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Several lines of evidence support a link between the essential element zinc and the

coronavirus disease 2019 (COVID-19). An important fact is that zinc is present in

proteins of humans and of viruses. Some zinc sites in viral enzymes may serve as drug

targets and may liberate zinc ions, thus leading to changes in intracellular concentra-

tion of zinc ions, while increased intracellular zinc may induce biological effects in

both the host and the virus. Drugs such as chloroquine may contribute to increased

intracellular zinc. Moreover, clinical trials on the use of zinc alone or in addition to

other drugs in the prophylaxis/treatment of COVID-19 are ongoing. Thereby, we aim

to discuss the rationale for targeting zinc metalloenzymes as a new strategy for the

treatment of COVID-19.

Linked Articles: This article is part of a themed issue on The Pharmacology of

COVID‐19. To view the other articles in this section visit http://onlinelibrary.wiley.

com/doi/10.1111/bph.v177.21/issuetoc
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1 | INTRODUCTION

The coronavirus disease 2019 (COVID-19) has emerged in December

2019 in the city of Wuhan, China and since then has spread world-

wide. It is caused by severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) (Zhou et al., 2020). Until now, no drugs designed spe-

cifically against SARS-CoV-2 proteins have been developed. Novel

drugs are urgently needed in view of the fact that the treatment with

drugs, which are being repurposed for COVID-19, such as

chloroquine/hydroxychloroquine, are not safe in patients with cardio-

vascular co-morbidities, constituting a large group of patients dying

from this disease (Kalil, 2020).

Ananda Prasad (2012) recognized the nutritional essentiality of zinc

in humans and the consequences of zinc deficiency in 1963 in Iran.

Later, they observed recurrent opportunistic infections in patients with

acrodermatitis enteropathica, in whom zinc deficiency is due to malab-

sorption of zinc caused by a mutation in ZIP4, an intestinal zinc trans-

porter. Dysfunction of the immune system in acrodermatitis

enteropathica patients has been corrected with zinc supplementation,

thus demonstrating that zinc is essential for the function of the immune

system (Shankar & Prasad, 1998). Potential benefits of zinc administra-

tion in COVID-19 in terms of improved immunity, which may be fore-

seen in populations at risk for COVID-19 and zinc deficiency, such as

the elderly, have recently been discussed byDerwand and Scholz (2020),

Rahman and Idid (2020) and Skalny et al. (2020).

Due to anti-inflammatory properties, zinc has been suggested to

limit the cytokine storm (Skalny et al., 2020), which might occur in

patients with severe COVID-19 (Mehta et al., 2020). A cytokine

storm, also termed macrophage activation syndrome or secondary

haemophagocytic lymphohistocytosis, is a potentially fatal systemic
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hyperinflammation associated with hypercytokinaemia and multiple

organ failure (McGonagle, Sharif, O'Regan, & Bridgewood, 2020; Sun

et al., 2020). Noteworthy, a combination of zinc, hydroxychloroquine

and azithromycin has been proposed as an early treatment of COVID-

19 in the outpatient setting, which would prevent disease progression

and hospitalization (Derwand & Scholz, 2020; Risch, 2020).

In the human body, zinc is the second most abundant metal. It plays

catalytic, structural and signalling function. The biochemistry of zinc

began in 1939 with the observation that the enzyme carbonic

anhydrase contains zinc. Moreover, zinc was shown to be indispensable

for its enzymatic activity (Lindskog, 1997; Maret, 2013). Since then, this

element has been found in hundreds of other enzymes, which are called

zinc metalloenzymes (Haraguchi, 2017; Maret, 2013). ACE and ACE2

belong to zinc metalloenzymes (Turner, Hiscox, & Hooper, 2004). Fur-

thermore, zinc fingers, relatively small protein domains consisting of

cysteines or cysteines and histidines bound to zinc ions have been dis-

covered. It is predicted that 10% of the human genome encodes zinc

fingers (Krishna, Majumdar, & Grishin, 2003; Maret, 2013).

Zinc plays an important role not only in proteins and enzymes of

humans and other life forms but also in viruses. For example, RNA-

dependent DNA polymerase from the avian myeloblastosis virus was

demonstrated to be a zinc-dependent enzyme in 1974 (Poiesz, Seal, &

Loeb, 1974). Zinc fingers are present in many viral proteins (Lei,

Kusov, & Hilgenfeld, 2018; Ma et al., 2015; Ma-Lauer et al., 2016;

Tijms, van Dinten, Gorbalenya, & Snijder, 2001). Versatile functions of

zinc fingers are being increasingly uncovered (Fu & Blackshear, 2017;

Jen & Wang, 2016; Laity, Lee, & Wright, 2001). As structural motifs,

they are gaining attention as drug targets—the disruption of zinc fin-

gers in viral proteins, which causes destabilization of proteins, has

been proposed as a therapeutic approach to treat viral diseases

(Abbehausen, 2019; Garcia & Damonte, 2007).

Our aim is to discuss the possibility of targeting zinc as a thera-

peutic strategy for COVID-19. We start with background information

on potential drug targets for SARS-CoV-2 and classes of compounds

that can be collectively termed as zinc targeting drugs. We will

attempt to analyse the data on the effects of agents targeting zinc fin-

gers in viral metalloenzymes. These agents cause the removal of zinc

from the proteins, which in turn destabilises these proteins leading to

an increase in the intracellular concentration of zinc ions plus other

agents that induce changes in intracellular levels of zinc (zinc iono-

phores), with information on the consequences of altered level of

intracellular zinc, with will focus particularly on SARS-CoV-2 and

related pathogens. Furthermore, we will provide examples of com-

pounds targeting zinc that have entered clinical trials in order to dem-

onstrate that investigating zinc drugs may lead to success in the clinic.

Finally, we summarize current clinical trials on the use of zinc in the

treatment and prophylaxis of COVID-19.

2 | DRUG TARGETS FOR SARS-CoV-2

The human pathogen responsible for the outbreak of COVID-19 has a

positive-sense RNA genome and has been placed within the

Coronaviridae family (Coronaviridae Study Group of the International

Committee on Taxonomy of Viruses, 2020). Because of the related-

ness to severe acute respiratory syndrome coronavirus (SARS-CoV)

(Zhou et al., 2020), which causes severe acute respiratory syndrome

(SARS), the virus responsible for the 2019 outbreak has been desig-

nated as SARS-CoV-2 (Coronaviridae Study Group of the International

Committee on Taxonomy of Viruses, 2020). SARS-CoV-2, SARS-CoV

and Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV)

are the three coronaviruses behind the major epidemics of the last

two decades.

SARS-CoV (Turner et al., 2004) and SARS-CoV-2 (Shang

et al., 2020) use the host zinc metalloenzyme, ACE2, as an entry point

to cells. Inside cells, the RNA of coronaviruses is translated into two

large polyproteins, pp1a and pp1ab. These polyproteins are cleaved

by the main protease (Mpro, or 3-chymotrypsin-like protease, 3CLpro)

and the papain-like protease (PLpro) into non-structural proteins. Non-

structural protein 12 contains the RNA-dependent RNA polymerase

(RdRp) domain. Non-structural proteins assemble into the replicase–

transcriptase complex and are responsible for replication and tran-

scription (de Wit, van Doremalen, Falzarano, & Munster, 2016; Fehr &

Perlman, 2015). As indispensable enzymes in virus replication, the

two SARS-CoV-2 proteases, Mpro and PLpro, and RdRp are attractive

therapeutic target for future drugs against SARS-CoV-2.

The 3D structure of the Mpro of SARS-CoV-2 has been deposited

into the Protein Data Bank database under entry 6LU7. The compari-

son of Mpros deposited in the Protein Data Ban has demonstrated that

the substrate-binding pocket of Mpros is highly conserved among

coronaviruses, thus suggesting that inhibitors targeting this site

should have broad activity against coronaviruses (Jin et al., 2020).

Furthermore, other drug targets such as PLpro or RdRp are conserved

between SARS-CoV-2 and SARS-CoV (Sargsyan et al., 2020; Wu

et al., 2020). Thus, although no specific drugs have been discovered

during SARS or MERS epidemics (de Wit et al., 2016), the outcomes

of studies on drug leads for SARS-CoV may give some insights into

the possible treatments for SARS-CoV-2.

For that reason, data on the relationship between zinc and Mpro,

PLpro or RdRp of SARS-CoV-2, SARS-CoV or MERS-CoV will be

discussed in detail in subsequent sections of this review, as they are

potentially important for drug discovery.

3 | DRUGS TARGETING ZINC

Ionophores are molecules forming complexes with ions and facilitate

ion transport across lipid bilayers. There are ionophores promoting

transport of cations (cationophores) and anion (anionophores), but the

latter are less common (Alfonso & Quesada, 2013). Cationic iono-

phores may transfer proton, alkali, alkaline earth or transition metal

ions and may display selectivity for some of them (Alfonso &

Quesada, 2013; Freedman, 2011; Riddell, 2002). Because of the simi-

larities between these targets it is unlikely that an ionophore will bind

one ion at the exclusion of others (Helsel & Franz, 2015). However,

ionophores may be selective in terms of, for example kinetics, as they
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may transport one ion faster than the others (Helsel & Franz, 2015;

Riddell, 2002).

Because the plasma membrane is non-permeable to ions, iono-

phores comprise a lipophilic exterior that facilitates transport across

the membrane and a hydrophilic interior, where an ion is bound

(Kaushik, Yakisich, Kumar, Azad, & Iyer, 2018). When the pH of the

extracellular space is higher than the pKa of the ionophore, the com-

pound binds a metal ion. A complex is formed, which diffuses across

the plasma membrane. When the pH in the intracellular space is lower

than the ionophore's pKa, the compound releases the ion. As a result,

the intracellular concentration of the ion rises. Thus, some compounds

may release ions in the cytosol. Because there are differences in pH

between organelles, some compounds may release ions, for example

in acidic organelles, such as lysosomes (Riddell, 2002).

With a view of potential clinical administration, compounds with

low or moderate metal affinity shall be tested as ionophores. Such

compounds shall bind metals in regions of high concentration and

transport metals to regions where the concentration is lower, thus

restoring equilibrium (Bush, 2008; Ding & Lind, 2009).

In contrast, the use of chelators may be associated with removal

of metal ions from regions where they are essential, which may lead

to unwanted effects. Chelators also bind ions, forming complexes, but

the functional effect is opposite to ionophores. Traditionally, chelating

agents have been used to remove toxic substances (Helsel &

Franz, 2015). Such chelates should be water soluble, thus easily

excreted in the urine. For some compounds

(e.g. diethyldithiocarbamate, a metabolite of disulfiram, a drug that

has been long used in alcoholism (Kranzler & Soyka, 2018) has both

actions, in that it is an ionophore (Kim et al., 2000) and a chelator

(Jones et al., 1980).

The examples of zinc ionophores are given in Table 1. In these

studies cell cultures were used. The cells were exposed to metals and

the test compounds. Cell membrane-permeable fluorescent probes,

which detect intracellular zinc ions, such as p-toluenesulfonamido-

quinoline (TSQ), mag-fura- or FluoZin-3 were used (Andersson

et al., 2009; Kim, Kim, Moon, et al., 1999; Kim et al., 2000; Kim, Kim,

Xu, et al., 1999; Reeder et al., 2011; Wiggins et al., 2015; Xue

et al., 2014). In some of the studies, these probes were combined with

probes staining for lysosomes, such as LysoTracker or dextran-Alexa

647 (Wiggins et al., 2015; Xue et al., 2014). In others, inductively

coupled plasma mass spectrometry was used to monitor changes in

intracellular concentration of zinc ions (Adlard et al., 2008; White

et al., 2006).

Furthermore, it was demonstrated that cysteine4 or

cysteine3histidine zinc fingers in which zinc-bound cysteine has no

hydrogen bonds are reactive and can liberate zinc ions, which causes

protein unfolding and increases intracellular zinc. A search algorithm

based on physical properties has been employed in order to search for

such zinc fingers, which have been termed “labile zinc fingers” (Lee,

Wang, Duh, Yuan, & Lim, 2013). The following terms:- “zinc finger

targeting agents” and “zinc ejecting agents” or “zinc ejectors” ae used

in the literature (Lee et al., 2013; Supuran, Innocenti, Mastrolorenzo, &

Scozzafava, 2004). For example, disulfiram has been demonstrated to

act as zinc ionophore (Wiggins et al., 2015) and as an agent ejecting

zinc from zinc fingers (Lin et al., 2018; Sargsyan et al., 2020). In order

to examine the latter feature, the purified recombinant proteins

predicted to contain labile zinc fingers were mixed with disulfiram in

the presence of FluoZin-3 probe and an increase in fluorescence was

observed (Sargsyan et al., 2020).

4 | DRUGS TARGETING ZINC AND MERS-
CoV, SARS-CoV AND SARS-CoV-2

Several lines of evidence suggest a link between zinc and COVID-19,

including the observation that chloroquine, a drug being repurposed

for COVID-19 (Gautret et al., 2020), is a known as a zinc ionophore

(Xue et al., 2014). Studies on zinc ionophores and zinc finger targeting

agents as well as zinc in relation to SARS-CoV-2, SARS-CoV or MERS-

CoV will be therefore discussed in detail.

TABLE 1 Examples of zinc ionophores

Mechanism of
action Method References

Disulfiram Ionophore: zinc Cell culture, FluoZin-3, and

dextran-Alexa 647

(Wiggins et al., 2015)

Dithiocarbamates (e.g., DEDTC and

pyrrolidine dithiocarbamate)

Ionophore: zinc and

copper

Cell culture, mag-fura-2, and TSQ (Kim et al., 2000; Kim, Kim, Xu, Hsu, &

Ahn, 1999)

Pyrithione Ionophore: zinc and

copper

Cell culture, mag-fura-2, and

FluoZin-3

(Andersson, Gentry, Moss, & Bevan, 2009;

Kim, Kim, Moon, et al., 1999; Reeder

et al., 2011)

Clioquinol Ionophore: zinc and

copper

Cell culture and ICPMS (White et al., 2006)

PBT2 Ionophore: zinc and

copper

Cell culture and ICPMS (Adlard et al., 2008)

Chloroquine Ionophore: zinc Cell culture, FluoZin-3, and

LysoTracker

(Xue et al., 2014)

Abbreviations: DEDTC, diethyldithiocarbamate; ICPMS, inductively coupled plasma mass spectrometry; TSQ, p-toluenesulfonamido-quinoline.
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4.1 | Chloroquine is a zinc ionophore

The dramatic outbreak of COVID-19 worldwide prompted to search

for possible treatment options from already available drugs

(Harrison, 2020). Chloroquine, an old antimalarial drug (Blount, 1967),

was demonstrated to block virus infection at low micromolar concen-

tration in Vero E6 cells infected with SARS-CoV-2 (Wang et al., 2020),

thus suggesting the possible use of chloroquine in patients with

COVID-19. Moreover, its derivative, hydroxychloroquine, was found

to inhibit SARS-CoV-2 infection in vitro (Liu et al., 2020). Furthermore,

hydroxychloroquine was shown to be more potent than chloroquine

at inhibiting SARS-CoV-2 (Yao et al., 2020).

Mode of chloroquine action has been extensively reviewed

(Slater, 1993). In addition, several mechanisms have been recently pro-

posed with regard to the use of chloroquine for COVID-19 (Devaux,

Rolain, Colson, & Raoult, 2020; Shittu & Afolami, 2020; Skalny

et al., 2020), including its activity as zinc ionophore (Xue et al., 2014). It

was found that administration of zinc and chloroquine to the human

ovarian carcinoma cell line, A2780, produced an increase in the fluores-

cence of FluoZin-3 probe, which was reversed by the application of

N,N,N0,N0-tetrakis(2-pyridylmethyl)etylenediamine (TPEN), a cell

membrane-permeable zinc chelator. Moreover, chloroquine did not

induce zinc uptake to the cell in the presence of Ca-EDTA, a cell

membrane-impermeable metal chelator, showing that chloroquine pro-

duces an increase in intracellular concentration of zinc ions by

transporting zinc from outside the cell and not by mobilizing zinc from

intracellularly localized zinc proteins. Furthermore, the fluorescent sig-

nals of FluoZin-3, indicating zinc ions, co-localized with signals of

LysoTracker, a cell membrane-permeable probe selective for acidic

organelles. These observations suggest that chloroquine is zinc iono-

phore, which transports zinc to lysosomes (Xue et al., 2014).

An important finding from this study is that treatment of cells with

zinc chloride alone or with chloroquine alone produced less pronounced

increase in intracellular zinc ions, compared with the effects induced by

administration of zinc chloride and chloroquine (Xue et al., 2014), which

suggest that combined treatment with ionophore and zinc is necessary

in order to substantially increase the level of zinc inside a cell.

4.2 | Disulfiram inhibits MERS-CoV, SARS-CoV,
SARS-CoV-2 PLpro and SARS-CoV-2 Mpro

Similar issues to the above, which have been examined in relation to

chloroquine (Xue et al., 2014), have been addressed with regard to

disulfiram (Wiggins et al., 2015). It was shown with the aid of FluoZin-

3 probe that disulfiram increases intracellular zinc in MCF-7 and

BT474 breast cancer cells. The increase in FluoZin-3 fluorescence in

cells treated with disulfiram depended on extracellular zinc, thus

supporting the hypothesis that disulfiram acts as zinc ionophore.

Moreover, the fluorescence of FluoZin-3 was not observed following

disulfiram treatment under low-zinc and low-copper conditions.

Under such conditions, zinc, but not copper, was able to restore the

fluorescence, demonstrating that the increase in fluorescence after

administration of disulfiram was due to selective interaction with zinc.

Finally, it was shown that disulfiram sequesters intracellular zinc in

lysosomes (Wiggins et al., 2015).

Disulfiram produced a dose-dependent inhibitory effect of both

SARS-CoV and MERS-CoV PLpro with IC50 in the micromolar range, as

it was measured by the deubiquitination assay (Lin et al., 2018), since

PLpro has deubiquitinating activity in vitro (Barretto et al., 2005). Disul-

firam was found to be a non-competitive and competitive (or mixed)

inhibitor of MERS-CoV and SARS-CoV PLpro, respectively. Further-

more, in the above-mentioned study, the protein and FluoZin-3 probe

were mixed in the presence or absence of disulfiram. An increase in

the fluorescence signal was observed following incubation of both

MERS-CoV and SARS-CoV PLpro with disulfiram, compared with the

signal induced by MERS-CoV and SARS-CoV PLpro without disulfiram,

thus showing increased concentration of zinc ions. This observation

suggests that disulfiram destabilizes these enzymes by releasing zinc

from them (Lin et al., 2018). It was also demonstrated that mutation

of the zinc-coordinating cysteine caused a significant loss of enzy-

matic activity of SARS-CoV PLpro. This observation demonstrates that

zinc-binding ability is essential for SARS-CoV PLpro enzymatic function

(Barretto et al., 2005).

Recently, Sargsyan et al. (2020) found labile zinc fingers, thus likely

to be targeted and disrupted, in three SARS-CoV-2 proteins, that is,

PLpro, Nsp10 and Nsp13. In this study, the protease activity was deter-

mined using a fluorogenic substrate Dabcyl–FTLKGGAPTKVTE–Edans–

NH2. Disulfiram and organoselenium compound, ebselen, inhibited

SARS-CoV-2 PLpro with an IC50 in the micromolar range. Moreover,

incubation of SARS-CoV-2 PLpro with ebselen and disulfiram was asso-

ciated with increased concentration of zinc ions measured with the aid

of FluoZin-3 probe (Sargsyan et al., 2020).

Furthermore, disulfiram and ebselen are among inhibitors of

another crucial SARS-CoV-2 enzyme, that is Mpro, with an IC50 in the

micromolar range (Jin et al., 2020). The effects of disulfiram on SARS-

CoV-2, SARS-CoV and MERS-CoV enzymes are summarized in

Table 2. In addition, disulfiram and ebselen decreased the number of

SARS-CoV-2 viral RNA copies (as it was determined by qRT-PCR anal-

ysis) in SARS-CoV-2-infected Vero E6 cells (Jin et al., 2020).

TABLE 2 The effects of disulfiram on MERS-CoV, SARS-CoV and
SARS-CoV-2 enzymes

Compound Mechanism Reference

Disulfiram MERS-CoV PLpro inhibitor

(μM)

(Lin et al., 2018)

SARS-CoV PLpro inhibitor (μM) (Lin et al., 2018)

SARS-CoV-2 PLpro inhibitor

(μM)

(Sargsyan et al., 2020)

SARS-CoV-2 Mpro inhibitor

(μM)

(Jin et al., 2020)

Abbreviations: MERS-CoV, Middle East respiratory syndrome-related

coronavirus; Mpro, main protease; PLpro, papain-like protease; SARS-CoV,

severe acute respiratory syndrome-related coronavirus; SARS-CoV-2,

severe acute respiratory syndrome-related coronavirus 2.
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4.3 | Intracellular zinc inhibits RdRp of SARS-CoV

Te Velthuis et al. (2010) employed several in vitro approaches to study

the effects of zinc on SARS-CoV. First, they examined the effects of

combination of zinc acetate and pyrithione, another zinc ionophore

(Andersson et al., 2009; Kim, Kim, Moon, et al., 1999), on the replica-

tion of a recombinant SARS-CoV in Vero E6 cells. The recombinant

SARS-CoV was generated by deletion of open reading frame 7a/7b

(ORF 7a/7b) and insertion of the GFP, resulting in SARS-CoV-GFP,

which replicates to similar titres as wild-type viruses in Vero E6 cells

(Sims, Burkett, Yount, & Pickles, 2008). Pyrithione inhibited the

reporter gene expression of SARS-CoV-GFP. This effect was

enhanced by the addition of zinc acetate. Approximately 98% reduc-

tion of the GFP signal for SARS-CoV-GFP was observed at concentra-

tions that did not induce cytotoxicity, that is, 2-μM pyrithione and

2-μM zinc acetate. Furthermore, zinc acetate alone also reduced virus

replication but to a lesser extent than the combination of zinc and its

ionophore (te Velthuis et al., 2010).

Moreover, te Velthuis et al. (2010) used two more approaches

that allowed to study the direct effects of zinc ions on replicase–

transcriptase complex and RdRp, thus eliminating the need to trans-

port zinc across the plasma membrane with the aid of ionophore.

They tested the effects of zinc in an in vitro system of active

replicase–transcriptase complexs isolated from infected cells (van

Hemert et al., 2008). In this system, zinc acetate dose-dependently

decreased the amount of synthesized RNA. The inhibition of

replicase–transcriptase complex by zinc was reversed by the addition

of zinc chelator, Mg-EDTA. In addition, they used an in vitro recombi-

nant RdRp assay. Zinc inhibited the initiation and elongation phase in

this assay (te Velthuis et al., 2010).

4.4 | The proposed mechanism of action of drugs
targeting zinc on SARS-CoV-2

Based on the above-mentioned studies, a chain of events can be

hypothesized, which may happen after administration of zinc iono-

phore (and zinc) and/or a zinc finger targeting drug, which causes

ejection of zinc from zinc fingers in viral metalloenzymes.

Zinc ionophore and/or zinc finger targeting agent may enter a

cell, as does SARS-CoV-2. An agent targeting zinc fingers may bind

labile zinc fingers in essential viral enzymes such as PLpro. It may cause

ejection of zinc from the enzyme, which will destabilize the enzyme,

thus increasing intracellular concentration of zinc ions, as has been

demonstrated for SARS-CoV and MERS-CoV by Lin et al. (2018) and

for SARS-CoV-2 by Sargsyan et al. (2020). Moreover, zinc ionophores

such as chloroquine may contribute to increased intracellular concen-

tration of zinc ions (Xue et al., 2014). Additionally, compounds such as

ebselen may contribute to increased intracellular zinc by releasing zinc

from metallothioneins (Jacob, Maret, & Vallee, 1998), a family of

cysteine-rich, low MW, metal-binding proteins (Thirumoorthy

et al., 2011). Furthermore, zinc ions may inhibit RdRp, as shown for

SARS-CoV by te Velthuis et al. (2010) (Figure 1).

In addition to presumed inhibition of RdRp, intracellular zinc may

initiate a cascade of events in the host. Intracellular zinc acts as a sec-

ond messenger and modulates a variety of signalling pathways. All

immune cells are affected by intracellular zinc signalling, which has

been comprehensively reviewed by Maywald, Wessels, and

Rink (2017). Thus, treatment strategies based on targeting zinc in viral

enzymes, leading to increased intracellular zinc or other approaches

also leading to increases intracellular zinc, will have potential conse-

quences for many functions of the immune system (Read, Obeid,

Ahlenstiel, & Ahlenstiel, 2019; Skalny et al., 2020).

It has also been suggested that tetracyclines may exert beneficial

effects in COVID-19 based on their ability to chelate zinc in MMPs

(Sodhi & Etminan, 2020). MMPs are another group of zinc

metalloenzymes. They are endopeptidases, which are involved in the

degradation of proteins in the extracellular matrix (Cui, Hu, &

Khalil, 2017). However, recent evidence demonstrates that MMPs are

multitasking proteins working in both the extracellular and intracellular

compartments. Most of MMP substrates are non-extracellular matrix

proteins and include chemokines, cytokines, cell surface receptors and

proteins involved in immune signalling (Chopra, Overall, & Dufour, 2019).

It has been demonstrated in vitro that the neurotropic strain JHM.

SD of the murine coronavirus mouse hepatitis virus uses an uni-

dentified batimastat-sensitive metalloprotease for both viral entry and

virus-mediated cell–cell fusion. Batimastat is a potent, broad spec-

trum MMP inhibitor. Thus, this study suggests the importance of

MMPs for JHM.SD infection (Phillips, Gallagher, & Weiss, 2017).

Moreover, coronavirus HCoV-229E infection of primary monocytes

was associated with increased production of MMP-9 (Desforges, Mil-

etti, Gagnon, & Talbot, 2007).

F IGURE 1 The possible mechanism of action of drugs targeting
zinc metalloenzymes in coronavirus disease 2019. A drug targeting
zinc fingers in zinc metalloenzymes would bind zinc in papain-like

protease (PLpro) (or another essential enzyme of severe acute
respiratory syndrome coronavirus 2 [SARS-CoV-2]). Such drug would
remove zinc from the enzyme, thus destabilizing the enzyme, and
produce an increase in intracellular zinc concentration. Zinc
administered together with its ionophore would contribute to
increased intracellular zinc. Intracellular zinc would inhibit RNA-
dependent RNA polymerase (RdRp) of the virus
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Tetracyclines are well-knownMMPs inhibitors (Boelen et al., 2019;

Castro, Kandasamy, Youssef, & Schulz, 2011), but the direct relation-

ship betweenMMPs and SARS-CoV-2 has yet to be examined.

5 | CLINICAL POTENTIAL OF DRUGS
TARGETING ZINC

Targeting metal homeostasis with the aid of chelators or ionophores

has been suggested as a therapeutic strategy for a variety of diseases,

for example, cancer (Ding & Lind, 2009; Vaden et al., 2019), diseases

of the CNS (Doboszewska et al., 2017; Doboszewska et al., 2019;

Weekley & He, 2017) and infectious diseases, such as malaria (Bharti,

Singal, Raza, Ghosh, & Nag, 2019). An important fact is that there are

ongoing clinical trials in which metal-binding compounds are being

tested because of their influence on metal homeostasis. For example,

activation of procaspase-3 by procaspase-activating compound

1 (PAC-1) was shown to be dependent on the chelation of zinc

(Sarkar et al., 2016). There are several ongoing clinical trials on the use

of PAC-1 in cancer patients (ClinicalTrials.gov identifiers:

NCT03927248, NCT03332355 and NCT02355535).

In relation to cancer, there are ongoing clinical trials on the use of

disulfiram (NCT04265274, NCT03950830, NCT03714555,

NCT03363659, NCT03323346, NCT03151772, NCT02715609 and

NCT02671890).

Clioquinol was a registered drug worldwide until its use was asso-

ciated with the occurrence of subacute myelo-optic neuropathy, a

condition primarily endemic to Japan. Today, in view of new informa-

tion that may explain this phenomenon, clioquinol serves as a drug

lead to treat cancer (Perez, Sklar, & Chigaev, 2019).

PBT2 is a next-generation derivative of clioquinol, which is char-

acterized by higher solubility and increased blood–brain barrier per-

meability. These features, together with its activity as a zinc–copper

ionophore, make it a possible disease-modifying drug for Alzheimer's

disease (Adlard et al., 2008). According to the metal hypothesis of

Alzheimer's disease, in the brain there is a failure in endogenous regu-

latory mechanisms, which leads to an unbalance of two metals, zinc

and copper, resulting in their toxic excess in some compartments and

deficit in others (Sensi, Granzotto, Siotto, & Squitti, 2018). Moreover,

deposition of amyloid-β has long been regarded as the leading sub-

stance which may be responsible for the development of Alzheimer's

disease (Hardy & Higgins, 1992). The proposed mechanism of action

of PBT2 is related to its ability to react with zinc and copper ions in

oligomerized and precipitate forms of amyloid-β, thus promoting the

soluble form of amyloid-β. PBT2 transports also ions captured from

the amyloid-β oligomers into the nearby cells (Adlard et al., 2008).

PBT2 was well tolerated and significantly improved executive

function in two tests: category fluency and trails B as well as lowering

CSF levels of amyloid-β in patients with Alzheimer's disease in a Phase

II, double-blind, randomized, placebo-controlled trial (Lannfelt

et al., 2008). In addition, a Phase II, double-blind, randomized,

placebo-controlled trial of patients with Huntington's disease revealed

that PBT2 was generally safe and well tolerated, although it was

concluded that the therapeutic potential on cognition needs to be

confirmed in larger studies. The suicidal ideation was higher in

patients with Huntington's disease taking PBT2, which urges careful

observation of suicidality in future studies with this compound

(Huntington Study Group Reach2HD Investigators, 2015). Neverthe-

less, these clinical results show that novel drugs targeting metal ions

can be successfully developed.

In regard to zinc fingers, zinc finger nuclease technology is a tool

in the field of genome editing, which is being increasingly developed

and has entered clinical trials (Lee et al., 2020; Mullard, 2017; Paschon

et al., 2019; Tebas et al., 2014). Zinc finger nucleases are enzymes

that selectively bind, cleave and enable the repair of DNA. Zinc finger

nuclease drugs are currently in clinical trials for mucopolysaccharidosis

(e.g., ClinicalTrials.gov identifier: NCT02702115) and HIV infection

(e.g. NCT04201782). Azodicarbonamide was the first compound

targeting zinc fingers (Rice et al., 1997), which was in clinical trials for

the treatment of HIV (Goebel et al., 2001). A few compounds that

replace zinc in zinc fingers by another metal ion have also entered

clinical trials (Abbehausen, 2019). In addition, a registered anticancer

drug cisplatin (Dasari & Tchounwou, 2014) was found to interact with

zinc fingers and to eject zinc (Castiglione Morelli, Ostuni, Cristinziano,

Tesauro, & Bavoso, 2013).

6 | CLINICAL TRIALS ON COVID-19
RELATED TO ZINC

Clinical trials on the use of zinc in COVID-19 are associated with

repurposing of chloroquine/hydroxychloroquine. The outcomes of

clinical trials with chloroquine in a variety of acute or chronic viral dis-

eases have recently been discussed (Touret & de Lamballerie, 2020).

Generally, in randomized trials it was found not to be effective in

humans in the prevention or the treatment of acute viral diseases

(Touret & de Lamballerie, 2020). In relation to COVID-19, hydro-

xychloroquine was demonstrated to be effective in a small, open-label,

non-randomized clinical trial (Gautret et al., 2020). Currently, there is

no evidence coming from randomized controlled trials supporting the

use of chloroquine/hydroxychloroquine in patients with COVID-19.

Therefore, so far, no such registration has been made by the Food and

Drug Administration (Mahase, 2020). Clinical trials using these medi-

cations have been registered, including the SOLIDARITY study, a

large-scale, multicentre, randomized clinical trial to evaluate the safety

and efficacy of treatments for patients diagnosed with COVID-19.

In some of the registered clinical trials on hydroxychloroquine

repurposing, zinc will be administered as an adjuvant treatment to

hydroxychloroquine therapy, in both the prophylaxis and treatment of

COVID-19. Studies NCT04377646 (COVID-Milit) and NCT04384458

will examine the effects of combined treatment with hydro-

xychloroquine and zinc in healthcare professionals providing care for

patients with COVID-19, as a prophylactic strategy. Two studies will

assess the impact of combined treatment with hydroxychloroquine,

zinc, vitamin C and vitamin D in the prophylaxis of COVID-19 in

healthcare professionals (NCT04326725 and NCT04335084).
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Several clinical trials will explore the combination of hydro-

xychloroquine, azithromycin and zinc in the treatment of patients with

the diagnosis of COVID-19. Awaiting the outcomes of the clinical trials,

a combination of zinc, hydroxychloroquine and azithromycin has been

proposed as an early treatment of COVID-19 in the outpatient setting.

Early outpatient treatment can prevent disease progression and hospi-

talization (Derwand & Scholz, 2020; Risch, 2020). Table 3 contains data

on clinical trials in regard to zinc and COVID-19 and information

whether they are scheduled in the inpatient or outpatient setting.

The study NCT04334512 (HAZDpaC) will examine the efficacy

of quintuple therapy compromising hydroxychloroquine, azithromycin,

zinc, vitamin D and vitamin C in the treatment of adult patients with

the diagnosis of COVID-19. The international ALLIANCE study

(NCT04395768) will investigate the treatment with

TABLE 3 Clinical studies on zinc in COVID-19 as of June 15, 2020

Type of the study Purpose of the study Treatment/intervention Participants/diagnosis ClinicalTrials.gov identifier/acronym

Interventional Prevention Hydroxychloroquine

Zinc

Military healthcare professionals NCT04377646

COVID-Milit

Hydroxychloroquine

Zinc

Healthcare professionals NCT04384458

Hydroxychloroquine

Zinc

Vitamin C

Vitamin D

Healthcare professionals NCT04335084

HELPCOVID-19

Treatment Zinc

Vitamin C

Adult outpatients

COVID-19

NCT04342728

COVIDAtoZ

Zinc

Vitamin D

Institutionalized elderly patients

COVID-19

NCT04351490

ZnD3CoVici

Hydroxychloroquine

Azithromycin

Zinc

Vitamin C

Vitamin D

Adult patients

COVID-19

NCT04334512

HAZDpaC

Hydroxychloroquine

Azithromycin

Zinc

Vitamin D

Vitamin B12

Vitamin C

Adult inpatients and outpatients

COVID-19

NCT04395768

ALLIANCE

Hydroxychloroquine

Azithromycin

Zinc

Favipiravir

Adult inpatients

COVID-19

NCT04373733

PIONEER

Hydroxychloroquine

Azithromycin

Zinc

Doxycycline

30 years and older outpatients

COVID-19

NCT04370782

Nitazoxanide

Ribavirin

Ivermectin

Zinc

12 years and older inpatients

COVID-19 inpatients

NCT04392427

Immunonutrition Adult inpatients

COVID-19

NCT04323228

Observational Prevention Hydroxychloroquine

Zinc

Vitamin C

Vitamin D

Healthcare professionals NCT04326725

Other Hydroxychloroquine

Azithromycin

Zinc

Lopinavir

Ritonavir

Diabetes, COVID-19 NCT04412746

COVIDIAB-13

Abbreviation: COVID-19, coronavirus disease 2019.

DOBOSZEWSKA ET AL. 4893

http://Clinical.trials.gov


hydroxychloroquine, azithromycin, zinc, vitamin D and vitamin B12

with or without vitamin C. The study NCT04392427 will assess the

effects of the combination of nitazoxanide, ribavirin, ivermectin and

zinc in children or adults. The study NCT04373733 will compare

treatment with hydroxychloroquine, azithromycin and zinc versus

favipiravir.

Moreover, the study NCT04370782 will examine the effects of

hydroxychloroquine and zinc in combination with either azithromycin

or doxycycline in COVID-19 patients. With regard to doxycycline, the

study NCT04371952 (DYNAMIC Study [DoxycYcliNe AMbulatoIre

COVID-19]) is aimed to compare a treatment with doxycycline versus

a placebo. Chelation of zinc in MMPs of the host by tetracyclins is a

rationale for this study.

Furthermore, two studies have been registered in order to assess

the effects of combination of zinc and vitamin D or zinc and vitamin C

in the treatment in patients with COVID-19: institutionalized elderly

patients or in adult outpatients (NCT04351490, ZnD3CoVici;

NCT04342728, COVIDAtoZ). Noteworthy is the fact that the study

NCT04342728 (COVIDAtoZ) includes a group of patients who will

receive only zinc gluconate (without vitamins). Inclusion of this group

will allow to draw conclusions regarding the role of zinc in the treat-

ment of COVID-19.

Finally, the study NCT04323228 aims at assessing

immunonutrition in patients with COVID-19. Immunonutrition is a

concept of nutrition that has an impact on the immune system. This

strategy is often used in critical illnesses (Calder, 2003). For example,

a meta-analysis of 61 randomized controlled trials on immunonutrition

in cancer patients has shown that immunonutrition was associated

with reduced risk of post-operative infectious complications, including

reduced risk for respiratory tract infection (Yu et al., 2019), compared

with standard nutrition. In the study on immunonutrition in COVID-

19, patients with confirmed SARS-Cov-2 infection, who do not

require intensive care unit admission, will receive oral nutrition sup-

plement (ONS) enriched in eicosapentaenoic acid (EPA), γ-linolenic

acid (GLA), vitamin A, vitamin C, vitamin E, selenium and 5.7-mg zinc

(Oxepa, Abbott Nutrition, Abbott Laboratories) or isocaloric–

isonitrogenous product (prepared by the same manufacturer). The

ONS or control product will be administered in the morning.

In addition, the study NCT04407572 is an observational study

aimed at measuring serum zinc, vitamin D and vitamin B12 levels in

pregnant women with COVID-19. Another observational study

(NCT04412746) will assess the prevalence of diabetes among hospi-

talized patients with COVID-19 receiving hydroxychloroquine,

azithromycin and zinc or lopinavir/ritonavir.

7 | CONSIDERATIONS FOR FUTURE
DEVELOPMENT OF DRUGS TARGETING ZINC

Many lines of evidence suggest the relationship between zinc and

COVID-19 and support the hypothesis that targeting zinc may lead to

the development of new drugs for COVID-19. Increasing intracellular

zinc is among mechanisms of action of chloroquine, a drug being

repurposed for COVID-19 (Xue et al., 2014). It is plausible that the ther-

apeutic mechanisms induced by chloroquine in patients with COVID-

19 at least in part result from its impact on zinc levels. Disulfiram

(Sargsyan et al., 2020) and tetracyclines (Sodhi & Etminan, 2020) are

among already known drugs that have been proposed to combat

COVID-19 based on their effects on zinc. Disulfiram increases intracel-

lular zinc similarly to chloroquine (Sargsyan et al., 2020; Wiggins

et al., 2015).

Although the above-mentioned agents apparently have many

mechanisms of action, the entrance of other metal-binding com-

pounds into clinical studies raises the possibility that investigating

zinc-binding drugs may lead to the development of pharmacotherapy.

An example of such successful metal-binding drug is PBT2, which was

safe and well tolerated in clinical trials (Huntington Study Group

Reach2HD Investigators, 2015).

The principles of a potential strategy of combating SARS-CoV-2

with the aid of zinc targeting agent would be similar to the mechanism

of action of PBT2 in Alzheimer's disease. In the case of Alzheimer's

disease, amyloid-β is enriched in zinc, which is taken away and

redistributed by PBT2. With regard to COVID-19, a novel drug would

target labile zinc fingers in SARS-CoV-2 proteins, thus destroying the

proteins and producing an increase in intracellular concentration of

zinc ions.

The design of therapeutic agents selectively binding a labile zinc

finger motif in viral protein is theoretically feasible (Huang

et al., 1998) and would be a solution to overcome the problem of

binding of such agent to host's proteins (Garcia & Damonte, 2007).

The time is ripe for the design, synthesis and evaluation of new zinc-

binding drugs, which may be helpful during this and future pandemics.

As intracellular zinc signalling is critically involved in antiviral

immunity (Read et al., 2019), increased intracellular zinc following

administration of zinc and/or zinc ionophore and/or a labile zinc finger

targeting drug will affect function of the immune system. A question

arises what level of intracellular zinc will be beneficial and detrimental,

since also zinc excess may produce changes in immune cell number

and function (Maywald et al., 2017). On the other hand, a question is

whether disruption of zinc fingers in viral proteins with subsequent

ejection of zinc ions will produce a rise in zinc ions, which will be suffi-

cient to inhibit RdRp or this effect has to be enhanced by administra-

tion of zinc and/or its ionophore.

Currently, there is no evidence that administration of zinc will be

beneficial with regard to COVID-19, in terms of prophylaxis or treat-

ment. The ongoing clinical trials will hopefully answer this question in

the near future. The clinical trials on COVID-19 in which zinc will be

administered in addition to chloroquine will shed a light on the

involvement of ionophoric activity of chloroquine towards zinc at the

level of clinical pharmacology.

7.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in http://www.guidetopharmacology.org, the
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common portal for data from the IUPHAR/BPS Guide to PHARMA-

COLOGY (Harding et al., 2018), and are permanently archived in the

Concise Guide to PHARMACOLOGY 2019/20 (Alexander

et al., 2019).
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