Angll: n = 12) and hAPP23*/~ animals
(sham: n = 10; AnglI: n = 13). (D) Total path length, (E) escape latencies and (F) swimming speed of
sham- and Angll-treated C57BL/6 (sham: n = 12; Angll: n = 7) and hAPPswe/PSEN1dE9 animals
(sham: n = 11; Angll: n = 11). Factorial ANOVA for the factor’s “Treatment’, ‘Genotype’ and
‘Treatment x Genotype’ (* p < 0.05, ** p < 0.01, *** p < 0.0001). Data are presented as mean + SEM.

2.6. Angll Treatment Does Not Result in Impaired Probe Trial Performances

Both Angll-treated and sham-treated hAPP23*/~ performed less during the MWM
probe trial compared to WT controls (Figure 5A; p = 0.02) where the Angll treatment did not
result in a worse performance. On the other hand, hAPPswe/PSEN1dE9 presented with
a deteriorated performance compared to WT controls where no clear effect of the Angll
treatment could be observed for the hAPPswe/PSEN1dE9 murine model and respective
WT controls (Figure 5B). However, a trend toward increased deterioration of visuospatial
learning and memory could be interpreted for the Angll-treated WT animals (Figure 5D;
PDirichlet= 0.002). Dirichlet analysis of the probe trial performances revealed a more ran-
domized presence of Angll-treated hAPPswe/PSEN1dE9 animals in the MWM (Figure 5D;
PDirichlet = 0.00014). The Angll treatment of hAPP24*/~ animals, on the other hand, seemed
to have a lesser impact (Figure 5B).
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Figure 5. MWM probe trial results. (A) MWM probe trial of sham- and Angll-treated C57BL/6 (sham:
n =14; Angll: n = 12) and hAPP23*/~ animals (sham: n = 10; Angll: n = 13). (B) Statistical Dirichlet
distributions of probe trial performances per tested group. (C) MWM probe trial of sham- and
Angll-treated C57BL/6 (sham: n = 12; Angll: n = 7) and hAPPswe/PSEN1dE9 animals (sham: n = 11;
Angll: n = 11. (D) Statistical Dirichlet distributions of probe trial performances per tested group.
Factorial ANOVA for the factor’s ‘Quadrant x Treatment’, ‘Quadrant x Genotype’ and ‘Quadrant x
Treatment x Genotype’; (* p < 0.05, ** p < 0.01, *** p < 0.001. Dirichlet distributions were calculated
as previously described [36]. (C57BL:6: sham-treated: n = 14; Angll-treated, n = 1. hAPP23*/~:
sham-treated: n = 10; AnglI-treated, n = 13| C57BL/6: sham-treated: n = 12; AnglI-treated, n = 7.
hAPPswe/PSEN1dE9: sham-treated: n = 11; AnglI-treated: n = 11). Each column represents the
probe trial performance of a single animal and each color represents a different quadrant. Mean
values for the fraction of time spent in each quadrant are represented by a dotted line with respective
error bars for SEM. Average percentages of time spent in each quadrant are represented in pie charts
beneath the calculated heatmap of each group. Data are presented as mean + SEM.

2.7. Angll Treatment of AD Mice Does Not Result in Increased Amyloid Load

Cerebral amyloidosis was assessed via histological analysis of the hippocampus and
cortex of hAPP223*/~ and hAPPswe/PSEN1dE9 mice. Overall, Angll treatment did not re-
sult in a significantly increased amyloid load in the hippocampus of both hAPP223*/~ and
hAPPswe/PSEN1dE9 mice although an increased and decreased trend could be observed
for hAPP223*/~ and hAPPswe/PSEN1dE9 mice, respectively (Figure 6A). However, these
trends are attributed to the large distribution of data points. Similar results were obtained
for the cortex, where no significantly increased amyloid burden could be observed in both
AD murine models (Figure 6B). In addition, the cortical amyloid burden was higher in
hAPP223*/~ brains compared to hAPPswe/PSEN1dE9 brains (Figure 5A,B).
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Figure 6. Histological assessment of cerebral amyloidosis in the (A) hippocampus and (B) cortex
of sham- and AngllI-treated C57BL/6 (sham: n = 6; Angll: n = 5) and hAPP223*/~ (sham: n = 6;
Angll: n = 5) and C57BL/6 (sham: n = 6; Angll: n = 5) and hAPPswe/PSEN1dE9 (sham: n = 5; AnglI:
n = 6) brains. Factorial ANOVA for the factor’s “Treatment’, ‘Genotype’ and ‘Treatment x Genotype’
(*** p <0.001, **** p < 0.0001). Data are presented as mean + SEM. Scale bars indicate 100 pm.

3. Discussion

In the present study, we aimed to investigate the mechanistic convergence between
pharmacologically induced AS and AD in two well-validated murine models of AD,
i.e., hAPP23*/~ and hAPPswe/PSEN1dE9, on a C57BL/6 background. As expected,
treatment of animals with Angll resulted in hypertension, which was more pronounced in
hAPP23*/~ animals than in hAPPswe/PSEN1dE9, compared to their respective controls.
Similar conclusions could be drawn from the in vivo and ex vivo AS assessments where
increased PWV and Ep measurements were obtained for the AD murine models, although
this trend was less clear for hAPPswe/PSEN1dE9. A clear downstream effect of the
prolonged Angll treatment was the development of hypertrophic cardiomyopathy, which
was present in both AD murine models. In all cardiovascular assessments, it should
be noted that remarkably higher measurements were obtained for the C57BL/6 control
animals of the hAPPswe/PSEN1dE9 AD murine model. This outcome might be explained
by the significantly increased AAA incidence in these animals, which is known to result in
extreme hypertension and AS [37,38]. The reason why this C57BL/6 strain was more prone
to developing AAA is unclear. It could be argued that the transportation of the animals prior
to the test battery led to increased stress. High levels of cortisol, as seen in patients with
Cushing’s syndrome, are known to be a risk factor for aortic aneurysms [39]. However, the
above statement was ruled out following measurements of circulating serum corticosterone
levels (data not shown) that revealed no significant increases in these mice compared to the
other C57BL/6 strain and generally between control and AD mouse models.

Although in the present study short-term angiotensin II treatment induced hyper-
tension and increased aPWV measurements, it had no additional effect on learning and
memory and amyloid load in two AD mouse models. This outcome might be justified by
the rather short 28-day Angll treatment period. Additionally, it should be noted that a
rather short MWM protocol was used in this experiment and that animals were already
tested after the two weeks of treatment, which might have been too early to notice sig-
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nificant behavioral changes. However, a similar neurobehavioral outcome was drawn in
the past by Wiesmann et al., who performed a similar protocol on hAPPswe/PSEN1dE9
animals, but with only halve the Angll dosage and on 10-month-old animals [40]. More-
over, the authors were unable to find exacerbated amyloid pathology because of the Angll
treatment, which is consistent with our assessment of cerebral amyloidosis. In contrast
to this experiment, Wiesmann et al., used specific brain-imaging techniques, such as MRI
and resting-state fMRI protocols, diffusion tensor imaging and a flow-sensitive alternating
inversion recovery MRI protocol for cerebral blood flow measurements. The authors were
able to detect decreased AD-like neuropathological changes like functional connectivity
in both Angll-treated control and AD animals, whereby only Angll-treated AD animals
showed an impaired cerebral blood flow [40]. Wiesmann et al., further illustrated this find-
ing by showing that chronic Angll treatment only led to decreased hippocampal cerebral
perfusion in AD animals [41]. As a result of their findings, the authors hypothesize that
elevated Angll levels act solely as a driving force for the development of symptomatic AD
disease. Although we obtained similar results in terms of MWM, our animals were half the
age compared to those investigated by Wiesmann et al. A recent study of the relationship
between the timing of hypertension and cognitive performance in middle age found that
hypertension is more likely to affect cognitive function than structural brain changes, and
at an early rather than late age [35]. Taking into account the neuropathological findings
of Wiesmann et al., more specified neuropathological and brain imaging studies are re-
quired in the future to clarify neuropathological changes due to Angll-induced early-onset
hypertension in our translational AD mouse model.

Recent research on the influence of Angll converting enzyme inhibition on AD symp-
toms in different experimental AD models showed delayed AD-related hippocampal
neurodegeneration, but also actively promoted hippocampal neuro-regeneration [42]. An-
other treatment approach involves blocking AngllI type 1, type 2 and type 4 receptors,
which has been shown to be effective in preventing and restoring cerebrovascular, neu-
ropathological, and cognitive impairment, not only in AD murine models [43—45] but
also in AD patients [16]. As mentioned earlier, the global I-SEARCH study, in which
18,017 hypertensive patients participated, showed that only one-third of patients treated
with antihypertensive drugs gained SBP control [26], reinforcing the idea that for patients at
risk of AD, treatments for AS rather than hypertension are needed. Furthermore, less than
50% of hypertensive patients achieve adequate blood pressure control despite multiple
drug treatments, and up to 0.5% of patients are refractory to drug treatment. Recently,
deep brain stimulation of cerebral target regions was found effective in the management of
refractory hypertension [46]. On the other hand, (non)invasive brain stimulation was also
found effective in the treatment of neurodegenerative conditions, such as AD [47-49]. Alto-
gether, (non)invasive brain stimulation may offer an option for the treatment of refractory
hypertension, and consequently, AS [50], as well as AD [47], while simultaneously treating
the contribution of underlying mental stress.

Limitations of this study include the fact that only male mice were evaluated, as recent
epidemiological estimates indicate that women over 65 years of age have a 1 in 6 chance
of developing AD compared to 1 in 11 men [51], which is largely but not entirely due to
the higher life expectancy in women [3]. Secondly, future experiments should include
animals from the same animal facility, since the Angll in the current experiment affected
the AD murine models and respective WT controls differently, making exact comparisons
more difficult to interpret. In addition, future research should consider an experimental
set-up with a longer Angll treatment duration in order to better study the effects of AS and
hypertension on AD pathophysiology. Moreover, future experiments should be considered
that investigate the effect of (non)invasive brain stimulation on reversing pharmacologically
induced hypertension/AS with Angll in AD mouse models.

In conclusion, our results show a rather limited effect of Angll treatment on visuospa-
tial learning and memory and cerebral amyloidosis in two well-known AD murine models.
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It is likely that the 28-day treatment period with angiotensin II was too short to observe
additional effects on cognition and cerebral pathology.

4. Materials and Methods
4.1. Experimental Animals and Osmotic Minipump Implantation

In this study, the hAPP23*/~ murine (sham-treated: n = 10; Angll-treated n = 13)
model, together with the respective control C57BL/6 littermates (sham-treated: n = 15;
Angll-treated: n = 12) were bred and housed in the laboratory animal facility of the
University of Antwerp. Humanized APPswe/PSEN1dE9 mice (sham-treated: n = 13;
Angll-treated n = 10) with their respective C57BL/6 littermates (sham-treated: n = 14;
Angll-treated n = 12) were obtained from the Jackson Laboratory (Maine, Sacramento, CA,
USA). Genotypes of all animals were confirmed by polymerase chain reaction (PCR) on
DNA of 4-week-old mice (Primer mutant forward: AAT TCG CCA ATG ACA AGA CG,
primer wild-type forward: AGG GGA ACA AGC CCA GTA GT, primer reverse common:
CTT GTC CCC TAG GCA CCT CT). All mice were socially housed in standard mouse cages
with a maximum of eight animals per cage under conventional laboratory conditions with
a constant room temperature (22 &+ 2 °C), humidity (55 £ 5%) and an artificial day/night
cycle of 12 h/12 h (lights on at 8 a.m.). Food and water were provided ad libitum. All
animal experiments were approved by the Animal Ethics Committee of the University
of Antwerp (ECD approval n° 2020/06) and were conducted in accordance with the EU
Directive 2010/63/EU and in accordance with the Animal Research: Reporting of In vivo
Experiments (ARRIVE) guidelines [52].

Per the experimental subgroup, the selection of animals was randomized. There was
no increased mortality in this study. The hAPP23*/~, APPswe/PSEN1dE9 and respective
control littermates were split into two main groups: (1) induced hypertension using AnglI-
infusion delivered by subcutaneously implanted osmotic minipumps and (2) controls with
PBS infusion. At the age of 5 months, animals assigned to the Angll treatment group
received Angll (1 pg-kg~!-min~!, Sigma-Aldrich, Burlington, MO, USA) for a period of
28 days via the implantation of osmotic minipumps (ALZET, Cupertino, CA, USA, model
1004). Control animals were sham-operated to receive minipumps with sterile PBS (Sigma-
Aldrich, Burlington, MO, USA). Osmotic minipumps were implanted subcutaneously under
isoflurane anesthesia (induction with 1.5% in O,, 1 L/min and maintenance with 3.5% in
Oy, 1 L/min (Forene, Abbvie, Lake Bluff, IL, USA)) throughout the complete procedure
via a nose cone placed over the snout of the animal. Mice were placed in a prone position
on a preheated platform (37 °C) with embedded ECG leads (VisualSonics, Toronto, ON,
Canada). Heart rhythm, respiratory rate and body temperature were constantly monitored.
A mid-scapular incision, at the backside of the animal, was made and a subcutaneous
pouch was created with blunt dissection. After implantation of the osmotic minipump, the
mid-scapular incision was disinfected and sealed with wound clips and 5.0 monofilament
non-absorbable sutures (Ethilon*, Ethicon, Somerville, NJ, USA).

Two weeks post-implantation of the osmotic minipumps, the visuospatial learning
and memory of animals was assessed via a Morris water maze (MWM) test. The week after,
blood pressure measurements and an echocardiographic analysis were performed. In the
fourth week post-operation, mice were humanely killed by perforation of the diaphragm
while under deep anesthesia (sodium pentobarbital (Sanofi, Paris, France), 250 mg/kg,
i.p. [53]) for further ex vivo assessment of AS and tissue collection.

A schematic overview of the experimental set-up can be consulted in Figure 1.

4.2. Visuospatial Learning and Memory

Spatial learning and memory functions were evaluated at the age of 6 months in
the hAPP23*/~ mice (sham-treated: n = 10; Angll-treated 1 = 13) together with the re-
spective control C57BL/6 littermates (sham-treated: n = 14; Angll-treated: n = 12) and
APPswe/PSEN1dE9 mice (sham-treated: n = 13; Angll-treated n = 11) with their respective
C57BL/6 littermates (sham-treated: n = 12; Angll-treated n = 7) by means of the MWM
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test [54,55]. The MWM consisted of a circular pool (diameter: 150 cm, height: 30 cm) filled
with opacified water using non-toxic white paint and was kept at 25 °C. Invariable visual
cues were placed around the pool. The MWM consisted of an acquisition phase and a
probe trial. The acquisition phase was performed over a period of 4 days and consisted of
2 daily trial blocks (1 at 10:30 a.m. and 1 at 03:00 p.m.) of 4 trials with a 15 min inter-trial
interval. During the acquisition phase, a round acrylic glass platform (diameter 15cm)
was placed 1 cm below the water surface on a fixed position in the center of one of the
pool’s quadrants. Mice were placed in the water facing the wall and were recorded while
trying to find the hidden platform for a maximum duration of 120s. If the mouse was not
able to reach the platform within 120 s, it was guided to the platform, where they had to
stay for 15 s before being returned to their home cage. The starting positions varied in a
semi-random order. The probe trial followed 4 days after the final acquisition trial. For this
trial, the platform was removed, mice were placed in the MWM at a fixed position, and
swimming trajectories were recorded for a period of 100 s. During both acquisition and
probe trials, the animals’ trajectories were recorded using a computerized video-tracking
system (Ethovision, Noldus, Wageningen, The Netherlands), with path length, escape
latency, and swimming speed recorded. Spatial accuracy is expressed as the percentage of
time spent in each quadrant of the MWM, i.e., the specific location of the platform during
the acquisition phase. The experimenters were blind to the genetic or treatment status of
all mice.

4.3. Blood Pressure Measurements

Peripheral blood pressure was measured using the non-invasive CODA tail-cuff blood
pressure system (KENT Scientific CO., Torrington, CT, USA), as previously described [56].
Mice were immobilized in a Plexiglas restrainer and an occlusion cuff and volume pressure
cuff were placed around the tail of the mouse, respectively. Voltage output from both
cuffs was recorded and analyzed by a PowerLab signal transduction unit associated chart
software (ADInstruments, Colorado Springs, CO, USA). To minimize discomfort for the
animals and to increase the reliability of measurements, the blood pressure of animals
was measured 3 days prior to the effective measurement on day 4. For each mouse, a
measurement consisted of 15 cycles (approximately 15 min per animal) and the reported
values consisted of averaged values measured on day 4.

4.4. Echocardiography

Echocardiography was performed with a high-frequency, high-resolution digital imag-
ing platform with linear array technology and color Doppler mode for in vivo micro-
imaging (Vevo® 2100 Imaging System, FUJIFILM VisualSonics Inc., Toronto, ON, Canada).
To assess systolic and diastolic heart function in mice, a high-frequency transducer probe
(VisualSonics MS500D, FUJIFILM VisualSonics, Inc., Toronto, ON, Canada) with a fre-
quency range of 18-38 MHz) was used to provide appropriate resolution and depth of
penetration needed. Transthoracic echocardiograms were performed on anesthetized mice
(induction with 1.5% in O,, 1 L /min and maintenance with 3.5% in O,, 1 L /min, Forene,
Abbvie, Lake Bluff, IL, USA). Mice were placed on a preheated platform in a supine position
in order to maintain their body temperature at 36-38 °C, which was constantly monitored
throughout the whole procedure via an anal thermometer probe. Isoflurane concentrations
were titrated (1-2%) during imaging to maintain the heart rate at 500 & 50 beats/minute.
Systolic left ventricular dimensions were acquired via short-axis M-mode images. To calcu-
late the percentage of fractional shortening (FS%) and ejection fraction (EF%), end-systolic
and end-diastolic dimensions along with end-systolic and end-diastolic volumes and stroke
volume were recorded via short-axis M-mode images. Diastolic cardiac function was
determined using color and Pulsed-Wave (PW) Doppler recordings of the trans-tricuspid
flow. Reported cardiac parameters consist of averaged measurements of three consecutive
M-mode and/or PW Doppler images.
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4.5. Non-Invasive Pulse Wave Velocity (PWV) Measurements of the Aortic Abdominal
Aorta (aPWV)

A high-frequency, high-resolution digital imaging platform (Vevo® 2100 Imaging
System, FUJIFILM VisualSonics Inc., Toronto, ON, Canada) was used on anesthetized mice
(induction with 1.5% in O,, 11/min and maintenance with 3.5% in O,, 1 L/min, Forene,
Abbvie, Lake Bluff, IL, USA). to assess pulse wave velocity measurements of the abdominal
aorta (aPWYV). Body temperature was maintained at 36-38 °C and mice were continuously
monitored, and isoflurane concentrations were titrated (1-2%) during imaging to maintain
heart rates at 500 &= 50 beats/minute (bpm). PWV measurements were performed with
a 24-MHz transducer (VisualSonics MS400, FUJIFILM VisualSonics, Inc., Toronto, ON,
Canada) using the method developed by Di Lascio et al., (2014) [57]. In short, a 24-MHz
transducer was positioned on the abdomen of the animal. B-mode images of 700 frames-
per-second of the abdominal aorta and carotid artery were obtained using the EKV imaging
mode to measure the aortic diameter (D). A pulse wave doppler tracing was obtained to
measure aortic flow velocity (V). Velocity was plotted against the natural logarithm of the
diameter, and the slope of the linear part of the resulting In(D)-V loop was used to calculate
PWYV values using Matlab v2014 (MathWorks).

4.6. Rodent Oscillatory Tension Set-Up for Arterial Compliance (ROTSAC)

At sacrifice, the thoracic aorta was carefully removed and cleared of adherent tissue.
Starting approximately two millimeters distal to the aortic arch, the descending thoracic
aorta was cut into four segments of two millimeters length for further vascular reactivity
and stiffness analyses. These segments were immediately immersed in Krebs Ringer (KR)
solution (37 °C, 95% O, /5% CO,, pH 7.4) containing (in mmol/L): NaCl (118 mmol/L),
KCl (4.7 mmol/L), CaCl, (2.5 mmol/L), KH,POy (1.2 mmol/L), MgSO; (1.2 mmol/L),
NaHCOj3 (25 mmol/L), CaEDTA (0.025 mmol/L), and glucose (11.1 mmol/L). The KR
solution was continuously aerated with a 95% O, /5% CO; gas mixture to maintain the pH
at 7.4 and was replaced periodically to prevent glucose depletion. Aortic segments were
mounted between two parallel wire hooks in 10 mL organ baths filled with KR solution
(37 °C, 95% O, /5% CO,, pH 7.4). Diameter and estimates of transmural pressure were
derived as described previously [58]. In short, force and displacement of the upper hook
were measured with a force-length transducer connected to a data acquisition system
(PowerLab 8/30 and LabChart Pro, ADInstruments Inc., Colorado Springs, CO, USA).
Force and displacement were acquired at 0.4 kHz. To estimate the transmural pressure
that would exist in the equilibrated vessel segment with the given distension force and
dimensions, the Laplace relationship was used. All measurements were performed over a
pressure range with pressure clamps between diastolic 80 to systolic 120 mm Hg at 10 Hz
chosen to allow calculation of the Peterson modulus (Ep):

AP
Ep = Dy x D
with AD as the difference between systolic and diastolic diameter, AP is the pressure
difference of 40 mmHg and Dy is the diastolic diameter. This pulse pressure difference of
40 mmHg, applied at a frequency of 10 Hz, corresponds to a physiological heart rate of
600 beats per minute in mice, was kept constant throughout the experiment. Measurements
took on average 5-10 min.

4.7. Histology

Upon collection, brain tissue was fixed for 24 h in 4% formalin solution (BDH Pro-
labo, Leuven, Belgium), and subsequently dehydrated in 60% isopropanol (BDH Prolabo,
Leuven, Belgium), followed by paraffin embedding. Serial cross-sections of hippocam-
pal/cortical brain tissue were prepared for histological analysis. Positively stained percent-
age area fractions for A were calculated using the Image] software (23). In short, slides
were transferred to 100% ethanol twice for 3 min and then once through 95%, 70%, and
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50% for 3 min. Endogenous peroxidase activity was blocked by incubating the sections for
10 min in a 3% H,O; solution in methanol. Slides were next rinsed twice in PBS for 5 min
followed by an antigen retrieval using 88% formic acid for 20 min at room temperature.
Hereafter, tissue sections were treated with 100 uL of 1:200 diluted anti-Ap17_p4 antibody
(BioLegend Cat. No. SIG-39200, San Diego) at 4 °C overnight. The next day, the slides
were washed twice in PBS for 5 min and 100 pL of biotinylated secondary antibody was
added to the sections on the slides followed by incubation in a humidified chamber at
room temperature for 30 min. Slides were washed twice in PBS for 5 min and 100 pL of
Sav-HRP conjugates was added to the sections for 30 min in a humidified chamber at room
temperature protected from light whereafter the slides were washed twice in PBS for 5 min.
Freshly made DAB solution (100 pL), consisting of 0.05% DAB and 0.015% H,O; in PBS,
was next applied to the sections to reveal the color of the antibody, followed by a double
washing step in PBS for 5 min and a hematoxylin counterstain for 1-2 min. Finally, the
slides were washed in running tap water for more than 15 min and tissue sections were
dehydrated through four changes of alcohol (95%, 95%, 100%, and 100%) for 5 min each
whereafter the slides were mounted. Microscopic images were obtained with Universal
Grap 6.1 software using an Olympus BX4 microscope and quantified with Image] software.
Cerebral amyloidosis was analyzed on positively stained percentage area fractions on three
hippocampal and five cortical (parietal and occipital cortex) microscopic images.

4.8. Statistical Analysis

Data are presented as mean £ SEM unless otherwise indicated. A factorial ANOVA
was performed with the factor’s ‘Treatment’, ‘Genotype’, “Treatment x Genotype’. Sur-
vival rates were analyzed with a Log-Rank Mantel-Cox test. MWM probe trial statistics
were calculated with a factorial ANOVA for the factor’s ‘Quadrant x Treatment’, ‘Quad-
rant X Genotype” and ‘Quadrant x Treatment x Genotype’ and via Dirichlet distributions,
as previously described [36]. Throughout the manuscript, differences were considered
significant at p < 0.05. Applied statistical analyses are indicated in the figure legends and
were performed using GraphPad Prism (version 9.1.2 for Windows, GraphPad Software,
San Diego, CA, USA).
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