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Germline genomic patterns are associated with cancer 
risk, oncogenic pathways, and clinical outcomes
Xue Xu1,2,3,4*, Yuan Zhou5*, Xiaowen Feng2,3,4,5*, Xiong Li2,3,4,6*, Mohammad Asad2,3,4, 
Derek Li2,3,4, Bo Liao7†, Jianqiang Li1†, Qinghua Cui5†, Edwin Wang2,3,4†

There is an ongoing debate on the importance of genetic factors in cancer development, where gene-centered 
cancer predisposition seems to show that only 5 to 10% of the cancer cases are inheritable. By conducting a system-
atic analysis of germline genomes of 9712 cancer patients representing 22 common cancer types along with 
16,670 noncancer individuals, we identified seven cancer-associated germline genomic patterns (CGGPs), which 
summarized trinucleotide mutational spectra of germline genomes. A few CGGPs were consistently enriched in the 
germline genomes of patients whose tumors had smoking signatures or correlated with oncogenesis- and genome 
instability–related mutations. Furthermore, subgroups defined by the CGGPs were significantly associated with 
distinct oncogenic pathways, tumor histological subtypes, and prognosis in 13 common cancer types, suggesting 
that germline genomic patterns enable to inform treatment and clinical outcomes. These results provided evidence 
that cancer risk and clinical outcomes could be encoded in germline genomes.

INTRODUCTION
The importance of genetic factors, unmodifiable random intrinsic 
DNA replication errors (“bad-luck”) (1, 2), and environmental factors 
(“environment-driven”) (3) in cancer development has been an on-
going debate. Sorting out the contribution importance of these fac-
tors to cancer development is critical to understand tumorigenesis, 
which can help in making treatment decisions and can direct in devel-
oping prevention strategies aimed at reducing cancer burden. At pres-
ent, both bad-luck and environment-driven hypotheses are dominant 
and suggest that heredity plays a minimal role in tumorigenesis.

It is noted that both bad-luck and environment-driven hypotheses 
are cancer cell centered, which means that they only tackle the ques-
tion from the cancer cell point of view but do not consider other 
aspects such as the host immune system. The contribution of genetic 
predisposition to cancer development and progression has been 
recognized for centuries and has not yet been widely investigated 
(4–6). Compared to somatic mutations in tumors, germline malignant 
variants face looser selection pressure and are inherited along with 
numerous passenger mutations (7). Systemic genome sequencing of 
normal tissues of cancer patients provides a considerable chance to 
study the germline genomic variants.

As the cancer-driving genetic germline variants distribute sparsely 
across genomes and are restricted to a small set of genes (7), inves-
tigations of germline genetic variants have been largely restricted to 
the known cancer driver genes including tumor suppressors and the 
ones closely related to DNA repair, oncogenic signaling pathways, 

and cell cycle (8, 9). For example, individuals diagnosed with colorectal 
cancer among the first-degree relatives who have Lynch syndrome 
(10) have been shown to carry DNA repair defects that disabled 
DNA damage resurrection in germ lines and therefore accumulated 
genetic alterations that led to colon cancer. Germline mutated Ras 
has been shown to be associated with developmental disorders (11) 
and cardiofaciocutaneous syndrome (12). Germline BRCA1/2 mu-
tations are known to be directly associated with increased risks in 
multiple cancer types including breast and ovarian cancers (13–15). 
More recently, the systemic analysis of the associations between 
germline variants and cancer susceptibility has been performed (16). 
This analysis, on the one hand, supports the idea that the important 
cancer-related information is implicated in germline genomes, but 
on the other hand, each of the selected variants has a small penetrance 
for a small fraction (i.e., 1 to 2%) of the population only (i.e., depend-
ing on allele frequencies), indicating that individual germline variants 
could not be a sole informative descriptor of germline genomes. 
Consequently, although individual gene- or variant-centered studies 
have proven to be informative, so far, only a handful of associations 
between genes and cancer risk have been determined (17).

Thus, we took another approach and investigated whether a ge-
nomic pattern or a substantial, repeatedly occurring sequential pro-
file in germline genomes could serve as a promising measurement 
for malignant genetic predisposition. To this end, we conduct-
ed a systematic analysis of the germline genomes of 9712 cancer 
patients representing 22 cancer types and 16,670 noncancer indi-
viduals and revealed seven cancer-related germline genomic patterns. 
Further investigations focusing on 7214 cancer patients of European 
ancestry highlighted that one of them (i.e., susceptibility genomic 
pattern for smoking or a conditional genetic risk factor) was signifi-
cantly more enriched in the germline genomes of smoker patients 
than in those of nonsmoker patients. These results suggested that germ
line genomic patterns could provide an inspiring measurement 
for cancer susceptibility. Furthermore, germline subgroups defined 
by the patterns were significantly correlated to clinically meaning-
ful differences in terms of cancer histological subtypes, onco-
genic mechanisms, and survival outcomes in 10 common cancer 
types. These results implied that cancer genetic risk could be encoded 
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in germline genomes in the form of not only genes such as BRCA1/2 
but also genomic patterns. We speculated that further analysis of 
germline genomic patterns may unravel genetic mechanisms of dis-
eases, where molecular mechanisms could be beyond the current 
gene-centered paradigm.

RESULTS
Genomic patterns in cancer germline genomes
We obtained 430,772,708 germline substitutions from the whole-
exome sequencing data of 9712 cancer patients in The Cancer 
Genome Atlas (TCGA) (18), representing 22 cancer types and 
46,998,783 somatic substitutions from their paired tumor genomes. 
Germline mutational catalog was generated by summarizing poten-
tial substitution profiles, where variations were incorporated with 
sequential sequence contexts. Meanwhile, whole-exome data of 
16,670 noncancer individuals from three cohorts (see Materials and 
Methods) were merged to form a noncancer dataset, which served 
as the background. Blood cancers were not included for further 
analysis (see Materials and Methods). Cancers from 22 primary 
sites included adrenal gland (ACC), bladder (BLCA), bone marrow 
(LAML), brain (LGG and GBM), breast (BRCA), cervix (CESC), 
colon (COAD), eye (UVM), head and neck (HNSC), kidney (KIRP, 
KIRC, and KICH), liver (LIHC), lung (LUAD and LUSC), lymph 
node (DLBC), ovary (OV), pancreas (PAAD), bone, muscle, and fat 
(SARC), prostate (PRAD), skin (SKCM), stomach (STAD), testis 
(TGCT), thyroid (THCA), and uterus (UCEC).

Genetic variants aggregated in a germline genome could be viewed 
as accumulated outcomes of mutational processes that happened to 
its ancestral genomes and evolutionary genetic polymorphisms. A 
germline genomic pattern presents a pan-genome enrichment of 
recurring substitutions in a sequence context within germline ge-
nomes. Intuitively, a genomic pattern pertaining to cancer risk is 
most likely to display detectable enrichment in the germline genomes 
of cancer patients. Genomic patterns are buried in the high-dimensional 
genomic sequence features so that extracting the genomic patterns 
becomes a tedious and computationally intensive task by applying 
statistical methods. Nonnegative matrix factorization (NMF) enables 
interpretable feature extraction from high-dimensional data (19, 20) 
and has been used in extracting biological meaningful somatic mu-
tational signatures in tumors (21–23). Therefore, we adapted this 
approach for germline mutational catalogs (Materials and Methods; 
figs. S1 and S2), demonstrated its stability, and then applied it to the 
germline mutational catalogs of the cancer patients and noncancer 
population (for background noise reduction). By doing so, we iden-
tified seven distinct genomic patterns [named cancer-associated 
germline genomic pattern (CGGP)] (Fig. 1 and data S1) along with 
their contributions that were represented by their weighing factors 
(data S2). Further analysis confirmed that none of the genomic pat-
terns were sequencing artifacts (23). To test the robustness of the 
germline genomic patterns against the effects of potential sequencing 
artifacts, we have performed various validation tests using different 
sets of variants, subsets of samples, or conditions to reidentified 
CGGPs. Briefly, we have tried to (i) remove variants in repeats and 

Fig. 1. CGGPs deciphered from the germline genomes of cancer patients. The profile of each CGGP is displayed in the order of 12 substitution subtypes: A>C, A>G, 
A>T, C>A, C>G, C>T, G>A, G>C, G>T, T>A, T>C, and T>G, which are also denoted in different colors. The characters in the bottom subtabs indicate the reference trinucleotides, 
and the substituted nucleotides in the central position are colored based on the 12 substitution subtypes.
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outlier samples that are likely to be associated with batch effects ac-
cording to previous studies (named as the DP20masked condition 
here) (24–26); (ii) remove the variants in low mappability regions 
(similar to the DP20masked condition); (iii) use alternative read 
depth thresholds (similar to the DP20masked condition); (iv) re-
move low-quality variants; (v) consider subsets of samples from 
different sequencing centers, whole-genome amplification protocol 
before sequencing, or exome capture array platforms; (vi) split the 
dataset by population ancestry [following the implication from 
Harris and Pritchard (27)]; (vii) use exon-defined strand-specific muta-
tional profiles; and (viii) use germline variants called by Huang et al. 
(16). Detailed methods are available in Supplementary Materials and 
Methods. In general, we found that the genomic patterns were re-
producible (with collapsed cosine similarities ≥ 0.95 and average 
cosine similarities ≥ 0.75 to the original germline genomic patterns) 
in these conditions (table S1). Besides, the seven CGGPs were not 
evenly stable across all conditions. CGGP_C, CGGP_D, CGGP_E, 
CGGP_F, and CGGP_G were stable for most of the conditions. By 
contrast, CGGP_A and CGGP_B were less stable, showing a cosine 
similarity of <0.75 in several conditions. Therefore, these two CGGPs 
should be interpreted with caution, and these two CGGPs could be 
further refined in the future when more cancer germline genomic 
data are available. Last, as the DP20masked condition might reduce 
the influence of repeat sequences and outlier samples, we also in-
cluded the CGGP genomic pattern matrix and the genomic pattern’s 
weighing factor matrix of DP20masked condition for each TCGA 
sample available in data S1 and S2, respectively.

Figure 1 illustrates the visualization of seven CGGPs. CGGP_A, 
CGGP_D, and CGGP_F were mainly characterized by an enrichment 
of transition mutations. CGGP_F was characterized by A>G and 
T>C variants, while CGGP_A and CGGP_D contained mainly C/
T>T/C and G/A>A/G variants. Other context-dependent mutations 
were also revealed in these three patterns, and when combined with 
other CGGPs, CGGP_A and CGGP_D mainly contributed to lung, 
pancreas, and stomach cancers.

Signals of CGG>CAG and CCG>CTG were the traits of CGG-
P_B. When used in combination with CGGP_C or CGGP_E, CGG-
P_B was a potential contributor to the brain, breast, cervix, colon, 
rectum, kidney, lung, and stomach cancers (see below).

CGGP_C appeared to be a dominant pattern, with the strongest 
assigned signals and weights in samples among CGGPs. This pat-
tern was mainly accounted for the transitions of A>G, G>A, C>T, 
and T>C with modest preferences for sequence contexts.

Conspicuous signals in CGGP_E led to the formation of a local 
triple nucleotide profile of repeated nucleotides, including CAC>CCC, 
GAG>GGG, ACA>AAA, GCG>GGG, CGC>CCC, TGT>TTT, CTC>CCC, 
and GTG>GGG. We found that CGGP_E was a genetic susceptibility 
germline genomic pattern for tobacco smoke, and the smokers whose 
germ line carried CGGP_E had elevated risks in 13 common cancer 
types. Although enrichment of CGGP_E would imply biologically 
meaningful information in certain cancer types, the combination of 
multiple CGGPs provides much more insights (see below).

CGGP_G was characterized in the preference of TA/GT>TG/AT 
and AC/TA>AT/CA mutations as well as modest overall assigned 
signals in other mutational profiles. Weights (i.e., representing the 
contribution of the pattern to a sample) for CGGP_G in germline 
genomes of cancer patients were significantly higher than those 
granted by noncancer individuals; the differences between them 
were also the most prominent in seven CGGPs (fig. S3). To examine 

whether the seven genomic patterns were cancer specific, we applied 
our modified NMF approach to the germline exome sequences of 
noncancer individuals (n = 16,670) and identified six genomic pat-
terns. Patterns except CGGP_E were reproduced (cosine similarities 
were 0.99, 0.98, 1.00, 0.97, 0.93, and 1.00 for CGGP_ A, B, C, D, F, 
and G, respectively). We further extended this analysis to the germ-
line dataset derived from the combination of the cancer patients 
and noncancer individuals (n = 9712 + 16,670) and found that all 
seven patterns were reproducible. These results implied that CGGP_E 
might be a pattern that was more enriched in cancer patients’ germ-
line genomes than noncancer individuals.

To examine whether genomic patterns are different between 
Asian, African, and European ancestry patients, we tried to repro-
duce CGGPs in 7214 TCGA cancer patients of European ancestry. 
The resulting CGGPs had a high similarity with the original CGGPs 
(cosine similarity = 0.99; data S1). The algorithm for generating 
CGGPs requires several thousands of samples to obtain stable CGGPs; 
however, the sample sizes of the Asian ancestry (n = 593) and African 
ancestry (n = 898) patients in TCGA were not sufficient to obtain 
stable CGGPs. Therefore, we decided to focus on the patients of 
European ancestry in the following analyses.

CGGP_E was a susceptibility genomic pattern for  
tobacco smoke
A genetic predisposition could collaborate with exogenous cancer 
risk factors to drive tumorigenesis. While tobacco smoke is a well-
recognized exogenous risk factor for inducing cancer, less than 15% 
of the smokers would end up developing lung cancer. Individual fates 
are affected not only by exposing to mutagens but also by their geneti-
cally determined sensitivity to mutagens. Thus, we determined whether 
any CGGP could be associated with tobacco smoking in cancer pa-
tients. We therefore examined the enrichment of each CGGP be-
tween the germ lines of smoker and nonsmoker patients.

Previously, the Catalogue of Somatic Mutations in Cancer (COSMIC) 
has identified 30 tumor somatic mutational signatures (http://cancer.
sanger.ac.uk/cosmic/signatures), in which signatures 4 and 29 have 
been reported to be the somatic mutational imprints of tobacco 
smoking and tobacco chewing habit in tumors. It has been reported 
that at least 17 cancer types were linked to smoking based on the 
presence of signatures 4 and 29 in tumors associated with smoking 
(28). To examine the association between CGGPs with smoking, we 
partitioned the cancer patients into two groups: One was affected by 
tobacco smoking and the other was not, based on the presence of 
signatures 4 or 29 in tumors using the methods described previously 
(28). Comparative analyses of each of the CGGPs in the germline 
genomes between smokers and nonsmokers revealed that CGGP_E 
was significantly enriched in the smoking group across 13 common 
cancer types including lung (LUAD + LUSC, P = 8.53 × 10−2, ratio 
of means = 1.12; t test), brain (LGG + GBM, P = 1.05 × 10−12, ratio 
of means  =  1.58; t test), prostate (P  =  5.31  ×  10−11, ratio of 
means = 2.68; t test), kidney (KIRP + KIRC + KICH, P = 5.08 × 10−5, 
ratio of means = 1.20; t test), breast (P = 5.85 × 10−4, ratio of means = 
1.18; t test), stomach (P = 9.48 × 10−3, ratio of means = 1.23; t test), 
rectal (P = 4.95 × 10−2, ratio of means = 1.19; t test), thyroid (P = 3.43 × 
10−2, ratio of means = 1.71; t test), and uterine (P = 5.48 × 10−2, ratio of 
means = 1.11; t test) cancers (Fig. 2A). Cancer types with insufficient 
sample sizes (i.e., less than 50) were not examined. A higher weight 
of CGGP_E in the germline genome had a significant positive cor-
relation with the presence of smoking-related somatic mutational 

http://cancer.sanger.ac.uk/cosmic/signatures
http://cancer.sanger.ac.uk/cosmic/signatures
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signature (COSMIC signature 4) in tumor genome as for the whole 
patient population (Fig. 2B).

We further examined these associations in cancer smokers and 
nonsmokers defined by the clinical annotations. Among the TCGA 
samples, there were four cancer types (BLCA, HNSC, Lung, and PAAD) 
annotated with smoking information (28), representing 1667 smokers 
and 481 nonsmokers. We found that CGGP_E was significantly en-
riched in smokers than in nonsmokers (P = 4.50 × 10−26, ratio = 1.20; 
t test). When restricting the same analysis to individual cancer types, 
we found that similar results were obtained in lung cancer (P = 2.93 × 10−3, 
sample ratio = 179:906, ratio = 1.18; t test) and HNSC (P = 4.97 × 
10−2, sample ratio = 208:393, ratio = 1.10; t test) but not in BLCA 
and PAAD. Notably, bladder tumors rarely contain signature 4 in 
tumor samples (28), and it may explain why we did not observe the 
enrichment of CGGP_E in smokers. It should be noted that some 
nonsmokers defined by clinical information could be passive smok-
ers, with exposure to radon or air pollution or with self-reported 
mistakes. Furthermore, a positive association (Spearman correlation 
rho = 0.36, P = 2.1 × 10−46; Fig. 2C) between CGGP_E and signature 
4 was found in clinically annotated smokers but not in nonsmokers. 

When restricted to specific cancer type, Spearman correlations be-
tween CGGP_E with signature 4 in lung and head and neck cancers 
were 0.13 (P = 1.2 × 10−4) and 0.44 (P < 2.2 × 10−16), respectively. 
The Spearman correlation in pancreatic cancer was not available 
because of the lack of enough smoking samples, while for TCGA 
clinical information–defined nonsmokers, no significant correlation 
was found for these cancer types. Together, the results were similar 
when smokers and nonsmokers were defined either by signatures 
4 and 29 or by clinically annotated smoking information.

Next, we determined whether age and gender of patients affect 
the association between CGGP_E and signature 4. We found that 
CGGP_E and signature 4 were positively associated in both male 
(n = 1152, Spearman rho = 0.48, P < 2.2 × 10−16) and female (n = 515, 
Spearman rho = 0.21, P = 8.0 × 10−6) smokers with a similar associ-
ation strength, suggesting that smoking-induced cancer risk did not 
differ appreciably between genders. These results agree with previ-
ous epidemiologic surveys of lung cancer risk and smoking (29, 30). 
Further, such positive associations were observed in both younger 
smokers (<66 years old at diagnosis, n = 726, Spearman rho = 0.46, 
P < 2.2 × 10−16) and older smokers (>65 years old at diagnosis, n = 864, 

Fig. 2. The relationship between germline genomic pattern E and tobacco mutagen sensitivity. (A) Germline genomic pattern (CGGP_E) is highly enriched in smoker 
patients than in nonsmoker patients in nine cancer types (P < 0.1, t test). Gray violin boxes represent nonsmoker patients, while the boxes with other colors represent 
smoker patients. (B) Relative contributions (i.e., weights) of CGGP_E in germline genomes are significantly correlated to the possession of smoking-related somatic 
mutational signature 4 (COSMIC signature 4) in their paired tumor genomes. (C) Relative contributions (i.e., weights) of CGGP_E in germline genomes are positively cor-
related with COSMIC signature 4 in their paired tumors in the TCGA clinical information–defined smokers but not in the TCGA clinical information–defined nonsmokers. 
Notably, only cancer types with a sizable amount of clinical smoking information (e.g., HNSC, Lung, and PAAD) were considered. N/A, not applicable.
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Spearman rho = 0.19, P = 6.2 × 10−8), suggesting that for a person 
who had a higher contribution of CGGP_E in the germline genome, 
tobacco smoke did not substantially affect more for younger than 
older smokers to get cancer. However, we did not have the data about 
the starting smoking age for these patients. Thus, one should be 
cautious when interpreting these results.

We also examined the association between smoking quantity and 
CGGP_E and found no significant association between CGGP_E 
and pack-years of smoking. A positive correlation was reported be-
tween smoking quantity and signature 4 in lung and liver tumors but 
not in other cancer types (28). Together, these results suggested that 
CGGP_E might be a susceptible CGGP for smoking, i.e., smoking 
alone could not necessarily drive tumorigenesis unless CGGP_E was 
presented in the germline genome of a tobacco smoker. Furthermore, 
in general, a higher contribution of CGGP_E implied shorter sur-
vival (P = 0.01, log-rank test). More significant results were observed 
in four cancer types including adrenal gland (P = 1.1 × 10−4), bladder 
(P = 5.3 × 10−4), kidney (P = 6.2 × 10−3), and stomach cancers 
(P = 3.3 × 10−3). These results suggested that CGGP_E could have a 
quantitative effect on cancer development and prognosis. Unexpect-
edly, such a correlation was not observed in lung cancer (see Discus-
sion). Further, we obtained similar results when assigning CGGP_E 
in a binary fashion to patients (see Materials and Methods).

To further understand the molecular mechanisms of CGGP_E’s 
impact on cancer development, we ranked patients on the basis of 
the contributions of CGGP_E in germ lines in descending order and 
selected patients from the upper quartile and the lower quartile to 
form two subgroups. Genes containing mutations that fitted CGGP_E 
were examined and compared between the two groups. Well-known 
cancer drivers, such as fibronectin type III (FN3), receptors of tyro-
sine kinases (RTKs), and genes encoding epidermal growth factor 
(EGF)–like domain proteins and insulin-like growth factor binding 
proteins, were significantly more frequently mutated in the upper 
quartile group [false discovery rate (FDR) < 0.05; data S3]. These 
results suggested that the presence of CGGP_E in germ lines might 
introduce significantly more mutations to RTKs and other cancer driver 
genes, which, in turn, could induce higher carcinogenesis risks for 
individuals when exposed to mutagenic agents. Thus, we speculat-
ed that, except tobacco smoke, CGGP_E might be a susceptibility 
genomic pattern for other mutagens. This hypothesis could be fur-
ther tested in the future when related data become available.

These results provided a potential rationale for the long-established 
observation that less than 20% of heavy smokers would develop 
lung cancer in their lifetime. When extending the same analysis to 
other CGGPs to understand molecular mechanisms, we did not obtain 
biologically meaningful results. However, in specific tumor types, other 
CGGPs showed a casual positive correlation with smoking signatures 
[e.g., CGGP_G was significantly enriched in smoker patients of col-
orectal (P = 3.2 × 10−7), head and neck (P = 3.6 × 10−5), kidney (P = 9.1 × 
10−18), lung (P = 9.3 × 10−19), prostate (P = 1.0 × 10−32), stomach 
(P = 2.9 × 10−15), and thyroid (P = 6.4 × 10−6) cancers], suggesting 
that latent mechanisms might still be revealed for the CGGPs.

CGGPs affected the somatic mutation of key oncogenic 
genes in tumors
To explore whether the CGGPs are associated with somatic muta-
tions of key cancer drivers and family history of cancer, in each cancer 
type, we partitioned the patients into two subgroups, either those 
who carried or those who did not carry any mutation in a given gene, 

and examined whether the weighing factors of CGGPs differed be-
tween the subgroups (see Materials and Methods). Because of the 
sample size limitation, only the most frequently somatically mutated 
genes across all cancer types reported by TCGA were examined: 
TP53, PIK3CA, KMT2D, FAT4, ARID1A, PTEN, KMT2C, APC, 
KRAS, FAT1, ATRX, NF1, ZFHX3, IDH1, ATM, TRRAP, RNF213, 
AKAP9, and GRIN2A. Patients of each cancer type were partitioned 
based on whether a given gene was nonsynonymously mutated in 
their tumor tissues, and distributions of CGGP weighing factors were 
examined between such subgroups.

Our observations implied that CGGPs had impacts on which so-
matically mutated genes were to be selected in tumors (Fig. 3 and 
table S2). In 18 cancer types, we observed that higher weighing factors 
of certain CGGPs were associated with a higher somatic mutation 
frequency of the above genes (see Materials and Methods). Across 
six cancer types (LUSC, BLCA, COAD, OV, PAAD, and THCA), 
AKAP9 mutation was significantly associated with higher weighing 
factors of CGGP_C, D, or G. For BLCA, COAD, GBM, OV, and 
SKCM, KMT2D mutation was significantly associated with higher 
weighing factors of CGGP_A, CGGP_B, CGGP_B and F, CGGP_E, 
and CGGP_F and G. Some associations were observed in individual 
cancer types. For example, significant associations were observed 
between APC somatic mutations and CGGP_A in COAD and be-
tween ATM somatic mutation and CGGP_A in KIRC. These results 
suggested that germline genomic patterns could exert constraints on 
somatically mutated genes in tumors, and although CGGP_E was 
prominent in cancer patients, the combination of multiple germline 
genomic patterns might exert stronger constraints on selecting tumor 
somatic mutations. Therefore, CGGP combinations could serve as 
features for classifying cancer patients through thresholding or un-
supervised clustering methods.

Single CGGPs and their combinations were associated 
with cancer types
In search of meaningful one or more CGGP combinations to distin-
guish cancer and noncancer genomes, we conducted statistical analyses 
of comprehensive combinations of the CGGPs (k = 1, 2, and 3). 
Germline genomic data of the noncancer population (n = 16,670) 
were further used, and statistical comparisons were conducted be-
tween patients of each cancer type and noncancer population (see 
Materials and Methods). We demonstrated that a set of single CGGPs 
or their combinations were significantly more prevalent in cancer 
patients compared to noncancer population, and germline groups 
defined by single CGGPs or their combinations (k = 1, 2, and 3) 
were significantly enriched in distinct cancer types (Fig. 4 and table 
S3). Genomic patterns CGGP_E, D, and G have more contributions 
to cancer samples than noncancer samples in most cancer types, 
whereas CGGP_A and F have smaller contributions to cancer samples 
than noncancer samples in most cancer types (Fig. 4). CGGP_B’s 
contributions were higher in some cancer types but smaller in some 
other cancer types than noncancer samples (Fig. 4). These results 
suggested that germline genomes of cancer and noncancer could have 
certain differences in genomic sequence arrangements; further, they have 
an implication for the germline pattern’s role in tissue-specific carcino-
genesis. For example, patients with higher contributions of CGGP_E 
were more enriched in being diagnosed with 13 of 16 cancer types, such 
as LUAD, LUSC, SKCM, and STAD (FDR = 1.83 × 10−96, 1.04 × 10−80, 
9.92 × 10−30, and 1.55 × 10−59, respectively, 2 test). Patients with 
higher contributions of the CGGP_B + CGGP_E combination in 
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their germ lines were more enriched in being diagnosed with BLCA 
and GBM (FDR  =  4.11  ×  10−9 and 4.51  ×  10−12, respectively, 2 
test). GBM, BLCA, BRCA, STAD, SKCM, COAD, and THCA di-
agnoses were significantly enriched in patients with higher contri-
butions of the CGGP_D  +  CGGP_E combination (FDR  = 
6.94 × 10−57, 8.56 × 10−53, 7.04 × 10−157, 4.87 × 10−67, 1.36 × 10−48, 
1.89 × 10−61, and 1.51 × 10−76, respectively, 2 test). Along this line, 
one tri-CGGP combination, CGGP_B + CGGP_D + CGGP_E, was 
enriched in GBM (FDR = 2.59 × 10−11, 2 test). Furthermore, patients 
who carried one CGGP (CGGP_A/CGGP_D/CGGP_E/CGGP_F) in 
their germline genomes were significantly enriched with six COSMIC 
somatic mutational signatures in their tumor tissues compared to 
patients without the CGGPs (table S4). Patients who carried the 
CGGP_D + CGGP_E combination in their germline genomes were 
significantly enriched with six COSMIC signatures in their corre-
sponding tumor tissues in comparison with patients without this 
CGGP combination, implying that germline genomic patterns had 

the potential to shape or select somatic mutational processes during 
tumorigenesis. In summary, these results suggested that CGGPs or 
their combinations could be associated with triggering of endoge-
nous mutations in tumors and could shape the carcinogenesis and 
tumor proliferation process.

We also examined the differential contributions of CGGPs or 
CGGP combinations between cancer types and subtypes. As shown 
in table S5, CGGP_A was more enriched in LIHC than in LUAD 
(FDR = 0.01, odds ratio = 2.45) and BRCA (FDR = 0.03, odds 
ratio = 2.14). Further, the CGGP_A + CGGP_E combination was 
more enriched in LUSC than in LUAD (FDR = 0.02, odds ratio = 
4.61), BRCA (FDR = 4.57 × 10−3, odds ratio = 3.80), and UCEC 
(FDR = 0.03, odds ratio = 3.48). The enrichments of certain CGGP 
(or CGGP combination) in GBM, OV, TGCT, LIHC, LUAD, and 
BRCA in comparison with other cancer types were also observed. 
CGGPs also differentially contributed to cancer subtypes of breast 
and lung cancers (table S5). For example, either single CGGP_A, B, 

Fig. 3. Enrichment of germline CGGPs implied somatic mutations in oncogenic genes in paired tumors. Elevated weighing factors of CGGPs are correlated with the 
higher prevalence of somatic mutations on the 18 most frequently mutated genes across all cancer types. The results for 18 common cancer (sub)types are summarized as a 
pie chart array. Each small pie chart in the plot is split to seven slots (starting from the top-right slot and going clockwise, CGGP_A to CGGP_G alphabetically). A gray slot indicates 
that no significant result is observed in corresponding cancer (sub)type and somatically mutated gene pair. An orange or a light blue slot indicates a positive (ratio of 
mean CGGP weights > 1, mutated samples versus nonmutated samples) or negative (ratio of mean CGGP weights < 1, mutated samples versus nonmutated samples) 
significant association (FDR < 0.25) of a CGGP and a somatically mutated gene in corresponding cancer (sub)type, respectively. A dark pink or a dark blue slot indicates 
a high confidence association (FDR < 0.25 and empirical P < 0.05 by 10,000 times of randomization tests) of a CGGP and a somatically mutated gene in corresponding 
cancer (sub)type, respectively.
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C, D, and G or the combinations of CGGP_A + CGGP_G, CGGP_B + 
CGGP_C, CGGP_B  +  CGGP_F, and CGGP_C  +  CGGP_G were 
significantly different between the basal and luminal breast can-
cer subtypes. Similarly, the CGGP_A  +  CGGP_E combination 
could distinguish LUAD and LUSC lung cancer subtypes. These 
results suggested that CGGPs could distinguish cancer types and 
subtypes.

CGGP-defined germline subgroups were associated 
with distinct tumor histological subtypes, oncogenic 
pathways, and prognosis
We next explored whether CGGPs could classify germline genomes 
into subgroups for a given cancer type. To do so, we clustered the 
patients of each cancer type (cancer types with insufficient sample 
sizes were excluded for the analysis) based on CGGP contribution 
profiles in germline genomes. The partitions were conducted using 
unsupervised hierarchical clustering. For most cancer types, the 
CGGPs were able to classify germ lines into stable subgroups; by 
applying dimension reduction methods such as principal compo-
nents analysis (PCA) ahead of hierarchical clustering, we obtained 
similar results. CGGP-defined germline subgroups exhibited cor-
relations with cancer histological subtypes in four cancer types: 
brain, lung, kidney, and stomach cancers. Cancer types that lacked 
histology diagnosis information were not analyzed. Brain cancer 

patients were clustered into three germline subgroups. Subgroup 1 
was enriched with GBM samples, while subgroup 3 was enriched 
with less-aggressive astrocytoma samples (Fig. 5A). Subgroup 2 was 
also enriched with GBM samples but, unlike subgroup 1, was in fa-
vor of CGGP_A rather than CGGP_E (subgroup 1 + 2 n = 289, sub-
group 2 n = 520, P = 1.00 × 10−4 for GBM, 2 test). GBM-enriched 
germline subgroups had significantly shorter survival than the 
other subgroup (P = 4.00 × 10−5 and 7.00 × 10−16; log-rank test). 
Likewise, three germline subgroups were found in kidney cancer patients. 
Two of the subgroups were enriched with clear cell renal carcinoma; 
the other was dominated by KIRP and KICH (P = 2.40 × 10−2, 2 
test). Significant survival differences were also observed between 
the subgroups (subgroup 1 versus 2: P = 7.00 × 10−2, subgroup 1 
versus 3: P = 4.00 × 10−3; log-rank test). Furthermore, three germ-
line subgroups of lung cancer patients were significantly enriched 
with adenocarcinoma and squamous cell carcinoma samples 
(subgroup 1 n = 124, subgroup 2 + 3 n = 603, P = 1.60 × 10−3, 
2 test). These results suggested that CGGPs in the germline genomes 
of these three tissues could determine which histological subtypes 
of their tumors could be developed and the patient prognosis as well.

In nine common cancer types (bladder, brain, breast, cervical, 
head and neck, kidney, lung, prostate, and uterine cancers), CGGP-
defined germline subgroups were significantly associated with 
prognosis (log-rank test, P = 7.50 × 10−2, 1.00 × 10−4, 1.00 × 10−4, 

Fig. 4. Differential contribution of CGGPs in the germline genomes between cancer and noncancer samples. One CGGP or CGGP combinations that had less than 
50 samples were excluded. 2 test (FDR < 0.25) was used to test whether cancer and noncancer samples could be distinguished by CGGPs or CGGP combinations.
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3.10 × 10−3, 1.60 × 10−3, 2.40 × 10−2, 1.60 × 10−3, 9.50 × 10−3, and 
7.30 × 10−4, respectively; for cancer types with more than two sub-
groups, the most significant P value was reported) (Fig. 5B). These 
results suggested that for these nine common cancer types, clinical 
outcomes were partially determined by the CGGPs in germline 
genomes.

These results implied that CGGP profiles in germ lines could 
also have influences on the oncogenic pathways in tumor tissues. In 
each of the above nine cancer types, we selected the differentially 
expressed genes between subgroups and performed functional en-
richment analysis to examine the affected oncogenic pathways (see 
Materials and Methods). The main differences between subgroups 

Fig. 5. Associations between CGGP-defined subgroups with cancer histological subtypes, oncogenic pathways, and clinical outcomes. (A) Brain tumor patients 
were partitioned into subgroups with distinct clinical and biological traits through unsupervised hierarchical clustering of the distribution profile of the genomic patterns 
in patients’ germ lines. (B) Visualization of tSNE illustrated the subgroups identified in A1. (C) Significant survival differences between the brain subgroups. (D) Significant 
survival differences between germline subgroups in bladder, breast, cervical, head and neck, kidney, lung, prostate, and uterine cancers. Cancer types with insufficient 
sample size or without histological diagnosis information were excluded from analyses.
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1 and 2 of brain cancer patients were ubiquitin and protein degra-
dation functions and metabolism pathways (Table 1). Notably, sub-
groups 1 and 2 were both mainly consisted of GBM patients but 
were diverse in carrier status of germline patterns. Genes related to 
the ubiquitin and protein degradation functions and metabolism 
pathways were differentially expressed in tumor tissues between 
the subgroups of at least six cancer types. Differential expression 
of the genes in the biological processes related to cell cycle and 
mitochondria between the subgroups was observed in lung cancer 
(Table 1).

Next, we examined whether normal tissues had different gene 
expression programs between the CGGP-defined subgroups. With 
a limited number of normal tissue expression profiles available in 
TCGA, only cancer types with sufficient overall and subgroup-wise 
sample size, i.e., breast (n = 76), kidney (n = 122), and lung (n = 95) 
cancers, were selected for this analysis. We identified differentially 
expressed genes in the normal tissues between the subgroups of 
breast, kidney, and lung cancers. Genes were functionally clustered 
and annotated using the same method described above. Gene 
Ontology (GO) terms of biological processes, molecular functions, 
and pathways showed significant differences between subgroups 
(table S6). For instance, differentially expressed genes between sub-
groups 1 and 2 of breast cancer were enriched in the following 
biological processes and functions: cell cycle (FDR = 2.0 × 10−19), 
mitosis (FDR = 3.3 × 10−18), mitotic nuclear division (FDR = 3.4 × 10−14), 

cell division (FDR = 1.1 × 10−13), and centromere (FDR = 2.4 × 10−9). 
The modulated genes between subgroups 2 and 3 of breast cancer 
have enriched functions, and pathways that are related to ribosome 
and mRNA splicing differed (FDR < 10−10). The above results im-
plied that the impacts CGGPs imposed on patients’ tumor tissues 
were prominent but indirect. For example, divergence of adenosine 
triphosphate (ATP)–related metabolism between kidney cancer’s 
normal tissue subgroups 1 and 3 transformed to differences in 
immune response functions in tumors. This was in accordance with 
the fact that carcinogenesis diseases are influenced by both genetics 
and environmental factors. Together, these results implied that con-
tributions of CGGPs in patients’ germline genomes could play an 
important role in affecting gene regulation programs in normal 
tissues and are implicitly associated with oncogenic pathways in 
tumor progression and metastasis.

DISCUSSION
In this study, germline genomes paired with tumor genomes of 
7214 cancer patients of European ancestry and germline genomes 
of 16,670 noncancer individuals were analyzed to reveal enriched se-
quential context–dependent variant profiles that could be associated 
with cancer risk, tumorigenesis, and clinical outcomes. CGGPs pro-
vide an aspiring method to examine the impact of germline genomes 
on cancer development, latent molecular mechanisms, and clinical 

Table 1. Significant differences in the gene expression profile of the corresponding tumor tissues between the CGGP-defined subgroups.  

Cancer type CGGP-defined
subgroups Function term P FDR

Bladder 2 versus 3 Pathways and metabolism 9.80 × 10−13 1.81 × 10−9

Bladder 2 versus 3 Ubiquitin and protein 
degradation 6.20 × 10−6 0.01

Bladder 1 versus 3 Pathways and metabolism 8.31 × 10−9 1.54 × 10−5

Brain 1 versus2 Ubiquitin and protein 
degradation 7.87 × 10−6 0.01

Brain 1 versus2 Pathways and metabolism 1.13 × 10−5 0.02

Cervical 1 versus 3 Pathways and metabolism 9.80 × 10−13 1.81 × 10−9

Cervical 1 versus 3 Ubiquitin and protein 
degradation 9.03 × 10−6 0.02

Cervical 2 versus 3 Pathways and metabolism 8.31 × 10−9 1.54 × 10−5

Kidney 3 versus 1 Pathways and metabolism 9.80 × 10−13 1.81 × 10−9

Kidney 3 versus 1 Ubiquitin and protein 
degradation 6.20 × 10−6 0.01

Lung 2 versus 1 Pathways and metabolism 8.12 × 10−17 2.00 × 10−13

Lung 2 versus 1 Ubiquitin and protein 
degradation 7.18 × 10−12 1.29 × 10−8

Lung 2 versus 1 Mitochondria 1.69 × 10−8 3.04 × 10−5

Lung 2 versus 1 Cell cycle 4.70 × 10−8 8.42 × 10−5

Lung 3 versus 1 Ubiquitin and protein 
degradation 2.14 × 10−7 3.97 × 10−4

Uterine 3 versus 1 Pathways and metabolism 9.80 × 10−13 1.81 × 10−13

Uterine 3 versus 1 Ubiquitin and protein 
degradation 2.04 × 10−5 0.04

Uterine 2 versus 1 Pathways and metabolism 8.31 × 10−9 1.54 × 10−5
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outcomes. The interaction of genetic and environmental factors often 
leads to tumorigenesis. We showed that individuals with CGGP_E 
could be sensitive to tobacco smoke for developing 13 cancer types. 
Thus, for an individual who has a higher weight of CGGP_E in his/
her germ line, it could be possible to reduce the risk of cancer devel-
opment by actively avoiding exposures to tobacco smoke. Unexpectedly, 
although a higher contribution of CGGP_E in germ lines conferred 
a poor prognosis in various cancer types, such an association was 
not observed in lung cancer patients. One of the explanations could 
be that tobacco mutagens are directly exposed to the lung so that 
tobacco mutagens could overpower the conditional genetic factors 
for lung cancer development and metastasis. Thus, the clinical out-
comes of lung cancer patients could be mainly driven by tobacco 
smoking. This hypothesis agrees with the fact that more than 85% 
of lung cancer patients are smokers. On the other hand, for other 
cancer types such as bladder cancer, the tissues are indirectly ex-
posed to tobacco mutagens so that germline CGGP_E could play a 
more important role in tumorigenesis and outcomes.

Distinct combinations of CGGPs in germ lines were associated 
with instinct cancer types, suggesting that germline genetic architec-
ture with different fractions of the CGGPs has an impact on tumor-
igenesis in a tissue-specific manner and has also constraints on many 
aspects of tumorigenesis and metastasis. For example, the germline 
subgroups defined by CGGPs were significantly associated with tumor 
histological subtypes, mechanisms of carcinogenesis, and prognosis 
for at least 13 common cancer types, and the strengths of CGGPs in 
germline genomes were associated with key somatic cancer drivers 
in paired tumors. We also showed that CGGPs and their combina-
tions in patients’ germ lines had constraints on key somatic mutated 
genes and mutational processes (COSMIC somatic signatures) in 
paired tumors. It seems that they are mainly associated with higher 
genome instability. Germline genetic architecture could also affect 
the gene regulatory programs in normal tissues. For example, we 
demonstrated that gene expression programs of the normal tissues 
between the CGGP-defined subgroups in at least three cancers were 
notably modulated and enriched in cell cycle or other general bio-
logical processes that could contribute to cancer progression and 
metastasis. These results suggest that congenital germline variants 
encode some subtle causalities of tumorigenesis and metastasis. The 
quantitative analysis of germline variants provides intriguing depic-
tions of genomic features, which are associated with genetic diseases. 
We speculate that other genetic diseases could also be affected by 
their own specific germline genomic patterns. Furthermore, clus-
tering analysis of germline genomes using the genomic patterns 
puts forward a novel notion of population-scale genomic clustering, 
whereas previous efforts focus on representing general geographic 
subgroups through gene-based evolutionary features (31, 32).

To quantify germline-defined intrinsic cancer risk, however, it 
would require larger cohorts that can represent the general popula-
tion and a more sophisticated evaluating approach for the weighing 
factors. In this study, we focused on the proof of concept, i.e., prov-
ing the existence of germline genomic patterns and their impacts on 
somatic mutational events and clinical outcomes. Stricter criteria 
were chosen when we needed to translate consecutive weighing fac-
tors (in forms of float numbers) to binary CGGP assignments for 
these purposes. In theory, it is possible to assume a given individual 
to have a higher or lower risk of cancer by using the CGGPs, but to 
accurately quantify intrinsic cancer risks, one needs more appropriate 
criteria. For example, in our stricter rules, the boundary of confidence 

intervals was set to the point of 95% confidence, but it is widely ac-
knowledged that the lifetime risk of cancer is around 30 to 40% in 
the general population. This issue cannot be resolved simply by 
relaxing the boundary to 30%, because we have shown that CGGPs 
are better considered in groups instead of independent individual 
patterns, and therefore, the intervals should be reconciled to this 
idea. Further investigations are needed to estimate intrinsic cancer 
risks in the future.

Here, we have demonstrated that heredity plays an important 
role in cancer causation. It has been reported that certain COSMIC 
signatures in tumors are significantly associated with tumor driver 
gene mutations (33). We reported that germline genomic patterns 
were significantly associated with COSMIC signatures. Therefore, it 
is possible that germline genomic patterns are associated with so-
matic mutational signatures and then associated with tumor driver 
mutations. For example, we found that CGGP_G in HNSC was as-
sociated with somatic mutations of PIK3CA and with COSMIC sig-
nature 2. Poulos et al. (33) found that COSMIC signature 2 was also 
significantly associated with PIK3CA mutation in HNSC. These 
results implied the causality of CGGP_G for PIK3CA mutation in 
HNSC tumors. These examples provide an argument against the 
bad-luck hypothesis, which proposes that tumorigenesis is a purely 
random process of DNA replication errors and heredity plays a 
minimal role in tumorigenesis. However, tumorigenesis is a complex 
process. In the future, it is important to develop a framework to 
systematically dissect out the contributors of either bad-luck, genetic, 
or environmental factors or certain combinations of these factors. 
Last, this study provides a conceptual advance in cancer genomics, 
where the CGGP is beyond the traditional cancer risk genes. Ge-
nomic patterns could be an unnoticed type of genomic “dark matter” 
encoded in germline genomes to influence cancer development and 
progression. They could also provide another dimension of genomic 
regulation for cancer development, progression, and metastasis. 
Moreover, further investigation of germline genomic patterns could 
uncover genetic mechanisms of diseases that are beyond the gene-
centered molecular mechanisms.

MATERIALS AND METHODS
Cancers from 22 primary sites were included in this study. Note 
that although data derived from bone marrow, lymph node, and 
thymus were collected and integrated into the mutational catalogs 
(see below), only solid tumor types were analyzed.

Data and germline variant calling
To obtain germline variants of cancer patients, BAM files of the 
whole-exome sequencing of normal samples were collected from 
TCGA cohorts hosted at Genomic Data Commons (GDC) Data 
Portal (https://portal.gdc.cancer.gov/). The samples represent a non
redundant set of 9712 individuals of 22 cancer types. Variant calling 
tool HaplotypeCaller from the GenomeAnalysisToolkit (GATK) 
(version 3.8-0-ge9d806836; java -XX:ParallelGCThreads = 4 -jar 
/thepath/GenomeAnalysisTK.jar -T HaplotypeCaller -nct 4 -R 
/thepath/GRCh38.d1.vd1.fa -I /thepath/bamfile.bam --genotyping_mode 
DISCOVERY -stand_call_conf 30 -o /thepath/bamfile.vcf) was used. 
We tested the HaplotypeCaller jointed calling mode and single 
sample calling mode by calling variants from chromosome 1 of ran-
domly selected 1534 individuals from the 9712 individuals and found 
that the mutational catalogs derived from the jointed calling mode 

https://portal.gdc.cancer.gov/
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and those from the single sample calling mode highly resembled 
each other (fig. S4A). Similarly, switching to Mutect2 also did not 
affect the reproducibility (fig. S4B). Although samples representing 
blood cancers were included in the mutational catalog and the dis-
covery of germline genomic patterns, corresponding individuals and 
cohort were not further analyzed because of the concern that tumor 
cells might contaminate the peripheral blood sample to the point 
undistinguishable for allele frequency (AF) thresholding method. 
Considering the robustness of our methodology (Supplementa-
ry Materials and Methods), removing these samples in the initial 
stages would not substantially change the results reported in this 
study. To obtain the tumor somatic variants for the 9712 patients, 
we retrieved their variants, which were called by VarScan 2 and 
provided by TCGA (current release at GDC, v12.0; Supplementary 
Materials and Methods) for COSMIC analysis to coordinate with 
the configuration of the previous study (28). As for oncogene anal-
ysis, the recently updated MC3 somatic mutation dataset (v0.2.8, 
controlled version) was adopted (34).

Control dataset or the noncancer dataset consisted of noncancer 
individuals collected from three cohorts: (i) Swedish Schizophrenia 
Population-Based Case-control Exome Sequencing (dbGaP ID: 
phs000473.v2.p2), representing 12,380 individuals of age 18 to 65. 
This cohort was also used by Genovese et al. (35) for investigating 
germline and hematopoiesis-derived somatic mutations. (ii) Myo-
cardial Infarction Genetics Exome Sequencing Consortium (dbGaP 
ID: phs001000.v1.p1) collected the whole-exome sequencing data 
of 2322 noncancer individuals. (iii) Myocardial Infarction Genetics 
Exome Sequencing Consortium: Ottawa Heart Study (dbGaP ID: 
phs000806.v1.p1) contains whole-exome sequencing data of 1968 
noncancer individuals. No individual was shared by the three co-
horts. We used the samples labeled as the healthy control in these 
cohorts.

Criteria for determining germline variants
Only variants with read depth (DP) no less than 20 were retained 
for further inspection. Theoretically, germline homozygous and 
heterozygous variants would have variant allele frequency (VAF) 
signals residing around 1.0 and 0.5, respectively, with subtle influ-
ences introduced by the systemic sequencing and variant calling bias. 
Among the variants derived from peripheral blood of cancer patients, 
we observed a visible subset with VAF ranging from 0.2 to 0.3, im-
plying that putative somatic mutations generated from clonal hemato-
poiesis existed across the population (fig. S2). To avoid picking up 
somatic mutation contaminations that emerged from clonal hema-
topoiesis, which was a readily detectable process (36, 37) in elderly 
people (>65 years old, 10%) and young population (1%), we devel-
oped a method that was similar to that described by Genovese et al. 
(35); specifically, we inputted VAFs of all variants to the Gaussian 
mixture model (GMM) with default configuration to determine 
the “soft” threshold (i.e., VAF intervals) for the high-confidence 
germline variants. In the TCGA cohort, the GMM component re-
vealed that the 95% confidence interval of VAFs for heterozygous 
variants was 0.422 to 0.540. This interval was close to that reported 
previously (35). The interval of the noncancer dataset was calcu-
lated independently from patient germ line and yielded a similar 
scope (0.420 to 0.537). The criterion of VAF > 0.9 was imposed for 
the homozygous variants, as we observed that very few variants fell 
into the interval of 0.5 to 1.0 and the GMM model could not fit 
well around 0.9 to 1.0.

Discovering of genomic patterns using the NMF method
We termed the “trinucleotide profile” of a variant as the trinucleotide 
form by the immediate 5′ sequential context of the variant (i.e., the 
previous nucleotide), the variant itself, and the immediate 3′ sequen-
tial context (i.e., the next nucleotide). Previous studies in tumor 
somatic mutational signatures tended to focus on the transcribed 
strand only because of strand bias. We, however, decided to include 
both the transcribed strand and the nontranscribed strand to achieve 
presumably better signal capturing. In this study, substitutions have 
12 possibilities, and each of the two context slots has four choices, 
which build up 192 potential trinucleotide profiles. For each popu-
lation (i.e., cancer germ lines, cancer somatic mutations, and 
noncancer germ lines), the corresponding mutational catalog was 
a two-dimensional matrix of shape (192, number_of_samples), 
where each row was filled with nonnegative integers that counted 
the number of presences of the given profile within a sample.

NMF factorizes a matrix Vi × j into two smaller matrices, Wi × k 
and Hk × j. We modified the method developed previously (22) by 
introducing a hyperparameter that encouraged the exploration of 
distinct patterns through penalties addressed by the non-sparseness 
of pattern matrix. The rationale behind this was that germline ge-
nome, by nature, carried much more variants compared to somatic 
mutations in tumor genome, and the variants were less informative 
than the de novo mutations in tumors. In other words, somatic muta-
tions in tumors were more closely associated with tumorigenesis, 
whereas germline variants were, by definition, inherited from parents 
and were “noisier” and not directly associated with specific biological 
processes or disease in most cases. The number of germline genomic 
patterns was determined using the silhouette method, which was 
previously implemented for extracting tumor mutational signatures 
(23). The silhouette score (i.e., the stability of the solved genomic 
pattern) would gradually decay as more germline genomic patterns 
were extracted (k = 2 to k = 7) and then drop drastically from k = 7 
to k = 8, k = 8 to k = 9, and so on, where the score decreased from 
more than 0.5 to 0.2 or less. In addition, in k > 7 setups, the extra 
patterns would closely resemble previously known patterns (i.e., the 
ones found by k = 7 setup; cosine similarity > 0.9995). Therefore, 
k = 7 was the last point before overfitting. We tested the robustness 
of this NMF approach in several ways, where we showed that the 
approach was able to tolerate random noise. For example, randomly 
adding or removing up to 30% noise to the mutational catalog 
allowed the reproduction of original germline genomic patterns 
(see Supplementary Materials and Methods for details; the related 
source code is available as data S4). Germline genomic patterns, 
once made available, could be assigned ubiquitously to given germ-
line genomes by converging the NMF model without updating the 
pattern matrix (Wixk). In other words, new individuals could be easily 
evaluated by the germline genomic patterns.

Distinguishing CGGPs between cancer types and  
noncancer population
To identify differential contributions of single CGGPs or their com-
binations between cancer types and noncancer samples, sample-wise 
normalization was first applied to the mutational catalog matrix 
(i.e., dividing each value of 192 mutational types of one sample by 
the sum of all 192 mutational types of this sample, ensuring that the 
sum of mutational catalogs for any sample is equal to 1) to alleviate 
the technical batch effect between TCGA and noncancer cohorts. 
The contribution weights of cancer and noncancer samples were 
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resolved by taking the normalized mutational catalog matrix and 
the normalized CGGP matrix as inputs. Last, for each CGGP, sam-
ples were sorted in descending order of weighing factors, and those 
in the top 25% and the bottom 25% were selected to form two 
subgroups. 2 test was applied to test whether there was an en-
richment of a CGGP in the top 25% subgroup versus the bottom 
25% subgroup.

Clustering and visualization of the  
CGGP-defined patient subgroups
For clustering germline genomes using CGGPs, the weighing factor 
matrix was treated as the feature matrix representing the samples, 
where each vector of length seven describes its corresponding 
germline genome. The samples were then clustered via hierarchical 
clustering, where the cluster detection followed the regular tree cut-
ting principles. Similar results were obtained with or without PCA 
before clustering. tSNE (t-distributed stochastic neighbor embedding) 
(38) is a dimension reduction and visualization algorithm that has 
been applied to various fields including genome-wide association 
study (39) and protein similarity comparisons (40). This algorithm 
provides meaningful visualization of latent clusters inside high-
dimensional data, which could serve as an aid to view hierarchical 
clustering results more intuitively.

Examining of CGGPs’ impact on COSMIC somatic signatures 
and important somatic mutations in oncogenic genes
We assigned COSMIC somatic signatures using the method and 
criteria reported in (21, 22) (Supplementary Materials and Methods). 
For each CGGP, patients of each cancer type were sorted in de-
scending order of weighing factors, and individuals in the top 25% 
and bottom 25% were selected to form two subgroups. Similarly, for 
each COSMIC somatic signature, patients of each cancer type were 
sorted in descending order of weights, and individuals in the top 
25% and bottom 25% were selected to form two subgroups. Then, 
the functional associations of the CGGP subgroups with the COSMIC 
signature subgroups could be further compared by using statistical 
methods. Here, 2 test was used to examine whether higher weights 
of one CGGP in germ line would imply significantly more possession 
of a COSMIC somatic signature. When performing the correlation 
analysis between CGGP and COSMIC signature, the data points 
were first smoothed by fitting the LOESS model and the correlation 
was estimated by the Spearman correlation coefficient. We also 
performed sample-wise normalization to COSMIC contribution 
weighing matrix before analysis.

To examine the association between CGGPs and somatically 
mutated genes, for a given gene, patients of each cancer type were 
partitioned into two subgroups based on their somatic mutation 
status of the gene (presence/absence of mutation). If the mutated 
gene group contained more than nine samples, we conducted the 
following analyses. We conducted t test for each CGGP between the 
two groups to test whether higher/lower weights (i.e., ratio of mean 
CGGP weights of >1 or <1) of one CGGP could be associated with 
a somatically mutated gene. P values were FDR-corrected among 
each cancer type. Because a trio (i.e., a gene-CGGP pair with a ratio 
of mean CGGP weights of >1 or a gene-CGGP pair with a ratio of 
mean CGGP weights of <1) could be significant (FDR < 0.25) in 
multiple cancer types, we conducted a randomization test by reshuf-
fling the P values (n = 10,000 times) to calculate whether the proba-
bility of a trio had FDR < 0.25 in two or more cancer types. An 

empirical P value of <0.05 from the randomization test was set to 
be significant.

Functional enrichment analysis of differentially expressed 
genes between the CGGP-defined cancer subgroups
The same method was used for germline data and somatic data. For 
individuals in a given tumor type and sample type (i.e., somatic or 
germ line), we obtained their gene expression profiles (raw counts) 
from the GDC repository. Multiple count values of the same gene 
were averaged. We ranked all probed genes based on their level of 
differential expression, measured by t test, between the two germline-
defined subgroups. Then, we selected either the most significant 
3000 genes or all genes that had P values less than 1.0 × 10−3. Raw 
counts and unadjusted P values were used because our purpose here 
was to rank genes, instead of a formal differential expression analysis. 
We fed the picked genes to the functional annotation tool of DAVID 6.8 
(https://david.ncifcrf.gov/) for functional annotation and clustering.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/48/eaba4905/DC1

View/request a protocol for this paper from Bio-protocol.
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