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Abstract: Due to the development of nanotechnologies, graphene and graphene-based nanomaterials
have attracted immense scientific interest owing to their extraordinary properties. Graphene can
be used in many fields, including biomedicine. To date, little is known about the impact graphene
may have on human health in the case of intentional exposure. The present study was carried
out on U87 glioma cells and non-cancer HS-5 cell lines as in vitro model and U87 tumors cultured
on chicken embryo chorioallantoic membrane as in vivo model, on which the effects of pristine
graphene platelets (GPs) were evaluated. The investigation consisted of structural analysis of GPs
using transmission electron microscopy, Fourier transmission infrared measurements, zeta potential
measurements, evaluation of cell morphology, assessment of cell viability, investigation of reactive
oxygen species production, and investigation of mitochondrial membrane potential. The toxicity of
U87 glioma tumors was evaluated by calculating the weight and volume of tumors and performing
analyses of the ultrastructure, histology, and protein expression. The in vitro results indicate that
GPs have dose-dependent cytotoxicity via ROS overproduction and depletion of the mitochondrial
membrane potential. The mass and volume of tumors were reduced in vivo after injection of GPs.
Additionally, the level of apoptotic and necrotic markers increased in GPs-treated tumors.

Keywords: pristine graphene; oxidative stress; mitochondria; apoptosis

1. Introduction

The discovery of graphene became a new driving force in the development of the nanoindustry.
Graphene and graphene-based nanomaterials can be used in many fields of biomedical applications
including cancer therapy [1,2], drug/gene delivery [3,4], antimicrobial applications [5], tissue
engineering [6], and diagnostics [7]. The atoms of carbon in graphene, bonded with sp2 hybridization,
are organized in hexagonal structures, resembling the construction of the honeycomb material.
The features which distinguish it from other nanomaterials are: an exceptionally high level of charge
and electron mobility, high thermal conductivity and low resistivity [8]. Currently, many forms of
graphene have been developed. The forms differ in shape, size, and surface modification, giving them
comprehensive physical, chemical, and biological properties. Generally, graphene sheets with small
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size, sharp edges, and rough surfaces easily internalize into the cell in comparison to larger, smooth
sheets [9]. However, the future use of graphene and graphene-based materials in a biological and
medical context requires a detailed understanding of these materials, which is necessary to extend their
biomedical applications in the future. Several reviews have found that graphene results in various
degrees of cell death [10–13].

Glioblastoma grade IV is a primary malignant tumor of the brain which is derived from glial
cells [14]. According to the World Health Organization (WHO), it is the highest grade of malignancy
(grade IV) [15]. It is also the most common malignant brain tumor, as well as being one of the deadliest
human tumors. It is characterized by an intensive cell proliferation, angiogenesis, intensive growth,
and penetration into the other tissues [16]. Currently, the standard approach to treating cancer is the
maximum safe surgical resection followed by radiation therapy with simultaneous chemotherapy
with temozolomide [17]. Despite this broad approach, clinical studies show that the average survival
time of the patient is only 15 months [18]. For this reason, alternative therapies, including the use of
nanoparticles and nanomaterials, are being examined.

In our previous studies with glioma cell lines treated with graphene oxide (GO) and reduced
graphene oxide (rGO), we noted dose-dependent toxicity. Both types of platelets reduced cell viability
and proliferation with increasing doses, but rGO was more toxic than GO [12]. The uptake, toxic
effects and capability of treatment of graphene were previously studied for U87 cells. It has been
reported that the reduced graphene oxide nanoribbons functionalized by amphiphilic polyethylene
glycol (rGONR–PEG–RGD) [19] reduced graphene oxide nanomesh (rGONM) [20] and zinc ferrite
spinel-graphene [21] exhibited concentration-dependent selective photothermal cyto- and geno-toxic
effects of the cells. Furthermore, our previous results with pristine graphene platelets (GPs)
demonstrate that the cytotoxicity of GPs on glioma cells increases with increasing GP concentrations
from 10 to 100 µg/mL [13]. Graphene caused damage to the plasma membrane and induced apoptosis,
thus indicating potential efficacy in brain tumor therapy. In this study, we want to better visualize the
changes that occur in cells treated with GPs. We hypothesized that graphene provides the formation
of reactive oxygen species (ROS), which are the cause of cell membrane damage and mitochondrial
disorders and, finally, cell death. The objectives of this study were to measure the toxicity of GPs and
the proapoptotic and necrotic activities of graphene in glioblastoma grade IV cells and non-cancer cells
(HS-5) and glioblastoma tumors cultured on chorioallantoic chicken embryo membrane.

2. Results

2.1. Characterization of Graphene

Figure 1 shows representative transmission electron microscope (TEM) and scanning electron
microscope (SEM) images of GPs. Because of their hydrophobic character, GPs are usually visible as
many layers, and less often as one. GPs are characterized by irregular, corrugated shape, and sharp
edges. The diameter of the platelets ranged from 420 nm to 1.6 µm, but agglomerates were more than
4 µm in diameter. Additionally, dynamic light scattering (DLS) analysis was performed to determine
the average hydrodynamic diameter of graphene platelets. Agglomerates ranged between 4.2 to 24 µm.

The zeta potential for all tested concentrations was similar; the mean was -11.5 (Figure 2A). FT-IR
spectra of GN is presented in Figure 2B. Band originating from carbon bond (C=C) is seen at 1635 cm−1.
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2.2. Cell Morphology

Microscopic visualization of interactions between control and GPs-treated cells showed that in
both cell lines, it was noticeable that GP agglomerates attached to the cell and protrusions (Figure 3).
Micrographs of cell cultures exposed to high GP concentrations for 24 h demonstrated cells with
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altered cell morphology and an increased number of apoptotic cells. The GP-treated cells were more
oval, denser, and their protrusions were shorter in comparison with the control cells.
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Figure 3. Morphology of U87 (A–D) and HS-5 (E–H) cells: untreated control (A,B,E,F), treated with
pristine graphene (C,D,G,H). Notes: Black arrows point to graphene agglomerates. Red arrows point
to apoptotic bodies.
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2.3. Cell Metabolic Activity

Cell viability was evaluated at 1, 4, 12, and 24 h post-exposure. After 1 h, GPs did not show
obvious cytotoxic effects on the U87 and HS-5 cell lines. After a longer exposure period, increased
concentration of GPs resulted in decreased vitality in both cell types. The lowest vitality was observed
at the GP concentration of 200 µg/mL, with 72% and 54% (after 4 h), 44% and 32% (after 12 h), and 46%
and 40% (after 24 h) in U87 and HS-5 cells, respectively (Figure 4).
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Figure 4. Effect of pristine graphene on the viability of U87 and HS-5 cells after 1 (A), 4 (B), 12 (C),
and 24 (D) h. Notes: The columns with different letters (a–d) indicate significant differences between
the concentrations; error bars are standard deviations. C—control group (untreated cells).

2.4. ROS Production and Mitochondrial Membrane Potential

GPs significantly (P < 0.05) increased the ROS production of U87 and HS-5 cells compared with
the controls group. Increased concentrations of GPs resulted in increased ROS generation in both
cell lines. The highest was observed at a concentration of 200 µg/mL (Figure 5E). The mitochondrial
membrane potential is crucial for maintaining the physiological function of the respiratory chain in the
production of ATP. A significant loss of ∆Ψm causes loss of energy and further death. Non-treated cells
have active mitochondria; therefore, they collect aggregates of the orange dye inside them, which are
visualized with fluorescence microscopy. The loss of orange fluorescence from the mitochondria
indicates the collapse of ∆Ψm upon treatment with GPs. Increased concentrations of GPs resulted in
an increased ratio of green/orange fluorescence in both cell lines (Figure 5).
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Figure 5. Investigation of mitochondrial transmembrane potential of U87 (A,C) and HS-5 cells
(B,D) and ROS production (E). A,B–control cells, C,D–cells exposed to 50 µg/mL of GPs. F–ratio
of green/orange fluorescence.

2.5. Analysis of Macro and Microstructure of U87 Tumors

U87 cells grew successfully on the CAM and were able to rapidly induce the formation of
solid tumors ranged from 6 to 12 mm diameter. U87 tumors had an oval shape and well-developed
blood vessels on the surface (Figure 6). Blood vessels were clearly visible within the tumor tissue,
showing that the U87 glioblastoma tumor cells induced a neovascularization from the chick vasculature.
A decrease in tumor mass and volume was observed in the GP-treated group (Figure 6G).
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group; (B,D,F) pristine graphene treated group. (G) U87 tumor volume, weight, and mitotic index 
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agglomerates. The columns with different letters (a–b) indicate significant differences between the 
groups. 

The microstructures in both groups were similar. The surface of the tumor was characterized 
by a multilamellar flat epithelium, focally keratinizing. There was no significant difference between 
control and GP-treated tumors in terms of cellular atypia and anaplasia. U87 tumors showed a 

Figure 6. Glioblastoma multiforme tumor cultured on chorioallantoic membrane. (A,C,E) control
group; (B,D,F) pristine graphene treated group. (G) U87 tumor volume, weight, and mitotic index in the
control (C) and pristine graphene (GPs) groups. Notes: Black arrows point to graphene agglomerates.
The columns with different letters (a–b) indicate significant differences between the groups.

The microstructures in both groups were similar. The surface of the tumor was characterized
by a multilamellar flat epithelium, focally keratinizing. There was no significant difference between
control and GP-treated tumors in terms of cellular atypia and anaplasia. U87 tumors showed a diffuse
pleiomorphic infiltrate of fibrillar and stellate cells with smaller and larger atypical nuclei and a high
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ratio of nucleus to cytoplasm. Both groups showed high mitotic activity; the mitotic index varied from
6.6 in control tumors to 5.4 in GPs-treated tumors. In the GP treated group, single abnormal mitoses
and apoptotic bodies were observed. Tumor necrosis was found in both groups.

2.6. TEM Analysis of Glioma Tumors

Figure 7 shows the morphological changes of U87 tumor cells exposed to GPs (500 µg/mL).
Cell structures (nucleus, mitochondria, Golgi apparatus, rough endoplasmic reticulum (R.E.R),
endocytotic vesicles) were visible in the control group. Most of the cells had a high rate of protein
synthesis, which was confirmed by the highly developed R.E.R. Part of the nuclei contained spheroid
bodies composed of granular materials. Control cells had oval or rod-shaped mitochondria with a
medium or high electron density matrix. The morphology of the glioblastoma cells in the GP-treated
group differed from the control group (Figure 7).
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Figure 7. Glioblastoma multiforme tumors ultrastructure from control group (A,B) after GPs
treatment (C–F). Notes: Scale bar: A, B, E 2 µm; C and D 500 nm; F 2 µm. Green arrows point
to graphene agglomerates, orange arrows point to degraded mitochondria, blue arrows point to
apoptotic bodies. Abbreviations: N—nucleus, M—mitochondria, RER—rough endoplasmic reticulum,
AG—Golgi apparatus.

The examination of glioblastoma cell ultrastructure revealed that GPs were located inside cells,
dispersed in cytosol. GP-treated cells displayed moderate chromatin condensation and cytoplasmic
swelling with rupturing of the plasma membrane. We noticed the destruction of mitochondrial
structure such as through focal brightening in the matrix, mitochondrial membranes deformation,
and mitochondrial swelling.
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2.7. Protein Levels

Expression of caspase-9 and caspase-3 in the GP-treated tumors increased by 67% and 84%,
respectively, compared with the control group. The level of proteins involved in mitochondrial
metabolism (mitochondrial respiratory chain complex I–V: NADH dehydrogenase, succinate
dehydrogenase, ubiquinol-cytochrome-c reductase, cytochrome c oxidoreductase, and ATP synthase)
was significantly lower in GP-treated tumors. A significant increase of the expression level of the
protein of the following cytokines: IL-6, IL-8, GM-CSF, GRO (α, β, γ), and MCP-1 was observed
(Figure 8).
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Figure 8. Protein expression level. Expression of caspase-9 and caspase-3 in the pristine
graphene treated tumors significantly increased compared with the control group (A1,A2).
Level of proteins involved in mitochondrial metabolism (mitochondrial respiratory chain complex:
NADH dehydrogenase, succinate dehydrogenase, ubiquinol-cytochrome-c reductase, cytochrome
c oxidoreductase, and ATP synthase) was significantly lower in pristine graphene treated tumors
(B1–B5). A significant increase of the expression level of the protein of the following cytokines: IL-6,
IL-8, GM-CSF, GRO (α, β, γ), MCP-1 was observed (C1,C2). Abbreviations: RU—relative units.
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3. Discussion

In our previous study, we demonstrated the cytotoxic effects of GPs on U87 tumor cells in vitro [13].
Based on them, the present study is a follow-up, including both in vitro and in vivo measurements
of GP effects. We used two well-defined biological models: an in vitro model (U87 and HS-5 cells)
and a chorioallantoic membrane model (CAM) model to determine the effect of the graphene flakes.
Graphene platelets were produced by physical methods directly by exfoliation of graphite without the
initial stage of oxidation. TEM and SEM images of GPs showed extremely thin structures; however,
hydrophobic GPs had poor solubility and created aggregates in salt-containing physiological buffers
due to electrostatic charge and nonspecific binding to proteins and lipids. Diameters of the platelets
ranged from 420 nm to 1.6 µm, but agglomerates were more than 4 µm in diameter.

Microscopic visualization of the interactions between GPs and treated cells showed that platelets
were present on the surface of the body of cells and protrusions (Figure 3). Micrographs of cell cultures
exposed to high GPs concentrations for 24 h demonstrated cells with altered cell morphology and
an increased number of apoptotic cells. U87 and HS-5 surface after treatment with GPs showed
irregularities and laceration. Changes in morphology, shortening of protrusions and microvilli,
and adherence of graphene to the surface of cells were also observed in Hep G2 [22,23], THP-1 [24],
and PC12 cells [25] after graphene treatment. Probably, the strong hydrophobic interactions of GPs
with the cell membrane lipids might have resulted in this accumulation, which eventually led to
the deformation of the cell membrane. It has been also reported that the physical trapping the cells
by aggregated graphene sheets in the biological media could be one of the effective mechanisms
describing cytotoxicity [26].

An evaluation of cell viability showed a toxic influence of GPs on both tested cell lines (Figure 4).
After 1 h, GPs did not show obvious cytotoxic effects on the U87 and HS-5 cell lines. After a longer
exposure period, increased concentration of GPs resulted in decreased vitality in both cell types. Using
a concentration of 200 µg/mL resulted in a survival rate of 46% in U87 cells and 40% in the HS-5 cells.
Zhang et al. [25] also demonstrated that graphene layers induce cytotoxic effects, and that these effects
are concentration- and shape-dependent. Furthermore, Chatterjee et al. [23] showed that unoxidized
graphene is more toxic than GO to Hep G2 cells. Surface modifications of graphene (addition
oxygen groups, polyethylene glycol, biopolymers) improved their solubility and significantly reduced
toxic interactions with cells and tissues [27–29]. The size- and concentration-dependent cyto- and
geno-toxicity of the graphene oxide sheets and nanoplatelets were also studied by Akhavan et al. [30].
The graphene flakes with average lateral dimensions of 11 ± 4 nm exhibited a strong potential in
the destruction of the human mesenchymal stem cells (hMSCs) with the threshold concentration of
1.0 mg/mL, while the cytotoxicity of the sheets with average lateral dimensions of 3.8 ± 0.4 mm
appeared at high concentration of 100 mg/mL after 1 h. Smaller graphene flakes could penetrate
into the nucleus of the hMSCs and exhibit some genotoxicity caused by DNA fragmentations and
chromosomal aberrations at low concentrations. However, Mendes et al. [31] showed that the larger
graphene flakes reduce cell viability as compared to smaller flakes. In addition, the viability reduction
correlates with the time and the concentration of the graphene nanoflakes to which the cells are
exposed. Moreover, no obvious difference in the uptake was observed between the different sizes of
the graphene layers. The physio-chemical action of graphene with the cell membranes is one of the
primary causes of GP cytotoxicity. Smaller graphene platelets can relocate to the cytosol because of
their small size, sharp edges, and rough surface. GP nanoplatelets were found to pierce through and
mechanically disrupt the plasma membrane. In the treated group, we found graphene inside cells.
Similar results were also reported by Sasidharan et al. [29], who used confocal microscopy and flow
cytometry to observe the accumulation of pristine and functionalized graphene within the cytosol.
Furthermore, Akhavan and Ghaderi [32] reported that the cell membrane of the bacteria was effectively
damaged by direct contact of the bacteria with the very sharp edges of the nanowalls, resulting in
inactivation of the bacteria by the nanowalls. It has been reported that graphene quantum dots [33],
nano-sized GO, and pristine graphene [23] caused decreases in the mitochondrial membrane potential.
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The U87 and HS-5 cells treated with GPs 4 h after exposure showed a marked dose-dependent
depolarization in mitochondrial membrane potential (Figure 5). It was observed that exposure to GPs
resulted in a decrease in orange fluorescence intensity after JC-10 staining indicating mitochondrial
membrane depolarization and a decrease in the number of functional mitochondria. Depolarization
of the mitochondrial membrane can be due to the loss of both structural and functional integrity of
the mitochondrion [34]. The damage of mitochondrial functions leads to an increase of intracellular
ROS formation. Li and co-investigators [35] reported that pristine graphene can induce cytotoxicity
through the depletion of the mitochondrial membrane potential and the increase of intracellular ROS,
which then triggers apoptosis by activation of the mitochondrial pathway. Disruption of mitochondrial
membrane potential could be associated with oxidative disruption of mitochondrial macromolecules
such as mitochondrial DNA, lipids, and proteins caused by reaction with intracellular ROS. TEM
analysis of GP-treated tumors showed the destruction of mitochondrial structure, focal brightening in
the matrix, and mitochondrial membrane disruption and deformation (Figure 7). The level of proteins
involved in mitochondrial metabolism (mitochondrial respiratory chain complex I–V) was significantly
lower in GP-treated tumors in comparison to the control group. Zhou et al. [36] indicated that exposure
of MDA-MB-231 human breast cancer cells, PC3 human prostate cancer cells, and B16F10 mouse
melanoma cells to graphene led to the direct inhibition of the electron transfer chain complexes I, II, III,
and IV, most likely by disrupting electron transfer between iron-sulfur centers, which is associated
with its stronger ability to accept electrons compared to iron-sulfur centers [36]. Bypassing of the
mitochondrial electron transport chain by graphene causes inhibition of oxidative phosphorylation
and ROS overproduction. The DCFDA–ROS Detection Assay showed a dose-dependent effect of
GPs on ROS production. Increased concentrations of GPs resulted in increased ROS generation in
both cell lines (Figure 5E). The exact mechanism through which graphene exerts oxidative stress
is difficult to identify and still remains to be elucidated for most graphene family materials. ROS
regulate several signaling pathways affecting a variety of cellular processes, such as cell metabolism,
carcinogenesis, proliferation, migration, differentiation, and cell death [37,38]. Outer mitochondrial
membrane permeabilization results translocation of proapoptotic proteins such as cytochrome c, AIF,
or Smac/Diablo to cytosol [39]. A loss of cytochrome c from the mitochondria results in a loss of
electrons from the electron transport chain and ROS production [40]. Within the cytosol, cytochrome c,
together with Apaf-1 and dATP, form the apoptosome complex which activate procaspase-9 [41,42].
Activated caspase-9 becomes available to activate caspase-3. Activation of apoptosis processes was
observed in GP-treated U87 tumors, where expression of caspase-9 and caspase-3 was higher by
67% and 84%, respectively. Apoptotic cells were also observed during analysis of morphology and
ultrastructure of GP-treated cells and tumors.

Our previous studies showed activation of apoptosis, and also necrosis, in U87 cells after GP
treatment [13]. Graphene may initiate inflammatory responses, which are characterized by the
production and secretion of proinflammatory cytokines. An analysis of protein levels showed
activation of apoptosis and necrosis in U87 GP-treated tumors. A significant increase of the
expression level of the protein of the following cytokines: IL-6, IL-8, GM-CSF, GRO (α, β, γ),
and MCP-1 was observed (Figure 8). Zhou and co-investigators [43] demonstrated that pristine
graphene significantly promotes the secretion of Th1/Th2 cytokines including IL-1α, IL-6, IL-10,
TNF-α, and GM-CSF and chemokines such as MCP-1, MIP-1α, MIP-1β, and RANTES, probably by
activating TLR-mediated and NF-κB-dependent transcription in macrophages. Furthermore, it has
been demonstrated that the structure, surface, and colloidal properties affect the degree of necrosis
induction [44,45]. Larger graphene platelets induced inflammation responses that were much stronger
in comparison to those with nano-sized flakes [46].

We observed a decrease in tumor growth in weight and volume. In GP-treated tumors, weight
decreased by 21% and volume by 31% compared with the control group. We propose that a reduction
of mass and volume in treated tumors is associated with the destruction of cells (apoptosis and
necrosis) and lower proliferation, which is supported by the mitotic index calculation. The results are
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comparable with our previous findings using a similar in vivo model, where GO and rGO caused a
decrease in U87 tumor volume by 43% and 42%, respectively [12].

4. Materials and Methods

4.1. Preparation and Characterization of GN

Graphene powder (GPs, purity higher than 99.5%) was purchased from SkySpring Nanomaterials
(Houston, TX, USA). The size and shape of the graphene platelets were inspected using a JEM-1220
(JEOL, Tokyo, Japan) TEM at 80 KeV, with a Morada 11 megapixels camera (Olympus Soft Imaging
Solutions, Münster, Germany) and FEI QUANTA 200 SEM. The average size of agglomerates and
zeta potential measurements were carried out using Zetasizer Nano S90 (Malvern Instruments Ltd.,
Malvern, UK). using DLS at room temperature (25 ◦C). Infrared spectra were collected in a Fourier
transform infrared spectrophotometer (Nicolet 8700 FTIR, Thermo Scientific, Waltham, MA, USA).
Measurements were performed using the FT-IR ATR (attenuated total reflectance) technique over a
range of 4000–400 cm-1.

4.2. Cell Cultures and Treatments

Human glioblastoma U87 cell line and non-cancer cells HS-5 (bone marrow/stroma) obtained
from the American Type Culture Collection (Manassas, VA, USA) and maintained in Dulbecco’s
modified Eagle’s culture medium containing 10% fetal bovine serum (Life Technologies, Houston, TX,
USA), 1% penicillin and streptomycin (Life Technologies) at 37◦C in a humidified atmosphere of 5%
CO2/95% air in a NuAire DH AutoFlow CO2 Air-Jacketed Incubator (Plymouth, MN, USA).

4.3. Cell Cultures and Treatments

U87 and HS-5 cells were plated in Petri Dishes 35 × 10 mm (1 × 105 cells per well) and incubated
for 24 h. Cells cultured in a medium without the addition of GPs were used as the control. Graphene
was introduced to the cells at increasing concentrations (20, 50, 100, and 200 µg/mL). Cell morphology
was recorded using a holographical microscope Nanolive 3D Cell Explorer with STEVE Software
(Nanolive, Ecublens, Switzerland).

4.4. Cell Metabolic Activity

Metabolic rate of U87 and HS-5 cells was evaluated using a 2.3-Bis-(2-methoxy-4-nitro-5-
sulfophenyl)-2H-tetrazolium-5-carboxyanilide salt (XTT)-based cell proliferation assay kit (Merck,
Darmstradt, Germany). U87 and HS-5 cells were plated in 96-well plates (5 × 104 cells per well) and
incubated for 24 h. Then, the medium was removed, and GPs were introduced to the cells at increasing
concentrations (20, 50, 100, and 200 µg/mL). Incubation after the addition of graphene was carried out
for 1, 4, 12, and 24 h. In the next step, 50 µL of XTT solution was added to each well and incubated
for an additional hour at 37◦C. The optical density (OD) of each well was recorded at 450 nm on an
enzyme-linked immunosorbent assay reader (Infinite M200, Tecan, Durham, NC, USA). Cell viability
was expressed as the percentage of (ODtest–ODblank)/(ODcontrol–ODblank), where “ODtest” is
the optical density of cells exposed to GPs, “ODcontrol” is the optical density of the control sample,
and “ODblank” is the optical density of wells without cells.

4.5. ROS Production

The DCFDA-Cellular Reactive Oxygen Species Detection Assay Kit (Abcam, Cambridge, UK)
was used for measurement ROS in U87 and HS-5 cells. U87 and HS-5 cells were plated in 96-well
plates (5 × 104 cells per well) and incubated for 24 h. Then, the medium was removed, and GPs were
introduced to the cells at increasing concentrations (20, 50, 100, and 200 µg/mL). After 4 h, the medium
with graphene was removed and 100 µL of diluted DCFDA was added to each well and incubated for
an additional 45 min at 37◦C in the dark. ROS production was measured by fluorescence spectroscopy
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with an excitation wavelength at 485 nm and an emission wavelength at 535 nm on an ELISA reader
(Infinite M200, Tecan, Durham, NC, USA).

4.6. Mitochondrial Membrane Potential

Mitochondrial membrane potential (∆ψm) was evaluated using JC-10 Mitochondrial Membrane
Potential Assay Kit (Abcam, Cambridge, UK). Membrane potential is highly interlinked to many
mitochondrial processes. U87 and HS-5 cells were plated in 96-well plates (5 × 104 cells per well) and
incubated for 24 h. Then, the medium was removed, and GPs were introduced to the cells at increasing
concentrations (20, 50, 100, and 200 µg/mL). After 4 h, the medium with graphene was removed and
50 µL of diluted JC-10 was added to each well and incubated for an additional 45 min at 37◦C in the
dark. ∆ψm was measured as a ratio of orange and green fluorescence. Fluorescence intensity was
monitored at Ex/Em = 490/525 and 540/590 nm on an ELISA reader (Infinite M200, Tecan, Durham,
NC, USA) and on fluorescence microscope (Olympus CKX41, Warsaw, Poland).

4.7. Culture of GMB on A Chorioallantoic Membrane

Fertilized Ross 308 chicken eggs (Gallus domesticus) from a local hatchery were placed in a
humidified 37 ◦C incubator without CO2 to induce embryogenesis. After seven days of egg incubation,
a silicone ring containing 3 × 106 U87 glioma cells suspended in 20 µL of culture medium was placed
on the chorioallantoic membrane (CAM). The eggs were incubated for 10 days then the tumors were
resected for further analysis. Eggs were divided into two groups of 45: the control group and GP
group (injected with 200 µL of 500 µg/mL solution of GPs). After 3 days, the tumors were resected for
further analysis.

4.8. Measurement of Tumor Volume

Digital photos of tumors were taken using a stereo microscope (SZX10, CellD software version
3.1; Olympus Corporation, Tokyo, Japan). The measurements were taken with cellSens Dimension
Desktop version 1.3 (Olympus). The tumor volumes were calculated with the following equation [47]:

V=4/3 πr3 where r =1/2
√

(diameter 1 × diameter 2), π = 3.1415

4.9. Histological Analysis

After resection, tumors were fixed in 10% buffered formaldehyde for 24 h (10% in buffer
phosphate). Samples were dehydrated, embedded in paraffin overnight, and cut into sections 5–6
microns thick. Sections were mounted on poly-L-lysine-coated slides (Equimed, Krakow, Poland).
The resulting sections were deparaffinized by immersion in two changes of xylene for 10 min each.
Sections were then rehydrated in descending series of ethanol ending in water for 5 min. Hematoxilin
(Sigma-Aldrich, St. Louis, MO, USA) solution was then applied for 5 min, followed by a final 3 min
rinse in water. Eosin solution was applied for 1 min and then dehydration was carried out with 70%,
96%, and 100% alcohol. Finally, the samples were submerged in xylol and mounted. Cells and tissues
were measured using a Leica DM750 microscope coupled with a digital camera Leica ICC50 and LAS
EZ microscope imaging software (Version 3.0, Leica Microsystems, Wetzlar, Germany). Mitotic index
was assessed as the number of mitotic figures in 10 visual fields (40 µm2).

4.10. TEM Analysis of Tumors

Tumor tissues were cut immediately after resection into pieces of about 1.5 mm3 and fixed in
a 2.5% glutaraldehyde solution (Sigma-Aldrich) in 0.1 M PBS (pH 7) overnight. The samples were
washed in the PBS and transferred to a 1% osmium tetroxide solution (Sigma-Aldrich) in 0.1 M PBS
(pH 7) for 1 h, then washed in distilled water, dehydrated in ethanol gradients, and impregnated with
epoxy embedding resin (Fluka Epoxy Embedding Medium Kit; Sigma-Aldrich). After 24 h, the samples
were embedded in the same resin and baked for 24 h at 36 ◦C, then transferred to a 60 ◦C incubator and
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baked for a further 24 h. The blocks were cut into ultrathin sections (50 nm) using an ultramicrotome
(Ultratome III; LKB Products, Vienna, Austria) and transferred onto TEM grids (Formvar on 3 mm 200
Mesh Cu Grids, Agar Scientific, Stansted, UK). Sections were contrasted using uranyl acetate dihydrate
(Sigma-Aldrich) and lead (II) citrate tribasic trihydrate (Sigma-Aldrich), and examined by TEM.

4.11. Protein Levels

TissueLyser LT (Qiagen, Hilden, Germany) was used to prepare protein extracts.
Protein concentrations of tissues lysates were determined using the BCA Protein Assay (Thermo
Scientific). The levels of multiple proteins engaged in the inflammatory state, hypersensitivity,
and mitochondrial metabolism were evaluated using Western blot analysis, ELISA and membrane
arrays. Caspase-3, Caspase-9, and NFkB levels were examined by Western blot analysis. An equal
volume (50 mg) of samples was denatured by the addition of sample buffer (Bio-Rad Laboratories,
Munich, Germany) and boiled for 5 min. Proteins from U87 glioma tissues were subjected
to SDS/PAGE and then transferred to polyvinylidene difluoride membranes (Life Technologies,
Gaithersburg, MD, USA) and probed with primary antibodies anti-Caspase 3 (cat. no. NB100-56708,
Novus Biologicals, Centennial, CO, USA), anti-Caspase 9 (cat. no. NB100-56118), with GAPDH (cat.
no. NB300-327, Novus Biologicals) as the loading control. After incubation with secondary fluorescent
antibodies, the proteins were detected by the GelDoc scanner (Bio-Rad Laboratories, Germany), using
the fluorescent method. Protein bands were evaluated using the Quantity One 1-D analysis software
(Version 4.6, Bio-Rad Laboratories, Munich, Germany).

The levels of multiple cytokines were examined by the Human Cytokine Antibody Array
Membrane (cat. no. ab133996, Life Technologies), prepared for the simultaneous detection of 23
cytokines. The following targets can be detected by this array: G-CSF (granulocyte colony-stimulating
factor), GM-CSF (granulocyte macrophage colony-stimulating factor), GRO-α (growth regulated
oncogene alpha precursor), IL-1 α (interleukin 1 α), IL-2 (interleukin 2), IL-3 (interleukin 3), IL-5
(interleukin 5), IL-6 (interleukin 6), IL-7 (interleukin 7), IL-8 (interleukin 8), IL-10 (interleukin
10), IL-13 (interleukin 13), IL-15 (interleukin 15), IFN-γ (interferon gamma), MCP-1 (monocyte
chemoattractant protein 1), MCP-2 1 (monocyte chemoattractant protein 2), MCP-3 1 (monocyte
chemoattractant protein 3), MIG (monokine induced by gamma interferon), RANTES (chemokine
ligand 5), TGF-β1(transforming growth factor beta 1), TNF-α (tumor necrosis factor alpha), and TNF-β
(tumor necrosis factor beta). Three samples from each group were diluted to a final concentration
of 5 µg/µL. The cytokine array was performed according to the instructions. Chemiluminescence
detection was performed using multiple exposure times (30 s to 5 min) with the ChemiDoc1 Imaging
System with Quantity One Basic Software (Bio-Rad, Hercules, CA, USA).

Proteins involved in mitochondrial metabolism (mitochondrial respiratory chain complex):
NADH dehydrogenase (Complex I), succinate dehydrogenase (Complex II), ubiquinol-cytochrome-c
reductase (Complex III), cytochrome c oxidoreductase (Complex IV), and ATP synthase (Complex
V) were examined using Enzyme-linked immunosorbent assays (Abcam, cat. no. ab178011, cat. no.
ab124536, cat. no. ab124537, cat. no. ab179880, cat. no. ab124539). The cytokine array was performed
according to the instructions. The intensities of signals were quantified using the ELISA reader.

4.12. Statistical Analysis

Data were analyzed using multifactorial and monofactorial analysis of variance with Statgraphics®

Plus 4.1 (StatPoint Technologies, Warrenton, VA, USA). The differences between groups were tested
using Tukey’s multiple range tests. All mean values are presented with the standard deviation.
Differences with P < 0.05 were considered significant.

5. Conclusions

The in vitro results with U87 glioma cell line and HS-5 normal cells demonstrated that GPs cause
a dose-dependent cytotoxicity via ROS overproduction and depletion of the mitochondrial membrane
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potential. Additionally, the level of apoptotic and necrotic markers increased in GP-treated tumors.
The cytotoxic responses were confirmed in vivo after injection of GPs, showing reduced mass and
volume of U87 tumor tissue. The results indicate a potential applicability of GPs in tumor therapy,
but side-effects on normal cells must be considered further.
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16. Urbańska, K.; Sokołowska, J.; Szmidt, M.; Sysa, P. Glioblastoma multiforme—An overview. Contemp. Oncol.
2014, 18, 307–312.

17. Butowski, N.; Chang, S.M.; Lamborn, K.R.; Polley, M.; Pieper, R.; Costello, J.F.; Vandenberg, S.;
Parvataneni, R.; Nicole, A.; Sneed, P.K.; et al. Phase II and pharmacogenomics study of enzastaurin
plus temozolomide during and following radiation therapy in patients with newly diagnosed glioblastoma
multiforme and gliosarcoma. Neuro. Oncol. 2011, 13, 1331–1338. [CrossRef]

18. Reardon, D.A.; Turner, S.; Peters, K.B.; Desjardins, A.; Gururangan, S.; Sampson, J.H.; McLendon, R.E.;
Herndon, J.E.; Jones, L.W.; Kirkpatrick, J.P.; et al. A Review of VEGF/VEGFR-Targeted Therapeutics for
Recurrent Glioblastoma. J. Natl. Compr. Cancer Netw. 2011, 9, 414–427. [CrossRef]

19. Akhavan, O.; Ghaderi, E.; Emamy, H. Nontoxic concentrations of PEGylated graphene nanoribbons for
selective cancer cell imaging and photothermal therapy. J. Mater. Chem. 2012, 22, 20626–20633. [CrossRef]

20. Akhavan, O.; Ghaderi, E. Graphene nanomesh promises extremely efficient in vivo photothermal therapy.
Small 2013, 9, 3593–3601. [CrossRef]

21. Akhavan, O.; Meidanchi, A.; Ghaderi, E.; Khoei, S. Zinc ferrite spinel-graphene in magneto-photothermal
therapy of cancer. J. Mater. Chem. B 2014, 2, 3306–3314. [CrossRef]

22. Lammel, T.; Boisseaux, P.; Fernández-Cruz, M.-L.; Navas, J.M. Internalization and cytotoxicity of graphene
oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2. Part.
Fibre Toxicol. 2013, 10, 27. [CrossRef] [PubMed]

23. Chatterjee, N.; Eom, H.-J.; Choi, J. A systems toxicology approach to the surface functionality control of
graphene-cell interactions. Biomaterials 2014, 35, 1109–1127. [CrossRef] [PubMed]

24. Sanchez, V.C.; Jachak, A.; Hurt, R.H.; Kane, A.B. Biological Interactions of Graphene-Family
Nanomaterials—An Interdisciplinary Review. Chem. Res. Toxicol. 2012, 25, 15–34. [CrossRef] [PubMed]

25. Zhang, Y.; Ali, S.F.; Dervishi, E.; Xu, Y.; Li, Z.; Casciano, D.; Biris, A.S. Cytotoxicity effects of graphene
and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 2010, 4,
3181–3186. [CrossRef] [PubMed]

26. Hashemi, E.; Akhavan, O.; Shamsara, M.; Rahighi, R.; Esfandiar, A.; Tayefeh, A.R. Cyto and genotoxicities
of graphene oxide and reduced graphene oxide sheets on spermatozoa. RSC Adv. 2014, 4, 27213–27223.
[CrossRef]

27. Zhi, X.; Fang, H.; Bao, C.; Shen, G.; Zhang, J.; Wang, K.; Guo, S.; Wan, T.; Cui, D. The immunotoxicity of
graphene oxides and the effect of PVP-coating. Biomaterials 2013, 34, 5254–5261. [CrossRef]

28. Sawosz, E.; Jaworski, S.; Kutwin, M.; Vadalasetty, K.P.; Grodzik, M.; Wierzbicki, M.; Kurantowicz, N.;
Strojny, B.; Hotowy, A.; Lipinska, L.; et al. Graphene Functionalized with Arginine Decreases the
Development of Glioblastoma Multiforme Tumor in a Gene-Dependent Manner. Int. J. Mol. Sci. 2015,
16, 25214–25233. [CrossRef]

29. Sasidharan, A.; Panchakarla, L.S.; Chandran, P.; Menon, D.; Nair, S.; Rao, C.N.R.; Koyakutty, M. Differential
nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 2011, 3,
2461–2464. [CrossRef]

30. Akhavan, O.; Ghaderi, E.; Akhavan, A. Size-dependent genotoxicity of graphene nanoplatelets in human
stem cells. Biomaterials 2012, 33, 8017–8025. [CrossRef]

31. Mendes, R.G.; Koch, B.; Bachmatiuk, A.; Ma, X.; Sanchez, S.; Damm, C.; Schmidt, O.G.; Gemming, T.;
Eckert, J.; Rümmeli, M.H. A size dependent evaluation of the cytotoxicity and uptake of nanographene
oxide. J. Mater. Chem. B 2015, 3, 2522–2529. [CrossRef]

32. Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano
2010, 4, 5731–5736. [CrossRef] [PubMed]

33. Qin, Y.; Zhou, Z.-W.; Pan, S.-T.; He, Z.-X.; Zhang, X.; Qiu, J.-X.; Duan, W.; Yang, T.; Zhou, S.-F. Graphene
quantum dots induce apoptosis, autophagy, and inflammatory response via p38 mitogen-activated protein
kinase and nuclear factor-κB mediated signaling pathways in activated THP-1 macrophages. Toxicology 2015,
327, 62–76. [CrossRef] [PubMed]

34. Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. 2003, 552, 335–344. [CrossRef]
[PubMed]

http://dx.doi.org/10.1188/16.CJON.S1.2-8
http://www.ncbi.nlm.nih.gov/pubmed/27668386
http://dx.doi.org/10.1093/neuonc/nor130
http://dx.doi.org/10.6004/jnccn.2011.0038
http://dx.doi.org/10.1039/c2jm34330d
http://dx.doi.org/10.1002/smll.201203106
http://dx.doi.org/10.1039/c3tb21834a
http://dx.doi.org/10.1186/1743-8977-10-27
http://www.ncbi.nlm.nih.gov/pubmed/23849434
http://dx.doi.org/10.1016/j.biomaterials.2013.09.108
http://www.ncbi.nlm.nih.gov/pubmed/24211078
http://dx.doi.org/10.1021/tx200339h
http://www.ncbi.nlm.nih.gov/pubmed/21954945
http://dx.doi.org/10.1021/nn1007176
http://www.ncbi.nlm.nih.gov/pubmed/20481456
http://dx.doi.org/10.1039/c4ra01047g
http://dx.doi.org/10.1016/j.biomaterials.2013.03.024
http://dx.doi.org/10.3390/ijms161025214
http://dx.doi.org/10.1039/c1nr10172b
http://dx.doi.org/10.1016/j.biomaterials.2012.07.040
http://dx.doi.org/10.1039/C5TB00180C
http://dx.doi.org/10.1021/nn101390x
http://www.ncbi.nlm.nih.gov/pubmed/20925398
http://dx.doi.org/10.1016/j.tox.2014.10.011
http://www.ncbi.nlm.nih.gov/pubmed/25446327
http://dx.doi.org/10.1113/jphysiol.2003.049478
http://www.ncbi.nlm.nih.gov/pubmed/14561818


Int. J. Mol. Sci. 2019, 20, 650 17 of 17

35. Li, Y.; Liu, Y.; Fu, Y.; Wei, T.; Le Guyader, L.; Gao, G.; Liu, R.-S.; Chang, Y.-Z.; Chen, C. The triggering
of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways.
Biomaterials 2012, 33, 402–411. [CrossRef] [PubMed]

36. Zhou, H.; Zhang, B.; Zheng, J.; Yu, M.; Zhou, T.; Zhao, K.; Jia, Y.; Gao, X.; Chen, C.; Wei, T. The inhibition
of migration and invasion of cancer cells by graphene via the impairment of mitochondrial respiration.
Biomaterials 2014, 35, 1597–1607. [CrossRef] [PubMed]

37. Ray, P.D.; Huang, B.-W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular
signaling. Cell Signal. 2012, 24, 981–990. [CrossRef]

38. Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical
therapeutic approach? Nat. Rev. Drug Discov. 2009, 8, 579–591. [CrossRef]

39. Circu, M.L.; Aw, T.Y. Reactive oxygen species, cellular redox system and apoptosis. Free Radic. Biol. Med.
2010, 48, 749–762. [CrossRef]

40. Brentnall, M.; Rodriguez-Menocal, L.; De Guevara, R.L.; Cepero, E.; Boise, L.H. Caspase-9, caspase-3 and
caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 2013, 14, 32. [CrossRef]

41. Brenner, D.; Mak, T.W. Mitochondrial cell death effectors. Curr. Opin. Cell Biol. 2009, 21, 871–877. [CrossRef]
[PubMed]

42. Ghobrial, I.M.; Witzig, T.E.; Adjei, A.A. Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin.
2005, 55, 178–194. [CrossRef] [PubMed]

43. Zhou, H.; Zhao, K.; Li, W.; Yang, N.; Liu, Y.; Chen, C.; Wei, T. The interactions between pristine graphene
and macrophages and the production of cytokines/chemokines via TLR- and NF-kappaB-related signaling
pathways. Biomaterials 2012, 33, 6933–6942. [CrossRef] [PubMed]

44. Bussy, C.; Ali-Boucetta, H.; Kostarelos, K. Safety considerations for graphene: Lessons learnt from carbon
nanotubes. Acc. Chem. Res. 2013, 46, 692–701. [CrossRef] [PubMed]

45. Russier, J.; Treossi, E.; Scarsi, A.; Perrozzi, F.; Dumortier, H.; Ottaviano, L.; Meneghetti, M.; Palermo, V.;
Bianco, A. Evidencing the mask effect of graphene oxide: A comparative study on primary human and
murine phagocytic cells. Nanoscale 2013, 5, 11234–11247. [CrossRef]

46. Yue, H.; Wei, W.; Yue, Z.; Wang, B.; Luo, N.; Gao, Y.; Ma, D.; Ma, G.; Su, Z. Biomaterials The role of the
lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials 2012, 33, 4013–4021.
[CrossRef]

47. Grodzik, M.; Sawosz, E.; Wierzbicki, M.; Orlowski, P.; Hotowy, A.; Niemiec, T.; Szmidt, M.; Mitura, K.;
Chwalibog, A. Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo.
Int. J. Nanomed. 2011, 6, 3041–3048.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.biomaterials.2011.09.091
http://www.ncbi.nlm.nih.gov/pubmed/22019121
http://dx.doi.org/10.1016/j.biomaterials.2013.11.020
http://www.ncbi.nlm.nih.gov/pubmed/24290441
http://dx.doi.org/10.1016/j.cellsig.2012.01.008
http://dx.doi.org/10.1038/nrd2803
http://dx.doi.org/10.1016/j.freeradbiomed.2009.12.022
http://dx.doi.org/10.1186/1471-2121-14-32
http://dx.doi.org/10.1016/j.ceb.2009.09.004
http://www.ncbi.nlm.nih.gov/pubmed/19822411
http://dx.doi.org/10.3322/canjclin.55.3.178
http://www.ncbi.nlm.nih.gov/pubmed/15890640
http://dx.doi.org/10.1016/j.biomaterials.2012.06.064
http://www.ncbi.nlm.nih.gov/pubmed/22796167
http://dx.doi.org/10.1021/ar300199e
http://www.ncbi.nlm.nih.gov/pubmed/23163827
http://dx.doi.org/10.1039/c3nr03543c
http://dx.doi.org/10.1016/j.biomaterials.2012.02.021
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Characterization of Graphene 
	Cell Morphology 
	Cell Metabolic Activity 
	ROS Production and Mitochondrial Membrane Potential 
	Analysis of Macro and Microstructure of U87 Tumors 
	TEM Analysis of Glioma Tumors 
	Protein Levels 

	Discussion 
	Materials and Methods 
	Preparation and Characterization of GN 
	Cell Cultures and Treatments 
	Cell Cultures and Treatments 
	Cell Metabolic Activity 
	ROS Production 
	Mitochondrial Membrane Potential 
	Culture of GMB on A Chorioallantoic Membrane 
	Measurement of Tumor Volume 
	Histological Analysis 
	TEM Analysis of Tumors 
	Protein Levels 
	Statistical Analysis 

	Conclusions 
	References

