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The existing studies have shown that miRNAs are related to human diseases by regulating gene expression. Identifying miRNA
association with diseases will contribute to diagnosis, treatment, and prognosis of diseases. The experimental identification of
miRNA-disease associations is time-consuming, tremendously expensive, and of high-failure rate. In recent years, many
researchers predicted potential associations between miRNAs and diseases by computational approaches. In this paper, we
proposed a novel method using deep collaborative filtering called DCFMDA to predict miRNA-disease potential associations.
To improve prediction performance, we integrated neural network matrix factorization (NNMF) and multilayer perceptron
(MLP) in a deep collaborative filtering framework. We utilized known miRNA-disease associations to capture miRNA-disease
interaction features by NNMF and utilized miRNA similarity and disease similarity to extract miRNA feature vector and disease
feature vector, respectively, by MLP. At last, we merged outputs of the NNMF and MLP to obtain the prediction matrix. The
experimental results indicate that compared with other existing computational methods, our method can achieve the AUC of
0.9466 based on 10-fold cross-validation. In addition, case studies show that the DCFMDA can effectively predict candidate
miRNAs for breast neoplasms, colon neoplasms, kidney neoplasms, leukemia, and lymphoma.

1. Introduction

miRNAMicroRNAs (miRNAs)areshort endogenous non-
coding RNAs with about 22 nucleotides. A number of studies
have shown that miRNAs play important roles in many bio-
logical processes including cell proliferation, development,
differentiation, death, apoptosis, metabolism, aging, signal
transduction, and viral infection [1–6]. Biological studies
have revealed that dysregulation of miRNAs is closely related
to the occurrence and development of complex diseases [7–
9]. Dysregulation of miR-15 and miR-16 was discovered to
be related with B-cell chronic lymphocytic leukemia firstly
[10]. So far, it has been verified that many miRNAs are
related to cancers. Five members of the miRNA-200 family
(miR-200a, miR-200b, miR-200c, miR-141, and miR-429)
are downregulated in the development of breast cancer
[11]. Epigenetic modulation of the miR-200 family relates
to transition to a breast cancer stem cell-like state [12]. Some

studies demonstrate that in human colorectal cancer cells,
miR-186, miR-216b, miR-337-3p, and miR-760 could work
in synergy to induce cellular senescence by targeting the
alpha subunit of protein kinase CKII [13]. By accurately mea-
suring expression levels of miRNAs in the serum of 220
patients with early-stage non-small cell lung cancer and 220
matched controls, researchers found that the expressions of
miR-27a, miR-106a, miR-221, miR-146b, miR-155, miR-
17-5p, and let-7 were lower than those in controls, while
the expression of miR-29c was increased [14].

Identifying the miRNAs associated with diseases will
contribute to exploring the pathogenesis, diagnosis, treat-
ment, and prognosis of diseases and help to develop new
drugs. Some studies showed that miRNA-23, miRNA-24,
and miRNA-27 contained underlying therapeutic factors in
ischemic heart and vascular disease [15]. By targeting the
BCL6 corepressor such as BCORL1, the migration and inva-
sion of hepatocellular carcinoma (HCC) cells are restrained
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by miR-876-5p, which provides a new idea for the treatment
of HCC [16]. However, the experimental methods for finding
associations between miRNAs and diseases are expensive and
time-consuming. The computational methods for predicting
potential miRNA-disease associations can provide verifiable
hypotheses for further experimental verification, which can
reduce biological experiment time and improve the experi-
mental efficiency.

Recently, plenty of computational methods have been
proposed to predict potential miRNA-disease associations
[17]. Most of the computational methods are based on the
assumption that miRNAs with similar functions are more
likely to be associated with phenotypically similar diseases
and vice versa. These methods are based on different princi-
ples to predict miRNA-disease associations, such as
similarity-based methods, machine learning-based methods,
and matrix factorization-based methods.

The previous similarity-based computational methods
were based on miRNA-target interaction network and
protein-protein interaction (PPI). For example, Jiang et al.
[18] proposed a method to predict potential miRNA-
disease associations by applying a scoring system to human
phenome-microRNAome network and functionally related
miRNA network. Shi et al. [19] developed a computational
framework to identify miRNA-disease associations by pre-
forming random walk with restart. The method utilized the
function connections between miRNAtargets and disease
genes in protein-protein interaction (PPI) networks. Mrk
et al. [20] presented a miRNA-protein-disease association
prediction model (miRPD) in which miRNAs are linked to
diseases via the underlying proteins. However, these methods
largely relied on miRNA-target interactions which have high
false-positive rate and false-negative rate, so they cannot
achieve satisfying prediction performance.

To solve the above-mentioned problem, some similarity-
based methods without relying on miRNA-target interac-
tions were proposed. Similarity computation strategy is the
key issue for miRNA-disease prediction [21]. Xuan et al.
[22] presented a prediction algorithm called HDMP. HDMP
predicts potential disease-associated miRNAs based on
weighted k-nearest similar neighbors. However, HDMP
could not predict miRNAs (diseases) associated with new
diseases (miRNAs) due to local similarity networks. So, some
global similarity-based methods were proposed, which con-
struct a heterogeneous global network by integrating miRNA
similarity, disease similarity, and known human miRNA-
disease associations. For example, Chen et al. [23] proposed
a global network-based prediction model, RWRMDA, to
infer potential miRNA-disease association by implementing
the random walk algorithm on a global network. However,
it was not applicable for new diseases without any known
associated miRNAs. Xuan et al. [24] proposed another pre-
diction model called MIDP based on random walk. Com-
pared with RWRMDA, it could predict related miRNA for
new diseases. Liu et al. [25] proposed a miRNA-disease asso-
ciation prediction method by randomwalk on heterogeneous
network constructed by integrating multiple data sources. In
addition, some improved algorithms based on random walk
were proposed [26, 27]. In addition to the random walk algo-

rithm, other global network-based methods were proposed.
For example, Chen et al. [28] developed the model for
miRNA-disease association prediction (WBSMDA) by utiliz-
ing within score and between score. The within-score can
capture miRNA similarity and disease similarity in known
miRNA disease pairs, and the between-score can capture
miRNA similarity and disease similarity in unknown
miRNA-disease pairs. Next year, Chen et al. [29] proposed
a computational model based on super-disease and miRNA
for potential miRNA-disease association (SDMMDA) pre-
diction. You et al. [30] proposed a path-based miRNA-
disease association (PBMDA) prediction model. PBMDA
adopted depth-first search algorithm on a heterogeneous
graph. Zeng et al. [31] applied link prediction algorithm
named structural perturbation method (SPM) on the
miRNA-disease bilayer network to predict potential
miRNA-disease associations. Chen et al. [32] proposed a
computational model of bipartite network projection for
miRNA-disease association (BNPMDA) prediction. The
model took advantage of the agglomerative hierarchical clus-
tering and improved the baseline algorithm of bipartite net-
work recommendation based on the constructed bias
ratings. In addition, some researcher utilized lncRNA-
related other information to predict potential miRNA-
disease associations. Chen et al. [33] developed a triple layer
heterogeneous network miRNA-disease association
(TLHNMDA) prediction model. In the model, the triple layer
network was constructed by integrating the known miRNA-
disease associations, miRNA-lncRNA interactions, miRNA
function similarity, disease semantic similarity, and Gaussian
interaction profile kernel similarity. Zhao et al. [34] developed
a computational method based on a distance correlation set to
predict miRNA-disease associations (DCSMDA), which inte-
grated known lncRNA-disease associations, known miRNA-
lncRNA associations, disease semantic similarity, and various
lncRNA and disease similarity measures to construct a
miRNA-lncRNA-disease network.

Furthermore, many computational models using
machine learning to identify potential associations between
miRNAs and diseases have also begun to appear. Chen and
Yan [35] proposed regularized least squares for miRNA-
disease association (RLSMDA) to uncover the relationship
between diseases and miRNAs. Next, Chen and Huang [36]
presented a prediction model based on Laplacian regularized
sparse subspace learning called LRSSLMDA, which extracted
two informative feature profiles by performing feature
extraction from the integrated similarity. Chen et al. [37]
developed a model of random forest for miRNA-disease
association (RFMDA) prediction based on machine learning.
Liang et al. [38] developed a method to discover disease-
related candidate miRNAs based on adaptive multiview mul-
tilabel learning. Zhao et al. [39] developed adaptive boosting
for miRNA-disease association (ABMDA) prediction to pre-
dict potential associations between diseases and miRNAs,
which can balance the positive and negative samples by per-
forming random sampling based on k-mean clustering on
negative samples, and integrated weak classifiers to form a
strong classifier based on corresponding weights. Wang
et al. [40] proposed miRNA-disease association prediction
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model- (LMTRDA) based logistic model tree, which fused
multisource information, especially the introduced miRNA
sequence information. Chen et al. [41] proposed an ensemble
of decision tree-based miRNA-disease association
(EDTMDA) prediction model, which is a computational
framework of integrating ensemble learning and dimen-
sionality reduction. Deep learning can capture hidden,
complex, and nonlinear relationships from the original
data. Deep learning has been applied to various fields of
bioinformatics. With the rapid development of deep learn-
ing, some deep learning-based methods have been pro-
posed to solve the problem about miRNA-disease
association prediction. For example, Chen et al. [42]
proposed a model of restricted Boltzmann machine to pre-
dict multiple types of miRNA-disease association
(RBMMMDA). Xuan et al. [43] presented the convolu-
tional network-based methods for predicting candidate
disease. Zeng et al. [44] developed a neural network model
to predict miRNA-disease associations (NNMDA).
NNMDA not only aggregated the neighbor information
during the process but also preserved the topology of the
original network at the same time. Gong et al. [45] pro-
posed a network embedding-based multiple information
integration method (NEMII) for miRNA-disease associa-
tion prediction. Peng [46] proposed a learning-based
framework, MDA-CNN, for miRNA-disease association
identification. The model captures interaction features
based on disease similarity network, miRNA similarity
network, and protein-protein interaction network and
employed an autoencoder to identify the essential feature
combination for each miRNA-disease pair, and it used a
convolutional neural network to predict the final label.
Chen et al. [47] developed a model of deep-belief network
for miRNA-disease association (DBNMDA) prediction.
DBNMDA utilizes the information of all miRNA-disease
pairs by introducing the unsupervised pretraining process.
Then, according to the parameters obtained by pretrain-
ing, positive samples and the same number of randomly
selected negative samples were applied to fine-tune deep-
belief network.

Recently, some researchers have introduced the recom-
mendation system to predict miRNA-disease association.
Matrix factorizations are widely used in the recommenda-
tion systems. Some computational models based on matrix
completion have been proposed. For example, Li et al. [48]
proposed a miRNA-disease association prediction method
based on matrix completion (MCMDA). MCMDA could
not predict miRNAs for new diseases with no associations.
In order to solve this problem, Chen et al. [49] proposed a
computational model-based inductive matrix completion
for miRNA-disease association prediction (IMCMDA).
The model integrated miRNA functional similarity, disease
semantic similarity, and Gaussian interaction profile kernel
similarity. In addition, Chen et al. [50] integrated neigh-
borhood constraint with matrix completion and proposed
a computational model based neighborhood constraint
matrix completion for miRNA-disease association
(NCMCMDA) prediction. On the other hand, matrix
decomposition is also used for identifying potential

miRNA-disease associations. For example, Xiao et al. [51]
proposed a prediction framework called graph regularized
nonnegative matrix factorization (GRNMF) to infer the
unknown miRNA-disease associations in heterogeneous
omics data. Chen et al. [52] took advantage of the matrix
factorization and network algorithm to develop a matrix
decomposition and heterogeneous graph inference
(MDHGI) for miRNA-disease association prediction. Cui
et al. [53] proposed a robust collaborative matrix factoriza-
tion method to predict novel miRNA-disease associations.
The method improved the prediction accuracy by intro-
ducing the weighted K nearest known neighbors and the
L2,1‐norm. Gao et al. [54] presented a computational
framework based on graph Laplacian regularized L2,1
-nonnegative matrix factorization (GRL2,1‐NMF) for infer-
ring possible disease-connected miRNAs.

To further improve the prediction performance, we study
to predict potential miRNA-disease associations based on
matrix factorization and deep learning. We propose a new
miRNA-disease association prediction method called
DCFMDA, which combines the multilayer perceptron
(MLP) and the neural nonnegative matrix factorization
(NNMF) in a deep collaborative filtering framework. Firstly,
we obtain miRNA and disease similarity matrices by inte-
grating multiple heterogeneous data. Then, we utilize MLP
to extract high-level features from miRNA and disease simi-
larity matrices and decompose the known miRNA-disease
association into two low rank matrices by NNMF. Finally,
we merge the output of the MLP submodel and the NNMF
submodel to obtain prediction results for miRNA-disease
potential associations.

The rest of this paper is organized as follows. Section 2
describes the data and method. Section 3 presents experi-
mental results. Section 4 summarizes the paper.

2. Data and Methods

2.1. Data

2.1.1. Human miRNA-Disease Association. HMDD is a data-
base that curated experiment-supported evidence for human
miRNA-disease associations. We downloaded known
miRNA-disease association data from HMDD V2.0 [55],
which includes 5430 experimentally verified miRNA-
disease associations between 383 miRNAs and 495 diseases.
We used adjacency matrix A ∈ℝM×N to formalize the
miRNA-disease associations, whereM andN are the number
of miRNAs and diseases, respectively. If miRNA m is exper-
imentally verified to be related with disease d, the value of
Aðm, dÞ is 1, otherwise 0.

2.1.2. Disease Semantic Similarity. In the National Library of
Medicine MeSH, each disease is described as a hierarchical
Directed Acyclic Graph (DAG). As described in [56], the
disease semantic similarity can be calculated based on
these DAGs. For example, disease d can be represented
as a graph DAGðdÞ = ðd, Td , EdÞ, where Td is the disease
set of all ancestor nodes of disease d including disease d
itself and Ed is the edge set of corresponding links. The
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contribution of disease t in DAG to the semantic value of
disease d is defined as follows:

Dd tð Þ = 1, if t = d,

Dd tð Þ =max 1
2Dd t ′

� �
∣ t ′ ∈ C

� �
, if t ≠ d,

8><
>: ð1Þ

where C is children set of t.
The semantic value DDðdÞ of disease d is calculated by

DD dð Þ = 〠
t∈Td

Dd tð Þ: ð2Þ

The larger the part the two diseases share in their DAGs,
the higher the similarity between the two diseases is. The
semantic similarity SSDðdi, djÞ of disease di and dj is defined
as follows:

SSD di, dj

� �
=
∑t∈Tdi

∩Tdj
Ddi

tð Þ +Ddj
tð Þ

� �
DD dið Þ +DD dj

� � , i, j = 1, 2,⋯,Nf g:

ð3Þ

2.1.3. Disease Functional Similarity by Functional Gene
Network. The score of functional similarity between two dis-
eases can be measured by disease-gene and gene-gene associ-
ation data [57]. The functional similarity FSDðgi, gjÞ
between gene gi and gj is defined as follows:

FSD gi, gj

� �
=

1, i = j,

LLSN gi, gj

� �
, i ≠ j, e i, jð Þ ∈ E Hð Þ,

0, i ≠ j, e i, jð Þ ∉ E Hð Þ,

8>>><
>>>:

ð4Þ

where eði, jÞ denotes edge between gene gi and gj, EðHÞ
denotes the set of all edges in the HumanNet V2 database
[58], and LLSNðgi, gjÞ is an associated log likelihood score
(LLS) that measures the probability of a functional linkage
between gene gi and gj after normalization.

The functional association FGðgÞ between gene g and
gene set G = fg1, g2,⋯, gkg is defined as follows:

FG gð Þ =max
1≤i≤k

FSD g, gið Þð Þ, ð5Þ

where k indicates the number of genes in G, gi is the ith gene
of G, i = 1, 2,⋯, k.

The functional similarity FSDðdi, djÞ between disease di
and dj is defined as follows:

FSD di, dj

� �
= FSD G1, G2ð Þ =

∑1≤i≤mFG2
g1ið Þ +∑1≤j≤nFG1

g2j

� �
m + n

,

ð6Þ

whereG1 = fg11, g12,⋯, g1mg andG2 = fg21, g22,⋯, g2ng are
gene set related to diseases di and dj, respectively,m is the num-
ber of genes in G1, and n is the number of genes in G2.

2.1.4. miRNA Functional Similarity.We obtained the miRNA
functional similarity data by the method provided in [56]. In
the previous subsection, we have described calculating the
semantic similarity between diseases. The functional similar-
ity for each miRNA pair was calculated based on the seman-
tic similarity of diseases. Firstly, the similarity between
disease d and disease group D = fd1, d2,⋯, dkg is calcu-
lated by

S d,Dð Þ =max
1≤i≤k

SSD d, dið Þð Þ, ð7Þ

where k denotes the number of diseases in D and di is the
ith disease of D, i = 1, 2,⋯, k.

Then, calculation of the functional similarity between
miRNA mi and mj is equal to calculating the similarity
between D1 and D2, where D1 and D2 represent the
related disease sets of miRNA mi and mj, respectively.
Finally, the matrix FSMM×M is used to denote the miRNA
functional similarity. FSMðmi,mjÞ represents the func-
tional similarity between miRNAs mi and mj, which is cal-
culated as follows:

FSM mi,mj

� �
=
∑1≤s≤ D2j jS ds,D1ð Þ +∑1≤t≤ D1j jS dt ,D2ð Þ

D1j j + D2j j :

ð8Þ

2.1.5. Gaussian Interaction Profile Kernel Similarity. Gauss-
ian kernel is a commonly used kernel function, which has
been proven effective for measuring both miRNA similar-
ity and disease similarity [59]. The interaction profile IP
ðdiÞ of disease di is the ith column vector of the
miRNA-disease association matrix. It is a binary vector
representing the presence or absence of its associations
with each miRNA. Gaussian interaction profile kernel
similarity GDðdi, djÞ between disease di and dj is defined
as follows [59]:

GD di, dj

� �
= exp −βd IP dið Þ − IP dj

� ��� ��2� �
,

βd =
βd
′

1/Nð Þ∑N
i=1 IP dið Þk k2

,
ð9Þ

where i, j = 1, 2,⋯,N and βd is used to control kernel
bandwidth, which is obtained by normalizing the average
number βd′ of associated miRNAs per disease.

Similarly, the Gaussian interaction profile kernel similar-
ity GMðmi,mjÞ between miRNA mi and mj is defined as
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follows:

GM mi,mj

� �
= exp −βmð IP mið Þ − IP mj

� ��� ��2,
βm = βm

′
1/Mð Þ∑M

i=1 IP mið Þk k2
,

ð10Þ

where i, j = 1, 2,⋯,M.

2.1.6. Integrated Similarity for miRNAs and Diseases. In order
to overcome the shortcomings of single similarity measure to
accurately reflect the characteristics of miRNA similarity and
disease similarity from different perspectives, some method
integrated multiple different similarity measure data to con-
struct the miRNA similarity matrix and disease similarity
matrix to improve the prediction performance.

We integrate miRNA functional similarity FSM and
miRNA Gaussian interaction profile kernel similarity GM
to construct the miRNA similarity matrix ISMðmi,mjÞ
between miRNA mi and mj.

ISM mi,mj

� �
=

FSM mi,mj

� �
, if FSM mi,mj

� �
≠ 0,

GM mi,mj

� �
, otherwise:

(

ð11Þ

We also integrate disease semantic similarity SSD, the
disease functional similarity FSD, and the disease Gaussian
interaction profile kernel similarity GD to construct the dis-
ease similarity matrix ISDðdi, djÞ between disease di and dj.
The formula is as follows:

2.2. Methods. As a universal computational algorithm, the
recommendation algorithm has been applied in many
fields including bioinformatics. The miRNA-disease associ-
ation prediction can be regarded as a recommendation
problem. This kind of prediction method regards miRNAs
as users and diseases as commodities and recommends
miRNAs to a disease according to its known preference
on miRNAs and vice versa. Traditional recommendation
models are mainly divided into collaborative filtering,
content-based recommendation system, and hybrid recom-
mendation system. Recently, researchers have proposed
some recommendation algorithms using deep learning to
overcome the shortcomings of traditional collaborative fil-
tering models [60].

In this paper, we proposed a new deep collaborative fil-
tering framework for miRNA-disease association prediction
called DCFMDA. This method combines the multilayer per-
ceptron (MLP) submodel and neural nonnegative matrix fac-
torization (NNMF) submodel in deep collaborative filtering
framework. Firstly, in the MLP submodel, the mth row of
the miRNA similarity matrix (i.e., the similarity data between
miRNA m and all the other miRNAs) was fed into a multi-
layer perception, and the dth row of the disease similarity
matrix (i.e., the similarity data between disease d and all the
other diseases) was fed into another multilayer perception.
The two MLPs would be trained to learn high-level biological
patterns from miRNA similarity and disease similarity,
respectively. Secondly, all known miRNA-disease association
pairs were fed into the neural NNMF submodel to train.
Finally, the output of the two submodels was merged to get
prediction scores of miRNA-disease pairs. The proposed
method is shown in Figure 1.

2.2.1. Neural Nonnegative Matrix Factorization (NNMF).
Matrix factorization (MF) based approaches are proven
to be highly accurate and scalable in addressing collabora-
tive filtering (CF) problems [61]. The purpose of nonneg-
ative matrix factorization (NMF) is to find two
nonnegative matrices whose product is optimal approxi-
mation to the original matrix. Given miRNA-disease asso-
ciation matrix A, it can be decomposed into the product
of two low rank nonnegative matrices W and H, namely,
A ≈WHT . Solving the problem of prediction miRNA-
disease potential associations using NMF can be described
as the following objective function:

min A −WHT�� ��2
F
: ð13Þ

However, the matrix factorization method only uses
the fixed inner product to predict miRNA-disease associ-
ations, which leads to some limitation of prediction algo-
rithm. So we use a nonnegative matrix factorization
submodel (NNMF) based on a two-layer fully connected
neural network to predict the potential association
between miRNA and disease. In the NNMF submodel,
one-hot encodings of miRNA i and disease jare used as
the input vectors and two embedding vectors mi and dj

are obtained by the embedding layer. We have two
two-layer fully connected neural networks to transform
the representations of mi and dj. Through the neural net-
work, mi and dj are mapped to low-dimensional vectosr
pi and qj in a latent space, respectively. The miRNA-
disease association prediction submodel based on NNMF

ISD di, dj

� �
=

FSD di, dj

� �
+ SSD di, dj

� �
2 , if FSD di, dj

� �
≠ 0 or SSD di, dj

� �
≠ 0,

GD di, dj

� �
, otherwise:

8><
>: ð12Þ
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is as follows:

ŷij = f NNMF i, j ∣ pi, qj
� �

= pTi qj = pi ⊙ qj, ð14Þ

where i = 1, 2,⋯,M, j = 1, 2,⋯,N

2.2.2. Multilayer Perceptron (MLP). Multilayer perceptron
(MLP) is a deep learning structure, which is a feedforward
neural network with multiple hidden layers between input
and output layers. A single layer perceptron cannot classify
linear inseparable problems, but the multilayer perceptron
can overcome this weakness by the nonlinear mapping of
input space based on activation function. MLP has high abil-
ity of nonlinear modeling. The structure of the multilayer
perceptron model is shown in Figure 2.

We regard the miRNA-disease association prediction
as a binary classification problem. That is, if there is a cor-
relation between miRNA i and disease j, the correspond-
ing label will be 1, otherwise 0. We use a submodel
based on MLP to solve the problem for miRNA-disease
association prediction. The number of neurons in each
hidden layer of MLP is less than that in the previous layer.
The number of neurons in the first hidden layer is equal
to the dimension of the input vector, and the number of
neurons in the last hidden layer is equal to the dimension
of the output vector. Formally, we denote the input vector
by X, the output vector by Y , the number of hidden layers
by L, the connection weight matrix from hidden layer l − 1
to hidden layer l by Wl, and the bias vector of the lth
layer by bl, where 1 ≤ l ≤ L. The MLP model is formulated

as follows [62]:

a0 = X,
a1 = θ1 WT

1 a0 + b1
� �

,

a2 = θ2 WT
2 a1 + b2

� �
,

aL = θL WT
L aL−1 + bL

� �
,

Y = ϕMLP Xð Þ = aL,

ð15Þ

where al denotes the output of the lth layer and θl denotes
the activation function of the lth layer. We select ReLU as
the activation function of each hidden layer, which can be
computed by f ðxÞ =max ð0, xÞ. ReLU is employed to alle-
viate the problem of the gradient disappearance and solve
the overfitting problem of machine learning [63].

In our proposed MLP submodel, we used two MLPs to
transform the representations of miRNA and disease. The
miRNA similarity matrix ISM and disease similarity matrix
ISD are the input of these two multilayer perceptrons. ISMi
is the ith row of matrix ISM, which represents the similarity
feature of miRNA mi. ISDj is the jth row of matrix ISD,
which represents similarity feature of disease dj. We used
ISMi to train the left MLP and used ISDj to train the right
MLP. Through the neural network, ISMi and ISDj are finally
mapped to a low-dimensional vector in a latent space. So the
similarity feature vectors of the miRNAmi and disease dj can

Input: the number n of miRNAs, the numberm of diseases, iterative number K , the knownmiRNA-disease associations A ∈ RM×N , the
miRNA similarity matric ISM ∈ RM×M , the disease similarity ISD ∈ RN×N .
Output: the predicted score matrix Y∗ = ½ŷij�

for each k ∈ ½1, K�do
for each known miRNA-disease association ði, jÞ ∈ Ado
Randomly generate four negative samples;
Obtain the embedding vector mi of miRNA i;
Obtain the embedding vector dj of disease j;

Obtain the latent vector mNNMF
i of miRNA mi;

Obtain the latent vector dNNMF
j of disease dj;

yNNMF
ij =mNNMF

i ⨀dNNMF
j ;

mMLP
i = ϕMLPðISMi∗Þ;

dMLP
j = ϕMLPðISDj∗Þ;

Concatenating mMLP
i and mi to form a vector mDCFMDA

i according to formula (21);
Concatenating dMLP

j and dj to form a vector dDCFMDA
j according to formula (22);

ŷij = σð
yNNMF
ij

mDCFMDA
i

dDCFMDA
j

2
664

3
775Þ;

Compute L by loss function according to formula (24);
Optimize model parameters by back propagation

end for
end for

Algorithm 1: DCFMDA.
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Figure 3: Performance comparison for HDMP, RLSMDA, IMCMDA, SPM, and DCFMDA in terms of ROC curve, AUC, and PR curve.

Table 1: Performance comparison for HDMP, RLSMDA, IMCMDA, SPM, and DCFMDA in terms of F1 score.

Top 100 Top 200 Top 300 Top 400 Top 500 Top 600 Top 700 Top 800 Top 900 Top 1000

DCFMDA 0.8827 0.8919 0.9091 0.8996 0.8938 0.8806 0.8773 0.8803 0.8854 0.8777

HDMP 0.9130 0.9417 0.8047 0.7635 0.7760 0.8201 0.8215 0.8405 0.8424 0.8317

RLSMDA 0.9473 0.9247 0.9209 0.9262 0.9142 0.9041 0.8906 0.8788 0.8701 0.8623

IMCMDA 0.9847 0.9446 0.8785 0.8506 0.8372 0.8048 0.7784 0.7635 0.7439 0.7318

SPM 0.9583 0.9333 0.9150 0.8732 0.8345 0.8142 0.8003 0.7943 0.7879 0.7812
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be formulated as follows:

mMLP
i = ϕMLP ISMið Þ,

dMLP
j = ϕMLP ISDj

� �
:

ð16Þ

The miRNA-disease association prediction submodel
based on MLP is as follows:

ŷij = fMLP ISMi, ISDj ∣m
MLP
i , dMLP

j

� �
= σ mMLP

i , dMLP
j

� �
,

ð17Þ

where i = 1, 2,⋯,M, j = 1, 2,⋯,N , σðxÞ = 1/ð1 + e−xÞ.
2.2.3. Method DCFMDA. We construct a prediction model
based on NNMF and MLP. We capture the linear relation-
ship between miRNAs and diseases by NNMF and learn
the nonlinear relationship between miRNAs and diseases

by MLP. The NNMF submodel and the MLP submodel share
the embedding layer.

The NNMF submodel learns from known miRNA-
disease association to obtain the original prediction score.
The MLP submodel learns the low-dimensional feature of
miRNA and disease from the miRNA similarity matrix and
disease similarity matrix, respectively. Finally, we merge out-
puts of the NNMF submodel and MLP submodel to obtain
the final prediction score for disease-related miRNAs. The
presented model is formulated as follows:

yNNMF
ij = f NNMF i, j ∣mNNMF

i , dNNMF
j

� �
=mNNMF

i ⨀dNNMF
j ,

ð18Þ

mMLP
i = ϕMLP ISMið Þ, ð19Þ

dMLP
j = ϕMLP ISDj

� �
, ð20Þ

Table 2: Proportion of verified associations in the top-50 candidate miRNAs for five different diseases.

Breast neoplasms Colon neoplasms Kidney neoplasms Leukemia Lymphoma

Percentage 98% 100% 98% 92% 98%

Table 3: The top-50 predicted miRNAs associated with breast neoplasms.

Rank miRNA Evidence Rank miRNA Evidence

1 has-mir-106a dbDEMC 26 has-mir-372 dbDEMC

2 has-mir-192 dbDEMC 27 has-mir-181d dbDEMC

3 has-mir-449a dbDEMC 28 has-mir-196b dbDEMC

4 has-mir-449b dbDEMC 29 has-mir-532 dbDEMC

5 has-mir-99b dbDEMC 30 has-mir-198 dbDEMC

6 has-mir-483 miRCancer 31 has-mir-370 dbDEMC

7 has-mir-15b dbDEMC 32 has-mir-513b dbDEMC

8 has-mir-376a dbDEMC 33 has-mir-433 dbDEMC

9 has-mir-424 dbDEMC 34 has-mir-513c dbDEMC

10 has-mir-491 PMID:25725194 35 has-mir-362 dbDEMC

11 has-mir-144 dbDEMC 36 has-mir-615 dbDEMC

12 has-mir-181c dbDEMC 37 has-mir-98 dbDEMC

13 has-mir-30e miRCancer 38 has-mir-363 dbDEMC

14 has-mir-498 dbDEMC 39 has-mir-325 dbDEMC

15 has-mir-138 dbDEMC 40 has-mir-509 PMID:25659578

16 has-mir-142 PMID:25406066 41 has-mir-130b dbDEMC

17 has-mir-371a dbDEMC 42 has-mir-154 dbDEMC

18 has-mir-92b dbDEMC 43 has-mir-675 dbDEMC

19 has-mir-184 dbDEMC 44 has-mir-642a dbDEMC

20 has-mir-542 PMID:24846313 45 has-mir-500a dbDEMC

21 has-mir-134 dbDEMC 46 has-mir-548c PMID:25802200

22 has-mir-571 dbDEMC 47 has-mir-331 PMID:25883093

23 has-mir-185 dbDEMC 48 has-mir-381 dbDEMC

24 has-mir-32 dbDEMC 49 has-mir-519b Unconfirmed

25 has-mir-130a dbDEMC 50 has-mir-502 PMID:27080302
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mDCFMDA
i =

mMLP
i

mi

" #
, ð21Þ

dDCFMDA
j =

dMLP
j

d j

" #
, ð22Þ

ŷij = σ

yNNMF
ij

mDCFMDA
i

dDCFMDA
j

2
6664

3
7775

0
BBB@

1
CCCA, ð23Þ

where mi and dj are two embedding vectors of miRNA i and
disease j, respectively. ISMi is the similarity feature of
miRNA i, ISDj is the similarity feature of disease j,mMLP

i

denotes the output of the left MLP, dMLP
j denotes the output

of the right MLP, yNNMF
ij denotes original prediction score,

mDCFMDA
i is obtained by concatenating mMLP

i with the
miRNA embedding vector mi, and dDCFMDA

j is obtained by

concatenating dMLP
j with the disease embedding vector dj.

The final layer of the DCFMDA is used for the classifica-
tion task, its activation function σðxÞis the sigmoid function
σðxÞ = 1/ð1 + e−xÞ.

In our proposed model, we use the binary crossentropy
loss functionL :

L = − 〠
i,jð Þ∈A

yij log ŷij + 1 − yij
� �

log 1 − ŷij
� �

, ð24Þ

where ði, jÞ ∈ A is the index of the training examples, yij rep-
resents the true label for the given input sample ði, jÞ, and ŷij
represents predicted result. The purpose of deep learning is
to minimize loss function through continuous training itera-
tions to get the best prediction.

Algorithm 1 describes our proposed miRNA-disease
association prediction algorithm using deep collaborative fil-
tering called DCFMDA.

3. Result

3.1. Performance Evaluation. To evaluate the prediction per-
formance of algorithm DCFMDA, we perform a 10-fold
cross-validation on known experimentally verified miRNA-
disease associations. The 5430 experiment-supported
miRNA-disease associations are considered as positive sam-
ples. We are not sure which miRNAs are not associated with
diseases. So, for each known miRNA-disease pair, we will
randomly sample four unobserved miRNA-disease pairs as

Table 4: The top-50 predicted miRNAs associated with colon neoplasms.

Rank miRNA Evidence Rank miRNA Evidence

1 has-mir-30e dbDEMC 26 has-mir-340 PMID:24448820

2 has-mir-15b dbDEMC 27 has-mir-20a dbDEMC

3 has-mir-193b dbDEMC 28 has-mir-625 dbDEMC

4 has-mir-373 miRCancer 29 has-mir-486 dbDEMC

5 has-mir-16 PMID:25623762 30 has-mir-370 dbDEMC

6 has-mir-203 dbDEMC 31 has-mir-194 dbDEMC

7 has-mir-192 dbDEMC 32 has-mir-383 dbDEMC

8 has-mir-148a dbDEMC 33 has-mir-146a dbDEMC

9 has-mir-204 dbDEMC 34 has-mir-30b dbDEMC

10 has-mir-106b dbDEMC 35 has-mir-92a dbDEMC

11 has-mir-376b dbDEMC 36 has-mir-223 dbDEMC

12 has-mir-124 dbDEMC 37 has-mir-23b dbDEMC

13 has-mir-122 dbDEMC 38 has-mir-32 dbDEMC

14 has-mir-132 dbDEMC 39 has-mir-497 dbDEMC

15 has-mir-143 dbDEMC 40 has-mir-93 dbDEMC

16 has-mir-10b dbDEMC 41 has-mir-19a dbDEMC

17 has-mir-186 dbDEMC 42 has-mir-34a dbDEMC

18 has-mir-182 dbDEMC 43 has-mir-214 dbDEMC

19 has-mir-429 dbDEMC 44 has-mir-190a dbDEMC

20 has-mir-125b dbDEMC 45 has-mir-107 dbDEMC

21 has-mir-18a dbDEMC 46 has-mir-15a dbDEMC

22 has-mir-372 dbDEMC 47 has-mir-27a dbDEMC

23 has-mir-96 dbDEMC 48 has-mir-31 dbDEMC

24 has-mir-212 dbDEMC 49 has-mir-424 dbDEMC

25 has-mir-19b dbDEMC 50 has-mir-125a dbDEMC
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negative samples. For the 10-fold cross-validation, all posi-
tive and negative samples are randomly divided into ten
parts. In each fold, nine of the ten parts are used for the train-
ing model in turn, and the remaining one is used as test
samples.

We use the receiver operating characteristic (ROC)
curve, area under ROC (AUC), precision-recall (PR) curve,
and F1 score to evaluate the performance of the predictive
algorithm. The ROC curve plots the true-positive rate
(TPR) versus the false-positive rate (FPR) at different
thresholds. The value of AUC is usually between 0.5 and
1. When AUC is 1, it means that the prediction result will
achieve the best effect. Our data is seriously unbalanced,
because the number of negative samples (unconfirmed
miRNA-disease associations) is much larger than the num-
ber of positive samples (experiment-supported miRNA-
disease associations). Therefore, we also draw a PR curve
to evaluate the prediction ability of different miRNA-
disease association prediction algorithms. We compare
DCFMDA with four existing miRNA-disease prediction
algorithms HDMP, RLSMDA, IMCMDA, and SPM.
Figure 3 shows ROC curves and PR curves of the five pre-
diction algorithms and reports their corresponding AUCs
in a 10-fold cross-validation on experimentally verified
miRNA-disease associations. Figure 3(a) shows that
DCFMDA almost always has the highest TPRs under the

same false-negative rates, and obtains the highest AUC
(0.94662) among these algorithms, whereas the AUCs of
HDMP, RLSMDA, IMCMDA, and SPM are 0.87156,
0.87453, 0.84081, and 0.86274, respectively. Figure 3(b)
shows that DCFMDA achieves a higher precision than
all the other algorithms for any given recall value. For
ROC curve or PR curve, DCFMDA performs significantly
better than the other four algorithms. F1 score is the har-
monic mean of both metrics of recall and precision. Since
there is a trade-off between precision and recall, F1 score
is also used to evaluate the performance of algorithms.
Table 1 shows the F1 score of the top-K candidates. The
F1 score of DCFMDA is more stable, while F1 scores of
the other four algorithms were decreasing from the top
50 to top 1000. From Table 1, we can see that DCFMDA
achieved better performance than other algorithms in
terms of the F1 score.

The experiment results indicate that our method can
achieve higher prediction performance. One reason is that
we introduce deep learning into miRNA-disease prediction
and effectively integrated neural nonnegative matrix factori-
zation and multilayer perceptron technology to predict
potential miRNA-disease associations. Another reason is that
different miRNA similarity and disease similarity data are
used to construct the miRNA similarity matrix and the dis-
ease similarity matrix.

Table 5: The top-50 predicted miRNAs associated with kidney neoplasms.

Rank miRNA Evidence Rank miRNA Evidence

1 has-mir-494 dbDEMC 26 has-mir-184 dbDEMC

2 has-mir-130b dbDEMC 27 has-mir-122 dbDEMC

3 has-mir-194 dbDEMC 28 has-mir-15b dbDEMC

4 has-mir-384 dbDEMC 29 has-mir-188 dbDEMC

5 has-mir-24 dbDEMC 30 has-mir-136 dbDEMC

6 has-mir-16 dbDEMC 31 has-mir-145 dbDEMC

7 has-mir-342 dbDEMC 32 has-mir-487a PMID:25938468

8 has-mir-203 dbDEMC 33 has-mir-133b dbDEMC

9 has-mir-150 dbDEMC 34 has-mir-561 dbDEMC

10 has-mir-186 dbDEMC 35 has-mir-125b dbDEMC

11 has-mir-126 dbDEMC 36 has-mir-17 dbDEMC

12 has-mir-378a dbDEMC 37 has-mir-429 dbDEMC

13 has-mir-92b dbDEMC 38 has-mir-214 dbDEMC

14 has-mir-424 dbDEMC 39 has-mir-106a dbDEMC

15 has-mir-20a dbDEMC 40 has-mir-106b dbDEMC

16 has-mir-200a dbDEMC 41 has-mir-23a dbDEMC

17 has-mir-31 dbDEMC 42 has-mir-127 dbDEMC

18 has-mir-372 dbDEMC 43 has-mir-451a dbDEMC

19 has-mir-219 PMID:22440013 44 has-mir-423 dbDEMC

20 has-mir-200b dbDEMC 45 has-mir-223 dbDEMC

21 has-mir-199a dbDEMC 46 has-mir-189 Unconfirmed

22 has-mir-206 dbDEMC 47 has-mir-20b dbDEMC

23 has-mir-138 dbDEMC 48 has-mir-143 dbDEMC

24 has-mir-373 dbDEMC 49 has-mir-132 dbDEMC

25 has-mir-205 miRCancer 50 has-mir-19a dbDEMC
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3.2. Case Study. In order to further verify the prediction
performance of DCFMDA, we carried out case studies
on five diseases including breast neoplasms, colon neo-
plasms, kidney neoplasms, leukemia, and lymphoma. From
HMDD V2.0, we obtained 5430 known associations and
184155 unknown associations between 495 miRNAs and
383 diseases. For our case study, all the known miRNA-
disease associations were used as training samples, and
other unknown associations were regarded as candidate
associations for validation. For each investigated disease,
we ranked candidate miRNAs according to their predicted
scores and selected the top-50 candidate miRNAs to verify
whether the candidate miRNAs were associated with the
current disease by two other databases, namely, dbDEMC
[64] and miRCancer [65], as well as published literatures.
The validation results are shown in Table 2. The database
dbDEMC 2.0 is an integrated database that documents 209
expression profiling data sets with 36 cancer types and 73
subtypes, and a total of 2224 differentially expressed miR-
NAs were identified. It allows users to make a quick
search of the differentially expressed miRNAs in certain
cancer types. The database miRCancer is a miRNA-
cancer association database that provides comprehensive
collection of miRNA expression profiles in various human
cancers. A user can search the database by miRNA or can-
cer name.

There are intersections between known miRNA-disease
associations obtained from databases HMDD V2.0,
dbDEMC, and miRCancer. For example, 546 of the 5430
known miRNA-disease associations in HMDD V2.0 also
exist in dbDEMC 2.0. Because we only predict and verify
the candidate miRNAs unrelated to the investigated dis-
ease in HMDD V2.0, none of these candidate miRNAs
exist in HMDD V2.0. We can be sure that the validation
of candidate miRNAs is completely independent of
HMDD V2.0.

Breast neoplasms are one of the most common cancers
for women. We have inferred associations between all the
candidate miRNAs for breast neoplasm and confirmed 49
of the top-50 candidate miRNAs to be association with
breast cancer by dbDEMC, miRCancer, and published lit-
eratures (see Table 3). Because the same miRNA gene may
have different identifiers, we can use the alias to verify
whether the miRNA is associated with breast cancer. We
obtain alias of miRNAs by retrieving the miRBase and
GeneCards databases. For example, hsa-mir-371 (the alias
of hsa-mir-371a) and has-mir-642 (the alias of hsa-mir-
642) can be confirmed to be related to breast cancer by
dbDEMC2.

Colon neoplasms are a common malignant tumor of the
digestive tract occurring in the colon. Various evidences indi-
cate that miRNAs potentially play an important role in

Table 6: The top-50 predicted miRNAs associated with leukemia.

Rank miRNA Evidence Rank miRNA Evidence

1 has-mir-218 PMID:23022987 26 has-mir-494 dbDEMC

2 has-mir-221 dbDEMC 27 has-mir-219 dbDEMC

3 has-mir-222 dbDEMC 28 has-mir-214 PMID:25361012

4 has-mir-302b Unconfirmed 29 has-mir-99a dbDEMC

5 has-mir-452 PMID:29326345 30 has-mir-145 dbDEMC

6 has-mir-128 PMID:22209839 31 has-mir-181b dbDEMC

7 has-let-7e dbDEMC 32 has-mir-489 Unconfirmed

8 has-mir-142 dbDEMC 33 has-mir-146b dbDEMC

9 has-mir-155 dbDEMC 34 has-mir-146a dbDEMC

10 has-mir-197 dbDEMC 35 has-mir-127 dbDEMC

11 has-mir-22 dbDEMC 36 has-let-7i dbDEMC

12 has-mir-148a dbDEMC 37 has-mir-23a dbDEMC

13 has-mir-20b dbDEMC 38 has-mir-203 PMID:21323860

14 has-mir-182 dbDEMC 39 has-mir-181d dbDEMC

15 has-mir-216b Unconfirmed 40 has-mir-655 PMID:26340914

16 has-let-7a dbDEMC 41 has-mir-106b dbDEMC

17 has-mir-504 dbDEMC 42 has-mir-708 dbDEMC

18 has-mir-223 dbDEMC 43 has-mir-423 dbDEMC

19 has-mir-144 dbDEMC 44 has-mir-668 Unconfirmed

20 has-mir-34b dbDEMC 45 has-mir-15b dbDEMC

21 has-let-7d dbDEMC 46 has-let-7c dbDEMC

22 has-mir-224 dbDEMC 47 has-mir-129 dbDEMC

23 has-mir-520h PMID:29768346 48 has-mir-323a dbDEMC

24 has-mir-425 dbDEMC 49 has-mir-23b dbDEMC

25 has-mir-126 dbDEMC 50 has-mir-542 dbDEMC
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predicting markers of early diagnosis, prognosis, and chemo-
sensitivity of colon cancer [66]. DCFMDA has inferred asso-
ciations between all the candidate miRNAs for colon cancer,
and all top-50 candidate miRNAs are confirmed to be associ-
ated with colon neoplasms by dbDEMC, miRCancer, and
published literatures (see Table 4).

Kidney neoplasms are one of the most rapidly growing
malignant tumors. Abnormal expression of miRNAs has
been detected in several kinds of kidney cancers. For exam-
ple, compared with the normal samples, the expression of
hsa-mir-194 (the third in Table 5) was reported to be down-
regulated in kidney neoplasm patients. Literature [67] con-
firmed that the expression level of hsa-mir-378 (the twelfth
in Table 5) is up-regulated in the blood of patients with renal
cell carcinoma compared to healthy controls. Predicting
miRNAs related with kidney neoplasm by DCFMDA, 49 of
the top-50 candidate miRNAs have been validated (see
Table 5). Considering the different names of the same
miRNA, we can find previous IDs of these miRNAs in the
miRBase database. For example, hsa-mir-378a cannot be
retrieved to be related with kidney cancer from database
dbDEMC and miRCancer, but it can be retrieved by its pre-
vious ID has-mir-378.

Leukemia is a cancer caused by an overproduction of
damaged white blood cells. It is the most common cancer
among people under 15 years old. MiRNAs play an impor-

tant role in the development of leukemia. One of the most
typical examples is the association of miR-15a and miR-16a
with chronic lymphocytic leukemia. Researchers found that
65% of B cell chronic lymphoblastic leukemia patients have
deletions of chromosome 13q14, a locus that includes miR-
15a and miR-16a, which consequently present downregu-
lated expression [10]. In our case study, 46 of the 50 candi-
date miRNAs related to leukemia have been verified by
relevant databases (see Table 6). We have verified hsa-mir-
323 to be associated with leukemia by database dbDEMC,
where hsa-mir-323 is the previous ID of hsa-mir-323a. We
are not sure whether the remaining four of the top-50 miR-
NAs, namely, hsa-mir-302b, hsa-mir-216b, hsa-mir-668,
and has-mir-489, are related to leukemia.

Lymphomas are the most common ones of hematologic
tumors. For the top-50 lymphoma-associated miRNAs pre-
dicted by DCFMDA, 49 of them have experimental literature
evidence (see Table 7). For example, Literature [68] found
that the expression of hsa-mir-223 was downregulated more
than twice in diffuse large B-cell lymphoma (DLBCL) .

4. Conclusion

Predicting disease-related miRNAs will help people under-
stand the underlying pathogenesis of diseases. To overcome
the time-consuming and expensive shortcomings of

Table 7: The top-50 predicted miRNAs associated with lymphoma.

Rank miRNA Evidence Rank miRNA Evidence

1 has-let-7a dbDEMC 26 has-let-7g dbDEMC

2 has-mir-494 dbDEMC 27 has-mir-208b dbDEMC

3 has-mir-338 dbDEMC 28 has-mir-206 dbDEMC

4 has-let-7b dbDEMC 29 has-mir-27b dbDEMC

5 has-mir-93 dbDEMC 30 has-mir-132 dbDEMC

6 has-mir-141 dbDEMC 31 has-mir-223 dbDEMC

7 has-mir-518c Unconfirmed 32 has-mir-208a dbDEMC

8 has-mir-302c dbDEMC 33 has-mir-9 dbDEMC

9 has-mir-302a dbDEMC 34 has-let-7d dbDEMC

10 has-mir-23b dbDEMC 35 has-mir-378a dbDEMC

11 has-mir-145 dbDEMC 36 has-mir-296 dbDEMC

12 has-mir-106b dbDEMC 37 has-mir-96 dbDEMC

13 has-mir-99a dbDEMC 38 has-mir-106a dbDEMC

14 has-let-7e dbDEMC 39 has-mir-483 dbDEMC

15 has-mir-31 dbDEMC 40 has-mir-422a dbDEMC

16 has-mir-103a dbDEMC 41 has-mir-125b dbDEMC

17 has-mir-130b dbDEMC 42 has-mir-152 dbDEMC

18 has-mir-205 dbDEMC 43 has-mir-183 dbDEMC

19 has-mir-192 dbDEMC 44 has-mir-34a dbDEMC

20 has-mir-29a dbDEMC 45 has-mir-33b dbDEMC

21 has-mir-584 dbDEMC 46 has-mir-182 dbDEMC

22 has-let-7f dbDEMC 47 has-mir-302d dbDEMC

23 has-lef-7c dbDEMC 48 has-mir-216b dbDEMC

24 has-mir-424 dbDEMC 49 has-mir-137 dbDEMC

25 has-mir-219 dbDEMC 50 has-mir-375 dbDEMC
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experimental methods, researchers have focused on identify-
ing miRNA-disease potential association by computational
methods. Compared with existing methods, the main contri-
bution of our work is to propose a method of predicting
potential miRNA-disease association by deep collaborative
filtering. In addition to the experimental confirmed
miRNA-disease association, our method constructs the
miRNA similarity matrix by integrating the miRNA func-
tional similarity and miRNA Gaussian interaction profile
kernel similarity and constructs the disease similarity matrix
by integrating the disease semantic similarity, disease func-
tional similarity, and disease Gaussian interaction profile
kernel similarity. The performance of our method is vali-
dated by 10-fold cross-validation and case studies. The
experiment results indicate that our method can achieve
effective and reliable prediction results. In the future, we will
further improve the prediction performance of DCFMDA by
the following three aspects. Firstly, considering that the ran-
dom selection of negative samples may lead to a false nega-
tive, we will use an unsupervised deep learning model for
prediction. Secondly, our model simply combined the
lncRNA similarity and disease similarity as the feature vector
of miRNA-disease association, which cannot accurately
describe the association features. Lastly, to better integrate
various miRNA similarity and disease similarity by weighted
average, we will study an optimal weighting strategy so that
object similarity matrices can be appropriately constructed.
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