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Abstract

Enzymes of the radical SAM (RS) superfamily catalyze a diverse assortment of reactions that proceed
via intermediates containing unpaired electrons. The radical initiator is the common metabolite
S-adenosyl-L-methionine (SAM), which is reductively cleaved to generate a 50-deoxyadenosyl
50-radical, a universal and obligate intermediate among enzymes within this class. A bioinformatics
study that appeared in 2001 indicated that this superfamily contained over 600 members, many
catalyzing reactions that were rich in novel chemical transformations. Since that seminal study, the RS
superfamily has grown immensely, and new details about the scope of reactions and biochemical
pathways in which its members participate have emerged. This review will highlight only a few of the
most significant findings from the past 2-3 years, focusing primarily on: RS enzymes involved in
complex metallocofactor maturation; characterized RS enzymes that lack the canonical CxxxCxxC
motif; RS enzymes containing multiple iron-sulfur clusters; RS enzymes catalyzing reactions
with compelling medical implications; and the energetics and mechanism of generating the
50-deoxyadenosyl radical. A number of significant studies of RS enzymes will unfortunately be
omitted, and it is hoped that the reader will access the relevant literature – particularly a number of
superb review articles recently written on the subject – to acquire a deeper appreciation of this class
of enzymes.

Introduction and context
A pivotal paper published in the year 2001 by Heidi Sofia
et al. [1] identified a superfamily of metalloenzymes that
catalyze a rich assortment of reactions involved in
numerous important biological pathways, such as the
biosynthesis of a large number of enzyme cofactors,
antibiotics and other natural products, the biosynthesis
and repair of DNA, and general bacterial metabolism.
Although these reactions were diverse, they all shared the
property of being initiated via removal of a target
hydrogen atom (H•) from their relevant substrate by a
50-deoxyadenosyl 50-radical (50-dA•) generated from a
reductive cleavage of S-adenosyl-L-methionine (SAM).
The authors coined the title ‘radical SAM’ for this
superfamily of enzymes to distinguish them from the
classical SAM-dependent reactions that proceed via polar
(e.g., SN2) mechanisms. The thrust of that paper was the

identification of telltale features within the primary
structures of these proteins, most notably a CxxxCxxC
motif, which has facilitated the rapid discovery of radical
SAM (RS) proteins by sequence gazing. Spectroscopic
and biochemical studies on canonical members of the RS
superfamily showed that each contained a [4Fe-4S]2+/+

cluster in which three of the four irons of the cubane
structure are ligated by single cysteinyl residues lying in a
CxxxCxxC motif. The fourth iron is chelated to the
a-amino and a-carboxylate groups of SAM in a bidentate
fashion, which presumably facilitates the electron trans-
fer step and ensuing cleavage reaction (Figure 1) [2,3].

At the time of the study by Sofia et al., the RS superfamily
was predicted to contain over 600 members. A recent
review article by Frey, Hegeman, and Ruzicka [2] entitled
‘The radical SAM superfamily’ indicates that there are at
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least 2845 proteins in 781 microbial genomes that
contain the CxxxCxxC signature sequence; however, as
detailed below, this sequence, though overwhelmingly
common, is not strictly conserved among all RS proteins,
suggesting that this superfamily may be more diverse
than previously imagined. Several review articles on RS
enzymes have appeared recently, and the reader is
encouraged to seek them out to gain a deeper under-
standing of the most significant issues and a broader
appreciation of the reactions involved. The most
comprehensive of the reviews is by Frey, Hegeman, and
Ruzicka [2], which discusses in broad terms how the field
has developed over the past 10 years. The review by
Booker entitled ‘Anaerobic functionalization of unacti-
vated C-H bonds’ discusses the use of the 50-dA• to
catalyze functionalization of small molecules and
proteins [4], while the review by Duschene et al., entitled
‘Control of radical chemistry in the AdoMet radical
enzymes’, focuses on the energetics and mechanism of
generating the 50-dA• [5].

Major recent advances
Maturation of complex metallocofactors
RS enzymes are involved in the maturation of at least
three classes of complex metallocofactors, the iron-
molybdenum cofactor (FeMo-co) of nitrogenase, the
H-cluster of the [FeFe]-hydrogenase, and the mono-
nuclear cluster of the [Fe]-hydrogenase. The study by
Sofia et al. [1] suggested that the nifB gene product,
involved in an unknown step in the biosynthesis of
FeMo-co, was a RS protein. A subsequent report by

Curatti, Ludden, and Rubio [6] showed that purified and
reconstituted NifB was able to support in vitro recon-
stitution of FeMo-co in the presence of SAM; however,
little progress has been made in characterizing the
reaction or identifying the exact nature of its substrate.
By contrast, significant gains have been made in the past
2 years in understanding the biosynthesis of the
H-cluster of the [FeFe]-hydrogenase, one of the enzymes
responsible for the reversible reduction of protons to H2

[7]. This cluster consists of a 2Fe subcluster coordinated
by cyanide and carbon monoxide ligands, as well as a
dithiolate moiety (-SCH2-X-CH2S-), which is then
bridged to a [4Fe-4S] cluster via a protein cysteinate
ligand (Figure 2) [8,9]. The exact identity of the
dithiolate moiety has not been confirmed; X has been
suggested to be C, N, or O [9]. Genetic and biochemical
studies indicate that three accessory proteins are required
to synthesize and insert the H-cluster into the hydro-
genase protein (HydA) [7]: HydE, HydG, and HydF
(Figure 2). HydE and HydG are RS enzymes, while HydF
contains GTPase activity [10-13]. The X-ray crystal
structure of HydE was recently solved to 1.35 Å,
the highest resolution structure of any RS enzyme. The
structure revealed a [2Fe-2S] cluster separated from the
RS [4Fe-4S] cluster by approximately 20 Å in a spatial
arrangement similar to that of the two [4Fe-4S] clusters
in MoaA, which is involved in molybdopterin biosynth-
esis [14]. It is not clear whether this [2Fe-2S] cluster –
which may be a degradation product of a second
[4Fe-4S] cluster observed spectroscopically in another
study [11] – is actually required for maturation, because
substitution of its coordinating Cys residues with those
containing noncoordinating R-groups did not eliminate
hydrogenase activity in an in vivo assay. Moreover, the
ligands to the second cluster are not conserved among all

Figure 1. Binding mode of SAM in radical SAM proteins

L

synthase. Color scheme: black, Fe; blue, N; yellow, S; red, O; grey, C.
Structure prepared using Pymol Molecular Graphics System [74] from
Protein Data Bank entry 1R30.

Figure 2. Maturation of the H-cluster of the [FeFe]-hydrogenase

The structure on the left represents HydA, the hydrogenase from
Desulfovibrio desulfuricans, with a [4Fe-4S] cluster bound. In the presence of
HydE, HydF, HydG, and appropriate small molecules, the H-cluster is
formed on HydA. Color scheme: red, iron; yellow, sulfur; grey, carbon; blue,
nitrogen; black, unidentified atom (X). Structure prepared using Pymol
Molecular Graphics System [74] from Protein Data Bank entry 1HFE.
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HydE proteins. Although the substrate for HydE is
unknown, Nicolet et al. [15] provided evidence that the
protein can bind thiocyanate, which led them to
speculate that it might be involved in generating the
cyanide ligands to the H-cluster.

The protein HydG bears 27% sequence identity to the
Escherichia coli enzyme ThiH, a RS protein that catalyzes a
key step in the formation of the thiazole ring of the
cofactor thiamine diphosphate. The 50-dA• produced by
ThiH is proposed to abstract the phenolic hydrogen
atom from L-tyrosine, initiating a fragmentation reaction
that liberates p-cresol and dehydroglycine. Dehydrogly-
cine is then condensed with ThiFS thiocarboxylate and
1-deoxyxylulose 5-phosphate to give thiazole-phosphate
in a reaction catalyzed by ThiG [16]. The sequence
similarity between HydG and ThiH inspired investiga-
tion by Pilet et al. [17] to ascertain whether the substrate
for HydG was also L-tyrosine. HydG did in fact catalyze
liberation of p-cresol from L-tyrosine, leading the authors
to postulate that HydG is the site for the synthesis
of a dithiomethylamine ligand (-SCH2-NH-CH2S-; X
suggested to be N) – derived from the presumed
dehydroglycine product – onto a [2Fe-2S] cluster
scaffold. There was no mention, however, as to whether
dehydroglycine was also observed as a product [17].

A different group investigating the role of HydG in the
maturation of the H-cluster of hydrogenase also found
that HydG catalyzes the cleavage of L-tryrosine. Not only
was p-cresol found as a product, there was clear evidence
for the formation of cyanide in almost equivalent
amounts. The authors proposed that the cyanide
produced could derive from a facile oxidative decarbox-
ylation of dehydroglycine, but more interestingly,
suggested that both cyanide and carbon monoxide
could be produced in a single reaction via a decarbonyla-
tion of dehydroglycine, which they stated has chemical
precedent [18]. Therefore, it appears that the role of
HydG is to use RS chemistry to catalyze formation of the
cyanide ligands of the 2Fe subcluster, and perhaps the
carbon monoxide ligands as well.

Radical SAM enzymes lacking the canonical
CxxxCxxC motif
ThiC, an enzyme involved in thiamine diphosphate
biosynthesis in prokaryotes, was not identified as an RS
member by Sofia et al. [19]. The penultimate step in the
de novo thiamine diphosphate biosynthetic pathway
involves a condensation of the thiazole and pyrimidine
moieties of the cofactor, each synthesized in two
independent branches of the pathway, to furnish
thiamine monophosphate, which is subsequently phos-
phorylated to the active cofactor [19]. In contrast to

ThiH, which participates along with other proteins in the
formation of the thiazole moiety, ThiC alone catalyzes
formation of the pyrimidine moiety [19]. The reaction is
among the most complex in all of mechanistic enzymo-
logy, which is the conversion of 5-aminoimidazole
ribonucleotide to 4-amino-5-hydroxymethyl-2-methyl-
pyrimidine phosphate (HMP-P). Figure 3 highlights the
results of labeling studies, illustrating the complex nature
of the reaction [19]. Recently, the enzymes from
Arabidopsis thaliana [20], Salmonella enterica [21], and
Caulobacter crescentus [22] have been characterized to be
iron-sulfur (Fe/S) proteins, the latter two of which were
shown to catalyze in vitro formation of HMP-P or
4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP)
in the presence of substrate, SAM, and dithionite [21,22].

The recent X-ray crystal structure of apo-ThiC from
C. crescentus with bound HMP-P identified three struc-
tural domains: an N-terminal domain, a central domain,
and a disordered C-terminal domain. The latter bears a
conserved CxxCxxxxC motif, the Cys residues of which
could ligate an Fe/S cluster. However, note that the
sequence differs from the canonical RS CxxxCxxC motif,
and its position in the protein at the C terminus instead
of near the N terminus is also distinct [22]. Typical RS
enzymes contain the CxxxCxxC motif in the N-terminal
half of their primary structures [1]. The structure revealed
the protein to be dimeric, and the [4Fe-4S] cluster, shown
to be present on the reconstituted enzyme by Mössbauer
and electron paramagnetic resonance (EPR) spectro-
scopy, was modeled into the protein using the structure
of biotin synthase as a template. SAM was modeled into
the active site pocket to coordinate the unique iron of the
[4Fe-4S] cluster in a bidentate fashion, in common with
other RS enzymes, which places the 50-carbon in a
suitable position to abstract a hydrogen atom from the
ribose ring of the substrate by a generated 50-dA•.

Figure 3. The reaction catalyzed by ThiC

Color-coding depicts the change in positioning of certain atoms during the
rearrangement as determined by labeling experiments. AIR, 5-aminoimida-
zole ribonucleotide; HMP, 4-amino-5-hydroxymethyl-2-methylpyrimidine.
Figure is adapted from reference [21].
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Evidence for a mechanism involving organic radicals was
provided in an EPR study. When SAM was added to the
dithionite-reduced enzyme, a new signal centered at g =
2.002 emerged, which had line width and temperature-
dependent properties that were consistent with an
organic radical. A sample prepared in D2O allowed
determination that the radical was centered on the
a-carbon of an amino acid residue other than glycine or
alanine. Exposure of the protein bearing the organic
radical to oxygen led to rapid destruction of the EPR
signal and cleavage of the polypeptide chain between
Gly436 and His437 [23]. Whether this organic radical is
an intermediate in this reaction remains to be resolved.

Elp3 fromMethanocaldococcus jannaschii and HmdB from
Methanococcus maripaludis S2 are two partially character-
ized enzymes similarly found to lack the canonical
CxxxCxxC motif. Elp3 is a component of the Elongator
complex, required for transcription elongation. Elonga-
tor is composed of six subunits, Elp1 to Elp6. Elp3 is
thought to be the catalytic subunit, given that it is one of
the subunits that forms the core of the complex, and that
it displays histone acetyl transferase (HAT) activity [24].
In addition to its C-terminal HAT domain, Elp3 has a
domain potentially related to RS enzymes despite a
CX4CX9CX2C motif deviating from the canonical
CxxxCxxC RS motif. It was speculated that the RS
domain might catalyze demethylation of methylated
lysyl residues on histones [25]. The RS domain of Elp3
from M. jannaschii (residues 63-371) was subsequently
purified and shown to bind SAM and small amounts of
iron [26]. The Cys motif in this archaeal Elp3
(CxxxxCxxC) is different from both the canonical motif
and that found in eukaryotic proteins.

Small amounts of Elp3 from Saccharomyces cerevisiaewere
recently isolated, allowing the involvement of possible
Fe/S clusters in catalysis to be investigated. Substitution
of individual Cys residues by Ala residues in the
proposed RS domain of Elp3 resulted in phenotypes
that were indistinguishable from those observed upon
deletion of the entire ELP3 gene, suggesting that the
proposed cluster is important for normal Elongator
function. Further studies showed that the Cys→Ala
substitutions affected assembly of the Elongator com-
plex, but had little effect on HAT activity or the ability of
the complex to bind to RNA polymerase II in chromatin.
In addition, no histone demethylase activity was
detected, and no evidence for the ability to bind SAM
was found. The authors concluded that the Fe/S cluster, if
present, serves a structural rather than catalytic role [27].

A more recent study has demonstrated at least partial
involvement of the RS domain of mammalian Elp3 in

active demethylation of 5-methyl cytosines of the
paternal DNA strand at the zygotic stage of fertilization
and development [28]. This event is believed to be vital
in the reprogramming of germ cells to allow their
transition to somatic cells. To show this, Okada et al. [28]
developed molecular probes to allow determination of
the methylation state of DNA in zygotes via time-lapse
imaging, which they used in conjunction with RNA
interference to allow cellular levels of candidate
demethylases to be knocked down. Single interfering
RNA (siRNA) molecules targeting Elp1, Elp3, and Elp4
all affected the zygotic paternal methylation status.
Interestingly, introduction of mRNA encoding substitu-
tions of the Cys residues within the proposed RS domain
of Elp3 affected the paternal methylation status, whereas
substitutions in the HAT domain of Elp3 did not. They
suggested that demethylation might be mediated
through a reaction that requires an intact RS domain.

The hmdB gene from M. maripaludis S2 was recently
found to be adjacent on the chromosome to the hmdA
gene. HmdA, found in hydrogenotrophic methanogens,
catalyzes the reversible reduction of methenyl-tetrahy-
dromethanopterin (H4MPT+) to methylene-H4MPT and
H+, and contains an octahedrally-coordinated nonheme
iron atom bearing two CO ligands, a protein cysteinyl
ligand, an unknown ligand, and a guanylyl pyridinol
cofactor ligand [29]. The primary structure of HmdB
contains a CxxxxxCxxC motif and is phylogenetically
related to ThiH, HydE, and HydG (see above). The
purified protein was shown by UV-visible and EPR
spectroscopy to contain a [4Fe-4S] cluster. In addition, it
was capable of catalyzing cleavage of SAM to 50-dA in the
presence of dithionite, suggesting its inclusion in the RS
superfamily [29]. It was suggested that HmdB might
participate in the synthesis of the iron-carbonyl linkage
in the Hmd cofactor.

Radical SAM enzymes with multiple iron-sulfur clusters
The discovery that biotin synthase from E. coli contains
two distinct Fe/S clusters per polypeptide, a [4Fe-4S]
cluster and a [2Fe-2S] cluster, ushered in a new chapter in
RS enzymology, which highlighted the versatility of these
enzymes as catalysts [30,31]. With the exception of
MoaA, all early RS members containing multiple Fe/S
clusters catalyzed the insertion of sulfur deriving from
the second cluster into unactivated C-H bonds: a [2Fe-
2S] cluster on biotin synthase, and [4Fe-4S] clusters on
lipoyl synthase and MiaB [4,32-34]. In addition to sulfur
insertion into the hypermodified tRNA nucleoside N6-
(isopentenyl)adenosine-37, MiaB transfers the methyl
group from another molecule of SAM onto the inserted
sulfur atom. This reaction takes place on the hypermo-
dified tRNA nucleoside N6-(isopentenyl)adenosine-37,
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and involves a net methylthiolation at C2 of the adenine
ring. Therefore, it appears that a single polypeptide
catalyzes both radical and polar SAM-dependent
reactions [35].

Recently, Anton et al. [36] showed that the yliG gene in
E. coli, the product of which was designated RimO,
catalyzes a similar methylthiolation reaction on a
universally conserved Asp residue (Asp88 in E. coli) of
the S12 subunit of certain bacterial ribosomes. RimO
proteins from E. coli [37] and Thermotoga maritima [38]
were subsequently purified by two different groups, and
in both instances shown to bind two [4Fe-4S] clusters
per polypeptide and to catalyze methylthiolation of a
peptide substrate containing an Asp residue in the
appropriate sequence context. RimO, like MiaB, contains
six conserved Cys residues, all of which reside in the
N-terminal region of the protein, suggesting that this
second cluster is also ligated by only three Cys residues.
In analogy with the previously mentioned RS enzymes
that catalyze sulfur insertion, it is believed that the
second cluster provides an activated form of sulfide to be
inserted into the substrate.

The RS enzyme MoaA has been characterized structurally
and shown to bind an additional [4Fe-4S] cluster via
three Cys residues located in the C-terminal region of its
primary structure [39]. Unlike the enzymes discussed
above, its net reaction does not involve sulfur insertion,
but is a cryptic rearrangement of GTP to yield precursor
Z, an intermediate in the biosynthesis of the cofactor
molybdopterin (Figure 4). The MoaA reaction was
shown to be dependent on the second cluster and to
require the accessory protein MoaC, which participates in
some undefined role [14]. The X-ray crystal structure of
MoaA containing both clusters and in complex with
both SAM and GTP provided valuable insight into

the architecture of the active site (Figure 5) [40]. The
C-terminal cluster appeared to interact with either the N1
or N3 nitrogen atoms of GTP; however, the poorly
defined electron density of the substrate did not allow an
exact determination of its binding mode. Recently,
electron nuclear double resonance (ENDOR) spectro-
scopy was used to show that the mode of binding
involved coordination of the N1 nitrogen atom to the
unique iron atom of the cluster at a distance of 1.94 Å.

Figure 4. The reaction catalyzed by MoaA/MoaC

Numbers highlight changes in positioning of atoms during the rearrangement.

Figure 5. The active site of MoaA

Structure of MoaA with both GTP and SAM (S-adenosyl-L-methionine)
bound. Color scheme: black, Fe; blue, N; yellow, S; red, O; grey, C.
Structure prepared using Pymol Molecular Graphics System [74] from
Protein Data Bank entry 2FB3.
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The authors suggested that this interaction should favor
guanine binding to the unique iron atom as the enol
rather than keto tautomer, which they stated may have
mechanistic implications [41]. Currently, little is known
about the detailed mechanism of catalysis by MoaA/
MoaC. This C-terminal Fe/S cluster has been shown to be
redox-active, and it has been speculated that it could play
a role in electron transfer [40].

Another RS enzyme purported to be in the MoaA family
is PqqE, which is one of six proteins required for
the biogenesis of pyrroloquinoline quinone (PQQ).
Unlike the other quino-cofactors, which are generated
via posttranslational modifications of the core catalytic
proteins, PQQ is synthesized as a small-molecule
cofactor that subsequently associates with the relevant
catalyst via noncovalent interactions [42]. The biogen-
esis of PQQ is quite complex, involving the crosslinking
of the side chains of glutamyl and tyrosyl residues from
a core peptide composed of 23 amino acids, which
serves as the skeleton of the cofactor [43]. It has been
suggested that PqqE might catalyze this crosslinking,
generally believed to be the first step in the pathway.
Similar to MoaA, PqqE displays two highly conserved
cysteine-containing motifs at the N and C termini of the
protein, CX3CX2C and CX2CX27C, respectively. A recent
study by Wecksler et al. [44] provided spectroscopic and
analytical evidence for the presence of two Fe/S clusters
on the enzyme from Klebsiella pneumoniae, and showed
that the protein can catalyze cleavage of SAM to yield
50-dA and methionine. However, no evidence for in vitro
formation of PQQ was forthcoming despite a deter-
mined effort to provide it. As described for MoaA, no
distinct mechanistic role for this second cluster has
been assigned.

The radical SAM dehydrogenases are an emerging
subclass of RS enzymes, catalyzing the simple two-
electron oxidation of an alcohol or thiol group to the
corresponding aldehyde or ketone. Three of these
enzymes, spanning two distinct reaction types, have
been characterized in vitro. The first, BtrN, catalyzes a key
step in the biosynthesis of the aminoglycoside antibiotic
butirosin B, which is the oxidation of the C3 alcohol of 2-
deoxy-scyllo-inosamine (DOIA) to amino-2-deoxy-scyllo-
inosose (amino-DOI) [45]. The second two, anSMEcpe
and AtsB, are anaerobic sulfatase modifying enzymes
from Clostridium perfringens and K. pneumoniae, which
catalyze the oxidation of a Cys or Ser residue on a cognate
protein to generate a formylglycyl cofactor [46,47]. The
reactions proceed via abstraction of a hydrogen atom
from the carbon to be oxidized by the 50-dA•, followed by
the uptake of an electron by an undetermined acceptor
[45,47,48]. Detailed analytical and spectroscopic analysis

of AtsB showed that it contained three [4Fe-4S] clusters
per polypeptide. It was postulated that one of the clusters
binds in contact with the substrate to facilitate loss of an
electron from the substrate-radical intermediate via an
inner-sphere mechanism [47]. Although the stoichiome-
try of Fe/S clusters on anSMEcpe has not been deter-
mined, the protein shares 48% sequence similarity with
AtsB, including 11 conserved Cys residues. By contrast,
BtrN was characterized to contain only one [4Fe-4S]
cluster, suggesting that the presence of multiple Fe/S
clusters is not a prerequisite for RS dehydrogenation [49].
Recently, Mössbauer spectroscopy was used in concert
with analytical determinations of iron content to re-
evaluate the stoichiometry of Fe/S clusters rigorously,
showing that indeed the protein contains two [4Fe-4S]
clusters [50].

Radical SAM enzymes with compelling medical
implications
Very recent findings portend that a number of exciting RS-
dependent transformations that have compelling medical
implications are on the horizon, including reactions
involving bacterial defense against antibiotics and host
defense against invading viruses. Viperin (virus inhibitory
protein, endoplasmic reticulum-associated, interferon-
inducible), a protein induced upon interferon stimula-
tion, is involved in the antiviral defense against DNA
viruses such as cytomegalovirus, RNA viruses such as
hepatitis C and influenza, and retroviruses such as human
immunodeficiency virus [51,52]. The protein is highly
conserved across species, sharing significant sequence
homology with similar proteins from trout and mouse,
as well as a protein from rat, best5, which is expressed
during osteoblast differentiation and bone formation
[1,51]. Viperin is composed of three distinct domains, a
variable N-terminal domain, a radical SAM domain, and a
C-terminal domain, the last two of which are highly
conserved. Mutations in the gene encoding Viperin that
give rise to Cys→Ala substitutions at the protein level
resulted in loss of antiviral effects against hepatitis C virus,
demonstrating the importance of RS chemistry in antiviral
activity [53]. At present, the exact mechanism of action of
Viperin is unknown, as is its direct target. It has been
suggested that Viperin-dependent inhibition of influenza
A virus involves perturbing its release from the plasma
membrane during its budding cycle by affecting the
formation of lipid rafts. This activity is believed to derive
froman inhibition of farnesyl diphosphate synthase via an
unknownmechanism. Also unknown is the exact pathway
downstream of farnesyl diphosphate synthase inhibition
that gives rise to viral inhibition [54]. Recently, it was
shown that Viperin localizes to intracellular lipid-storage
organelles called lipid droplets via an N-terminal amphi-
pathic a-helix, which may mediate its effect against
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hepatitis C virus; however, again, the exact mechanism of
inhibition is unknown [55].

Two reports describing the first in vitro characterization of
Viperin have recently appeared [56,57]. In the report by
Shaveta et al. [57], expression analysis of 12 fragments of
the Viperin gene showed that a Viperin construct lacking
the first 44 amino acids (i.e., 45-361) was a predomi-
nantly soluble protein that could be purified under
native conditions by immobilized metal affinity chro-
matography. Analysis of the reconstituted protein by
UV-visible spectroscopy supported the presence of an
Fe/S species. In the report by Duschene and Broderick
[56], a Viperin construct spanning residues 43-360 was
generated. The purified protein had low amounts of iron,
but was reconstituted to contain 3.7 irons per polypep-
tide. Both UV-visible and EPR spectroscopy analysis of
the protein supported the presence of [4Fe-4S] clusters.
In addition, the protein was capable of catalyzing
reduction of SAM to 50-dA and methionine.

Cfr is another recently characterized RS protein with clear
medical implications. It confers resistance to five classes of

antibiotics (phenicols, lincosamides, oxazolidinones,
pleuromutilins, and streptogramin A) – all of which
bind to the peptidyl transferase center of bacterial
ribosomes – as well as the 16-membered macrolides
josamycin and spiramycin. Its mode of action involves
methylation of C8 of adenosine 2503 of 23S ribosomal
RNA (rRNA), which sits in the center of the peptidyl
transferase site [58]. This methylation has a negligible
effect on peptidyl transferase activity, but sterically
impedes the binding of antibiotics that target the site. A
similar protein, RlmN, targets C2 of the exact nucleotide
(Figure 6). It is endogenous to a wide number of bacteria
and other organisms, functioning in the fine-tuning of
translation. By contrast, the cfr gene is acquired, and
appears to be an evolutionary spin-off of the rlmN gene,
arising from gene duplication and horizontal transfer
[59]. Recently, a structural model of Cfr was generated
using the MoaA structure as a template for its central RS
domain. Themodel included the expected [4Fe-4S] cluster
ligated by the RS motif as well as two molecules of bound
SAM: one as the precursor to the 50-dA• and one as the
donor of the methyl group [59]. The RNA substrate was
not modeled into the structure. A particularly significant

Figure 6. The reactions catalyzed by Cfr and RlmN

SAH, S-adenosyl-homocysteine;
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aspect of the work was a study of amino acid substitutions
at proposed sites for binding the [4Fe-4S] cluster and the
two SAM molecules, as well as in the N-terminal and
C-terminal domains of the protein. Among other observa-
tions, five Cys residues appeared critical for Cfr activity.
These included residues 112, 116, and 119, found in the
RS signature sequence; Cys338, found at the C-terminus
of the protein; and Cys105, found in the binding pocket
for the second SAM molecule. Interestingly, although the
Cys105→Ala substitution did not support methylation, it
appears that some type of reaction took place that caused
a stop in primer extension assays similar to the observed
effect of C8 methylation [59].

More recently, Yan et al. expressed the genes for E. coli
RlmN and Staphylococcus aureus Cfr in E. coli, and isolated
the corresponding hexahistidine-tagged proteins [60].
They found that the reconstituted protein contained
3.98 and 6.79 irons, respectively, which they concluded
was sufficient to support formation of a [4Fe-4S] cluster. In
vitro activity determinations on the proteins were con-
ducted with a series of potential substrates, including
rRNA substrates of different sizes. It was found that neither
the intact 70S ribosome nor the isolated 50S or 30S
subunits served as substrates for either Cfr or RlmN. Only
protein-free rRNA containing adenosine at position 2503
was capable of beingmethylated,which suggests that these
proteins catalyze their reactions before the ribosome is
assembled. Further studies provided evidence for the
formation of both 50-dA and S-adenosyl-homocysteine
similar to that observed for MiaB and RimO. Moreover,
when the reaction was conducted in the presence of
S-adenosyl-L-[methyl-3H]methionine, radioactivity was
found to be transferred to the rRNA substrate, indicating
that SAM is the source of the appendedmethyl group [60].

Advances in understanding the reductive cleavage of
S-adenosylmethionine
The fundamental chemical transformation common to
all radical SAM enzymes is the reductive cleavage of SAM
to generate the 50-dA•, which in solution is thermo-
dynamically unfavorable. Midpoint potentials for the
irreversible one-electron reduction of a trialkylsulfonium
ion are on the order of -1.8 V, while those for radical SAM
proteins tend to be much higher [61]. A study by Wang
and Frey [61] investigated the energetics of SAM cleavage
by lysine 2,3-aminomutase, which uses RS chemistry to
catalyze an interconversion of a- and b-lysine when
bound in an aldimine linkage to a required pyridoxal
50-phosphate cofactor. They found that in the resting state
of the enzyme (i.e., with SAMand pyridoxal 50-phosphate
bound) the [4Fe-4S] clusters exhibited a midpoint
potential of -430 mV, and that the binding of lysine
lowered the midpoint potential by ~150 mV. Similarly,
the midpoint potential for the reductive cleavage of
SAM in the enzyme/SAM/lysine complex was estimated
to be –990 mV from values obtained using the analog
S-30,40-anhydroadenosyl-L-methionine. Therefore, the
enzyme active site environment raises the redox potential
of SAM by ~ 810 mV while lowering the redox potential
of the Fe/S cluster upon substrate binding, which
corresponds to a decrease in the overall barrier for the
reductive cleavage of SAM from 32 kcal/mol in solution
to 9 kcal/mol. Additional energy for the process is
believed to derive from ligation of the sulfur atom of the
generated methionine to the unique iron of the cluster,
which generates a hexacoordinate species and facilitates
inner-sphere electron transfer (Figure 7) [61,62].

A recent study by Nicolet et al. [63] provided
additional support for the mechanism of reductive

Figure 7. Model for the reductive cleavage of SAM to generate a 50-deoxyadenosyl radical
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cleavage of SAM proposed by Frey and coworkers, and
argued that the mechanism should be common to all
RS enzymes containing the canonical CxxxCxxC motif.
This conclusion stems from their solving of the X-ray
structures of HydE (see above) with SAM bound and
with both 50-dA and methionine bound at 1.62 and
1.25 Å, respectively, and then using these structures in
concert with computational methods to calculate the
most likely reaction trajectory. Interestingly, their
calculated barrier for SAM cleavage of 54.0 kJ/mol
(12.9 kcal/mol) agrees well with the experimental
estimate made by Wang and Frey (9 kcal/mol) [61].
Moreover, they remarked that in all RS structures
solved in complex with SAM, SAM was bound in
essentially the same fashion in each case [63].

Future directions
In the near future, much of the focus on RS enzymes will
undoubtedly involve characterizing new and novel
enzymatic reactions. As described above, the RS super-
family may be significantly larger than previously
imagined, and it is no longer safe to rely on the presence
of a CxxxCxxC motif in the N-terminal half of a protein
sequence as an indicator of membership in this family.
Many new discoveries will emanate from studies to
identify gene clusters for the biosynthesis of a variety of
natural products, such as clorobiocin [64], moenomycin
A [65], pactamycin [66], gentamicin [67], nosiheptide
[68], unusual lipids [69], and deazapurine-containing
secondary metabolites [70], which are just a few of the
more recent ones to be discovered. Indeed, RS enzymes
involved in the biosynthesis of the antibiotic butirosin B

been well characterized [45,49,71].

One particular class of RS methyltransferases, which are
distinct from Cfr and RlmN, deserves special attention in
the future. This class was highlighted in the study by
Sofia et al., and its participant enzymes are annotated as
being in the P-methylase family. This name derives from
one of the founding members of this subclass of RS
enzymes, which catalyzes the methylation of a phosphi-
nate phosphorus atom in the biosynthesis of the
herbicide bialaphos [72]. Interestingly, these enzymes
are annotated as cobalamin binding proteins, and a
number of genetic and in vivo biochemical studies
support that assignment; however, there have been no
reports of the isolation and in vitro characterization of
one of these proteins [4]. A hypothetical mechanism for
these RS methyltransferase reactions was advanced by
van der Donk [73], in which he proposed that the added
methyl group is transferred from methylcobalamin to
the substrate radical generated via hydrogen atom
abstraction by the 50-dA• in a radical process.

Two additional areas of future interest are the elucidation
of the mechanisms for re-installing the sacrificed Fe/S
clusters in RS enzymes that catalyze sulfur insertion, and
the development of more robust bioinformatics methods
for identifying RS proteins that do not contain the
canonical signature sequence in the N-terminal half or
their primary structures. The emergence of the RS super-
family of enzymes has brought renewed vigor to mechan-
istic enzymology. Many of the known transformations are
simply astounding, and the future bodes well for discover-
ing new ones that will remind us of the wonders of nature.
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