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This study proposed a facile method to detect metalloporphyrin-based coordination polymer particles (Z-CPPs) in aqueous
solution by modified surface-enhanced Raman scattering (SERS). The SERS-active particles are photodeposited on the surface
of Z-CPPs, offering an enhanced Raman signal for the trace detection of Z-CPPs.

1. Introduction

Metalloporphyrin are compounds formed by a combination
of porphyrin and metal ions, playing important roles in
catalysis, fluorescence, sensing, optical imaging, electronics,
photochemistry, and biological applications [1–6]. Recently,
intensive investigation has been dedicated to morphology
controlled synthesis ofmetalloporphyrin-based coordination
polymer particles (CPPs) and several groups reported that
diverse metalloporphyrin-based nanoscale/microscale parti-
cles can be synthesized through a bottom-up self-assembly
process assisted by surfactants, such as Pluronic F127, sodium
dodecyl sulfate (SDS), and hexadecyltrimethylammonium
bromide (CTAB) [7–14]. Furthermore, it has been reported
that metalloporphyrin-containing CPPs can be used for solar
hydrogen generation and water purification in the aqueous
solutions [13, 14]. Therefore, it is of significant importance
to identify metalloporphyrin-based CPPs in the aqueous
solution. In our previous works, a large amount of CPPs
powder was required to identify CPPs through the X-ray
diffraction (XRD) method, which usually requires complex
processes, such as repeated centrifugation and sample drying
at low temperature to obtain powder of samples for further
identification [13, 14].

Metal-organic interactions have been the focus of intense
multidisciplinary research in areas such as catalytic chem-
istry, materials science, and molecular electronics [15, 16].
Surface-enhanced Raman scattering (SERS) is widely recog-
nized as a powerful tool for studying molecular adsorbates
on metal surfaces and provides direct information on metal-
molecule interactions, even in IR-opaque media such as
aqueous solutions [17]. Typically, SERS is employed for (1)
molecule detection in solutions or on substrates due to
the molecular adsorption on SERS-active particles or SERS-
active substrates [18, 19] and (2) molecule aggregates on
SERS-active substrates [20]. Nevertheless, identification of
self-assembled CPPs in the aqueous solution has been infre-
quently documented. To the authors’ best knowledge, except
for our idea proposed recently [21], no Raman data were
obtained for CPPs in the solution even though coordination
polymers have been intensively investigated. This is probably
due to the low concentration of the analyte in the solution.
Different from typical SERS, in which SERS-active materials,
such as Au, Ag, and Cu particles, are usually employed as
substrates for molecule adsorption or molecule aggregation,
we employ the analyte, here CPPs, as substrate and attached
SERS-active materials on their surface to enhance the detec-
tion signal in the aqueous solution.
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Scheme 1: Proposed method for identification of Z-CPPs by SERS through surface metallization in the aqueous solution.

2. Materials and Methods

2.1.Materials. Zinc 5, 10, 15, 20-tetra(4-pyridyl)-21H, 23H-por-
phine (ZnTPyP), cetyltrimethylammoniumbromide (CTAB),
sodium tetrachloroaurate (III) dehydrate (NaAuCl4⋅2H2O),
ascorbic acid fromAldrich Chemical Co., sodium hydroxide,
and hydrochloric acid from Wako Chemicals were used
without further purification. All solvents were prepared by
using Milli-Q water.

2.2. Preparation of Stock Solutions. As ZnTPyP does not
readily dissolve in water, its homogeneous stock solution
(0.01M) was prepared by dissolving an appropriate amount
of ZnTPyP in HCl solution (0.2M) to acidify its pyridyl
groups, forming soluble tetrapyridium cations. The basic
stock solution of surfactants was prepared by dissolving
0.01M CTAB and 0.02M sodium hydroxide in aqueous
solution. The gold complex solution (10mM) was prepared
by dissolving NaAuCl4⋅2H2O in 10mL aqueous solution.
The electron donor solution (0.1M) was freshly prepared by
dissolving ascorbic acid in the aqueous solution.

2.3. Preparation of ZnTPyP-CPPs (Abbreviated as Z-CPPs).
An amount of 250 𝜇L of a ZnTPyP stock solution (0.01M)
was rapidly injected into 5mL of a basic stock solution with
vigorous stirring at room temperature.

2.4. Preparation of Au Decorated ZnTPyP-CPPs (Abbre-
viated as Au-Z-CPPs). The solution of gold complexes

(NaAuCl4⋅2H2O) together with freshly prepared ascorbic
acid solution was added to the freshly prepared Z-CPPs
solution. After mild stirring for 40min under visible light
illumination, the color of the mixture solution turned into
light-reddish, indicating the successful photoreduction from
gold complexes to gold nanoparticles. Raman spectra were
recorded without further treatment (Figure 2).

2.5. Characterization. To prepare the samples for field-
emission scanning electron microscopy (FE-SEM, TESCAN,
and MIRA3) and transmittance electron microscopy, the as-
prepared ZnTPyP particles were redispersed in pure water,
dropped onto silicon wafer substrate and Cu grid, respec-
tively, and finally dried at 50∘C in the oven.The chemical state
of gold element was determined with X-ray photoelectron
spectroscopy (XPS, ESCA2000), which was performed with
an Al K𝛼 and Mg K𝛼 X-ray source. Raman measurements
were performed using a Renishaw 2000 Raman microscope
system (Renishaw, UK). A Melles Griot HeNe Laser, oper-
ating at 𝜆 = 785 nm, was used as excitation source, with
a laser power of approximately 15mW. The Rayleigh line
was removed from the collected Raman scattering using
a holographic notch filter located in the collection path.
The Raman scattering was collected using a charge-coupled
device (CCD) camera at a spectral resolution of 4 cm−1. All
spectra were calibrated to the 520 cm−1 silicon line. A 20x
objective lens was used to focus a laser spot on the glass
tube.
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Figure 1: (A) SEM image of the Z-CPPs nanorod structures; TEM (B) and STEM (C) images of Au-Z-CPPs; elemental mapping data of (C)
Au on ZnTPyP-CPPs; (E) XPS analysis of Au element for Au-Z-CPPs.

3. Results and Discussion

Briefly, zinc 5, 10, 15, 20-tetra(4-pyridyl)-21H, 23H-porphine
(abbreviated to ZnTPyP) was chosen for the investigation
and 250 𝜇L of a ZnTPyP stock solution (0.01M) was rapidly

injected into 5mL of a basic stock solution at room tempera-
ture and under vigorous stirring. The solution turned cloudy
immediately. However, in order to facilitate the growth of
ZnTPyP-CPPs (abbreviated to Z-CPPs), the cloudy solution
was kept at room temperature without stirring for 12 h.
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Figure 2: Raman spectra of (A) Z-CPPs and (B) Au-Z-CPPs in the
aqueous solution.

Then, we first measured the Raman spectrum of the as-
synthesized Z-CPPs in the solution without any further
treatment; however, no Raman signal was obtained.

To design a method to detect Z-CPPs in the solution,
we hypothesized that if SERS-active particles, such as Au
particles, can attach on the surface of Z-CPPs, the trace
detection could be possibly achieved in the aqueous solution.
It was documented that the absorption of visible or UV-
light by photocatalysts (PCs) yields the long-lived excited
triplet 𝜋-𝜋 state, PCs∗, which is rapidly reduced by an
electron donor (ED) such as ascorbic acid; if the long-lived
radical anion has suitable electronic structures, it is capable of
efficiently reducing a variety of metal ions including Ag, Au,
Hg, Pb, Cu, and Pt to the zero-valent metals [10]. Therefore,
as shown in Scheme 1, immediately after the synthesis of Z-
CPPs, 0.5mL of NaAuCl4⋅2H2O (10mM) aqueous solution
and 1mL of ascorbic acid (0.1M) aqueous solution were add
to the Z-CPPs solution. The resulting mixture was gently
stirred for 40min under visible light illumination until the
mixture turned into a light-reddish color.

The external morphologies of the synthesized Z-CPPs
and Z-CPPs attached with gold particles (Au-Z-CPPs) were
characterized by scanning electron microscopy (SEM) and
transmittance electron microscopy (TEM). As shown in
Figure 1(A), Z-CPPs nanorods with an average length of
∼230 nm and width of ∼80 nm were synthesized. The TEM
image and STEM image (Figures 1(B) and 1(C)) ofAu-Z-CPPs
together with Au elemental mapping (Figure 1(D)) revealed
that AuCl4

− complexes were reduced to Au nanoparticles
under visible light illumination, which successfully attached
on the surface of Z-CPPs. XPS analysis of Au element for
collected powder samples (powder Au-Z-CPPs) is shown
in Figure 1(E), which further confirmed that AuCl4

− were
fully reduced to Au nanoparticles by observing XPS peaks at
83.8 eV and 87.3 eV, corresponding to Au 4f7/2 and Au 4f5/2 of
metallic gold, respectively. The 1D Z-CPPs maintained their
original structure after Au decoration.

As mentioned above, no Raman signal was obtained for
Z-CPPs in the aqueous solution (Figure 3(A)). After Au
decoration on the surface of the Z-CPPs nanorods, we carried
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Figure 3: SERS spectra of Z-CPPs and Au-Z-CPPs according to the
ZnTPyP molecule concentration varying from 500 to 10 nmol: (A)
original Z-CPPs solution,Au-Z-CPPswith (B) 10 nmol, (C) 20 nmol,
(D) 100 nmol, (E) 200 nmol, and (F) 500 nmol of ZnTPyPmolecules.

out Raman spectroscopymeasurement. It is illustrated that all
characteristic group contributions (fingerprints) consistent
with ZnTPyP structures were identified, including 1004 cm−1
[](C𝛼–Cm)], 1030 cm

−1 [pyrr 𝛿(C–H)], 1080 cm−1 [𝛿(C𝛽–
H)], 1243 cm−1 [](Cm–Pyrr)] as well as the 𝜑 stretch nor-
mal modes, 1384 cm−1 [](C𝛼–H)], 1450 cm−1 and 1491 cm−1
[](C𝛼–C𝛽)], and 1550 cm−1 [](C𝛼–C𝛽) and (C𝛽–C𝛽) stretch]
[20]. This proved that our proposed method, SERS assisted
by surfacemetallization onZ-CPPs (SM-SERS), is an effective
approach for the detection of Z-CPPs in the aqueous solution.

In previous reports, we investigated morphology con-
trolled synthesis of Z-CPPs and confirmed that the mor-
phological transformation is related to solute concentration,
temperature, and pH [13, 14]. Therefore, the investigation
of the limit of detection for Z-CPPs through our SM-SERS
method was carried out by diluting the Au-Z-CPPs aqueous
solution in order to maintain its original structure. It is worth
mentioning that dilution of the Au-Z-CPPs solution also
causes a decrease in the concentration of active Au particles.
Nevertheless, Figure 3 shows the SERS spectra of the Au-Z-
CPPs aqueous solution corresponding to ZnTPyP molecule
concentrations ranging from 500 to 10 nmol. As a reference,
the SERS spectrum of the Z-CPPs aqueous solution is also
shown in Figure 3(A). It was observed that the signal intensity
decreased as the Z-CPPs concentration decreased and the
limit detectionwas 10 nmol.This suggested that our SM-SERS
method provides a high sensitivity for metalloporphyrin-
CPPs detection. However, in determining the limit of detec-
tion, it was found that no SERS signal could be detected when
the Z-CPPs concentration was lower than 10 nmol, which is
probably due to the decreased concentration of active Au
nanoparticles on the surface of the Z-CPPs.

4. Conclusion

In conclusion, we proposed the first demonstration to detect
metalloporphyrin-containing CPPs in the aqueous solution
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through a designed SERS method (SM-SERS). Thanks to
the photoactive properties of metalloporphyrins, we attached
SERS-active gold nanoparticles on the surface of Z-CPPs
via photoreduction of gold complexes under visible light
illumination. Our proposed method was proven to be effec-
tive for Z-CPPs identification in that all characteristic group
contributions (fingerprints) were consistent with ZnTPyP
structures. The trace detection was achieved by obtaining
the Raman spectra with a limit of detection for ZnTPyP of
10 nmol.
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