
biomedicines

Review

Mitochondrial Dysfunction in Parkinson’s Disease:
Focus on Mitochondrial DNA

Olga Buneeva, Valerii Fedchenko, Arthur Kopylov and Alexei Medvedev *

Institute of Biomedical Chemistry, 10 Pogodinskaya Street, 119121 Moscow, Russia;
olbuneeva@gmail.com (O.B.); valfed38@yandex.ru (V.F.); a.t.kopylov@gmail.com (A.K.)
* Correspondence: professor57@yandex.ru; Tel.: +7-495-245-0509

Received: 17 November 2020; Accepted: 8 December 2020; Published: 10 December 2020 ����������
�������

Abstract: Mitochondria, the energy stations of the cell, are the only extranuclear organelles,
containing their own (mitochondrial) DNA (mtDNA) and the protein synthesizing machinery.
The location of mtDNA in close proximity to the oxidative phosphorylation system of the inner
mitochondrial membrane, the main source of reactive oxygen species (ROS), is an important factor
responsible for its much higher mutation rate than nuclear DNA. Being more vulnerable to damage
than nuclear DNA, mtDNA accumulates mutations, crucial for the development of mitochondrial
dysfunction playing a key role in the pathogenesis of various diseases. Good evidence exists that
some mtDNA mutations are associated with increased risk of Parkinson’s disease (PD), the movement
disorder resulted from the degenerative loss of dopaminergic neurons of substantia nigra. Although
their direct impact on mitochondrial function/dysfunction needs further investigation, results of
various studies performed using cells isolated from PD patients or their mitochondria (cybrids)
suggest their functional importance. Studies involving mtDNA mutator mice also demonstrated
the importance of mtDNA deletions, which could also originate from abnormalities induced by
mutations in nuclear encoded proteins needed for mtDNA replication (e.g., polymerase γ). However,
proteomic studies revealed only a few mitochondrial proteins encoded by mtDNA which were
downregulated in various PD models. This suggests nuclear suppression of the mitochondrial defects,
which obviously involve cross-talk between nuclear and mitochondrial genomes for maintenance of
mitochondrial functioning.

Keywords: Parkinson’s disease; Parkinson’s disease models; mitochondrial dysfunction;
mitochondrial DNA; proteins encoded by mitochondrial genes; proteomics

1. Introduction

More than two centuries ago, James Parkinson described in his famous monograph “An Essay
of the Shaking Palsy” (1817) the main clinical symptoms of one of the most widespread age-related
neurodegenerative diseases now known as Parkinson’s disease (PD) [1,2]. Elucidation of the
pathological basis for the appearance of these symptoms (degeneration of dopaminergic neurons of
substantia nigra pars compacta accompanied by striatal dopamine depletion) took more than one century
after that description [1,2]. The development of various experimental models started in the second half
of the last century and the genetic analysis of PD patients revealed molecular mechanisms crucial for
important aspects of various forms of PD (both sporadic and familial) [1–3].

Results of numerous studies point to an important role of mitochondria and mitochondrial
dysfunction in the pathogenesis of PD, which started to be considered as a common feature or even
as a cause of PD after discovery of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced
Parkinsonism [4], originating from the mitochondrial complex I inhibition and complex I deficiency
recognized in substantia nigra of PD patients [5,6].
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In addition to complex I defects found mainly in substantia nigra of aged and PD patients, deficient
complex I activities have also been found in platelets, skeletal muscles [7–10], skin fibroblasts [11] from
PD patients, but not in lymphocytes [10]. This suggests that the complex I defect seen in PD and aging
is systemic and has “a genetic basis” [12]. The evaluation of molecular events leading to manifestation
of PD revealed the involvement of mitochondrial proteins in the mechanisms of neuron damage and
neurodegeneration. Being encoded by both nuclear and mitochondrial genomes, they have a significant
impact on both mitochondrial function/dysfunction and also numerous interactions of mitochondria
with other intracellular organelles. This review is focused on the particular role of mitochondrial DNA
(mtDNA) and its changes associated with PD development and mitochondrial dysfunction.

2. Mitochondrial DNA: Structure, Functions, Mode of Replication and Transcription of
Mitochondrial Genes

Mitochondria, the energy stations of the cell, are the only extranuclear organelles, containing their
own (mitochondrial) DNA (mtDNA), originally discovered in 1963 [13,14], and the protein synthesizing
machinery [15,16]. The mammalian mitochondrial genome is a multicopy circular, double-stranded
DNA of about 16.5 kilobases in length; it encodes two ribosomal RNAs, 22 transfer RNAs, and just
13 protein subunits of the electron transport chain [17–20] (Table 1, Figure 1).
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Figure 1. The scheme of the circular, double-stranded human mtDNA. The outer circle denotes the
heavy (H) strand of the mtDNA and the inner circle denotes the light (L) strand. Colors denote genes
encoding protein subunits of complexes I-V, ribosomal RNAs, transfer RNA (tRNAs designated using
single-letter amino acid abbreviations), and a non-coding region (D-loop). Genes encoding protein
subunits correspond to symbols of these subunits shown in Table 1. Origins of heavy and light strand
replications are not shown.
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Table 1. Involvement of mtDNA in coding of components of mitochondrial complexes.

Complexes [21–25] Catalytic Activity (EC) Total Number
of Subunits

Subunits Encoded by the
Mitochondrial Genome

Complex I NADH:ubiquinone reductase
(EC 7.1.1.2) 44 ND1, ND2, ND3, ND4, ND4L,

ND5, ND6

Complex II Succinate dehydrogenase
(EC 1.3.5.1) 4 0

Complex III Ubiquinol—cytochrome-c reductase
(EC 7.1.1.8) 11 1 (CYB)

Complex IV Cytochrome c oxidase (EC 7.1.1.9) 13 COXI, COXII, COXIII

Complex V ATP synthase (H+-transporting
two-sector ATPase; EC 7.1.2.2) 14 ATP6, ATP8

MtDNA is maternally inherited. Many researchers are convinced that paternal mtDNA does not
enter into the fertilized oocyte during fertilization [26,27], others suggest that sperm mitochondria are
selectively targeted for degradation after fertilization [28–30]. In any case, the dogma that in humans
mtDNA is maternally inherited, is used in genetic consultations [31]. The healthy cell contains several
thousand mtDNAs, each of which has an identical nucleotide sequence (homoplasmy). Aging and
diseases associated with mitochondrial dysfunction are characterized by the accumulation of somatic
mutations and coexistence of wild type and mutant mtDNAs (heteroplasmy) and there is a correlation
between the percent of mutant mtDNAs and manifestation of the disease [32].

The light (L) and heavy (H) strands of mtDNA differ in their base composition [33]: The L-strand
is rich in cytosines, while the H-strand is rich in guanines. The L-strand contains eight genes of tRNA
and the gene of NADH-ubiquinone oxidoreductase chain 6 protein (ND6). Twenty eight other genes are
located on the H-strand. They encode 14 tRNAs, two rRNAs (12S and 16S rRNA), and 12 polypeptides
involved in electron transport and oxidative phosphorylation: Six subunits of the NADH-ubiquinone
oxidoreductase complex (ND1, ND2, ND3, ND4, ND4L, ND5), one subunit (cytochrome b; CYB) of the
cytochrome bc1 complex, three subunits of the cytochrome c oxidase complex (COXI, COXII, COXIII),
and two subunits of the ATP synthase complex (ATP 6 and ATP8) (Figure 1).

MtDNA contains a noncoding region also known as the control region where promoters for
polycistronic transcription (one for each mtDNA strand) are localized: The light strand promoter
(LSP) and the heavy strand promoter (HSP) [34,35]. The control region also contains the origin for
heavy strand DNA replication (OH), while the origin for light strand replication (OL) is located in
the coding region, within a tRNA cluster [34,36]. The human and mammalian mitochondrial genome
has its specific features different from the universal genetic code. Human and mammalian mtDNA
contains 64 codons and four of them are STOP codons. Codon AUA of human mitochondria encodes
methionine rather than leucine in the standard code. Arginine codons AGA and AGG are STOP
codons in mtDNA. UGA, one of the three STOP codons of the standard code, encodes tryptophane in
mtDNA. In addition, a single tRNA molecule of mtDNA can identify all codons of a four-codon family.
This explains, why only 22 tRNAs are sufficient for identifying all the 64 codons, whereas generally
there should be not less than 32 tRNAs [37]. Another feature typical of mtDNA is the high mutation
frequency, which may be explained by the effects of reactive oxygen species (ROS) attributed to the
proximity of the mitochondrial electron transport chain.

A short three-strand structure of mtDNA, known as the D-loop (D for Displacement) forms due
to the DNA replication and is situated in its non-coding region. It participates in the regulation of
mtDNA replication and transcription, which involves mitochondrial proteins encoded by the nuclear
genome; they are synthesized outside mitochondria and then transported to these organelles. Human
mtDNA is very compact and it lacks introns. Although the mitochondrial genome encodes some basic
components required for mRNA translation, the process of protein biosynthesis strictly depends on
the cell nucleus, as enzymes and other protein factors needed for replication, repair, transcription,
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and translation are encoded by nuclear genes. In the context of neurodegenerative disorders associated
with DNA damage, this suggests the possibility of DNA damage in both nuclear DNA and mtDNA.

MtDNA is located in the mitochondrial matrix as the nucleoprotein complexes, nucleoids [38,39].
The macromolecular structure of the nucleoid includes a central zone containing mtDNA and proteins
needed for replication and transcription, and a peripheral zone, formed by factors involved in
the association with mitochondrial ribosome, communication, and signaling with other subcellular
compartments [38]. Proteomic studies employing various approaches, including nucleoid cross-linking,
immunoprecipitation of known nucleoid proteins, and proximity-based labeling methods, revealed a
representative group of mtDNA binding proteins [40–47]. Despite significant variations in the number
of identified mtDNA binding proteins and critical evaluation of the methodical approaches used by
different groups (e.g., [39,46]), these results indicate a rather tight association of nucleoids with the
inner mitochondrial membrane, where the major sources of reactive oxygen species (ROS) are located.
Indeed, electron microscopy studies have shown that nucleoids interact with the inner mitochondrial
membrane [48]. Very recent electron microscopy data suggest that the mitochondrial inner membrane
protein complex MICOS (mitochondrial cristae organizing system) links nucleoids to the Miro1 protein
(mitochondrial Rho GTPase 1) for their active transportation to the peripheral zone of the cell [49].
This obviously explains detection (as contaminants) of NADH dehydrogenase subunits (complex I) and
other proteins such as ATP synthase subunits, adenine nucleotide translocator 3, voltage-dependent
anion-selective channel protein 3 (VDAC3), etc. (e.g., [42]). Since the mitochondrial nucleoid lacks
a membrane, it is considered as a nucleoprotein complex [46]. Recently, a group of mitochondrial
histones has been identified [43], however, their anchoring to the outer mitochondrial membrane [11]
indicates that they are not involved in the interaction with mtDNA. Therefore, although the mtDNA
package into nucleoids provides some protection of the mitochondrial genome, it is highly vulnerable
to various damaging effects.

Studies based on electron microscopy and two-dimensional electrophoresis data revealed specific
features of mammalian mtDNA replication. Three different models were suggested to explain these data.
According to the strand displacement model, mtDNA replication is unidirectional, asymmetric, and
asynchronous [50–53]. It begins in the origin of replication of heavy strand (OH) and while the synthesis
of a new H strand takes place, the parental H-strand is covered with a single strand binding (SSB)
protein. When the replication fork reaches OL, DNA forms a stem-loop structure, thus preventing SSB
binding in this region. Then, RNA-polymerase POLRMT synthesizes a primer of about 25 nucleotides in
length at the single strand region of the loop, and DNA polymerase gamma (POLG) continues the DNA
synthesis. According to the strand-coupled model, the mtDNA replication initiates bidirectionally from
a broad region of several kilobases, including the gene-encoding region of mtDNA (Ori z) [36]. The OH
region functions as a replication fork barrier. The synthesis of the leading and the lagging strands
(both composed of DNA) proceeds synchronously. However, molecular mechanisms responsible
for this type of replication have not been characterized [34]. The mtDNA replication model RITOLS
(RNA incorporated throughout the lagging strand) explains the experimental data of complementary
RNA molecules discovered only in the L strand of DNA. Later, this model was complemented and
renamed as a bootlace model (or bootlace strand-asynchronous replication). According to this model,
RNA transcripts synthesized on the lagging strand are incorporated in the intermediates of replication,
as the replication fork moves forward, and then these transcripts are replaced by the DNA lagging
strand. The bootlace strand-asynchronous replication model suggests that replication initiates with the
synthesis of the H strand at one of two sites, OH or Ori-b. The leading strand (H strand) synthesis
proceeds unidirectionally with the simultaneous incorporation of RNA fragments into the lagging
strand. The RNA lagging strand induces hybridization of mitochondrial transcripts to the parental H
strand. The initiation of the synthesis of the lagging L strand can begin at several origins, not exclusively
at OL. It proceeds unidirectionally, while RNA lagging strands are gradually removed. A lack of
consensus on a common mechanism suggests the existence of several modes of the mtDNA replication.
By analogy with the replication-transcription switch in human mitochondria [54], it is reasonable to
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suggest that there are regulatory factors switching these replication modes in dependence of various
cell conditions.

Mitochondrial transcription and subsequent RNA processing are carried out by specialized
nuclear-encoded proteins. The transcription of human mitochondrial genes involves DNA-dependent
RNA polymerase POLRMT [55], which interacts with mitochondrial transcription factor A (TFAM)
and mitochondrial transcription factor B2 (TFB2M). TFAM is a DNA-binding protein, which plays an
important role not only in transcription activation, but also in mtDNA package within the nucleoid [46].
TFB2M is essential for promoter melting during the initiation of transcription [56]. Although only
these two transcription factors are needed for transcription of the mitochondrial genes in vitro [57],
animal experiments performed using manipulations with the recently discovered mitochondrial
transcription elongation factor (TEFM) suggest its role in the regulation of both transcription elongation
and RNA processing [58]. Transcription from the heavy (HSP) and light (LSP) strand promoters yields
long polycistronic transcripts. Endonuclease excision of mitochondrial tRNAs separating coding
sequences of mitochondrial rRNAs and protein coding sequences in the polycistronic transcripts is
accompanied by the release of all types of mitochondrial RNAs (tRNAs, rRNA, and mRNA) [17,55].
After excision from the primary transcript, almost all mRNAs (except MT-ND6 mRNA, the only
protein-coding transcript encoded on the light strand), undergo 3′ polyadenylation. Polyadenylation of
mitochondrial mRNAs is carried out by poly(A) RNA polymerase [59–61]. The stability of HSP-derived
mitochondrial transcripts is controlled by the Leucine-rich pentatricopeptide repeat motif-containing
protein (LRPPRC), which is necessary for polyadenylation [62,63]. The absence of LRPPRC has a
significant impact on the steady-state levels of mRNAs but not rRNAs and tRNAs, and LRPPRC
knockout mice are characterized by a loss in HSP-derived transcripts, loss of poly(A) tails, and a severe
translational defect [62,63].

3. MtDNA Oxidation and Repair Mechanisms

Mitochondrial dysfunction can be induced by mtDNA damage including point mutations,
large-scale deletions, and oxidation [64–67]. Convincing evidence exists that under conditions of
oxidative stress mtDNA damage is more extensive and persists longer than damage of nuclear DNA [68].
MtDNA is especially vulnerable to oxidative damage, due to the nucleoid location in close proximity
to the inner mitochondrial membrane where the oxidative phosphorylation (OXPHOS), the major
source of cell reactive oxygen species (ROS) occurs [66–68]. In addition, mitochondria are highly
enriched in iron [69], which favors the formation of aggressive •OH radical, preferentially reacting
with intramitochondrial proteins and mtDNA due to its short half-life [70].

All the nitrogenous bases of DNA adenine, guanine, cytosine, and thymine and their corresponding
deoxynucleosides are highly susceptible to oxidative damage [66,67]. Although various oxidized
base adducts can be potentially formed during the ROS attack on the DNA [71], guanine is the
most readily oxidizable base [66,67]. In the context of DNA oxidation, 8-oxo-guanine (8-oxoG) is the
most studied form of oxidized DNA bases. Cell exposure to hydrogen peroxide is accompanied by
a continuous accumulation of 8-oxoG both in nuclear DNA and mtDNA [72]. Such point lesions
may be repaired by the base excision repair (BER) system [73]. BER represents the primary nuclear
and mitochondrial repair pathway for oxidative DNA damage. It is initiated by DNA glycosylase,
which is responsible for recognition and removal of the damaged base; the resultant abasic site is
then processed by a short-patch repair or long-patch repair employing different proteins to complete
BER [73]. Oxidized bases are generally removed by so-called bifunctional DNA glycosylases. In the
context of mtDNA, 8-oxoguanine DNA glycosylase (OGG1) is especially important. It has two
isoforms, one of which is located in the nucleus and mitochondria, while the other one is located in the
mitochondria [74]. Hepatic mitDNA isolated from Ogg1-null mutant mice had a much higher (more
than 20-fold) level of 8-oxoG than wild-type C57Bl/6J mice [75]. This points to the very important
role of this enzyme for 8-oxoG elimination. Another enzyme that suppresses accumulation of 8-oxoG
both in nuclear and mitochondrial DNA is MTH1 (MutT homolog protein 1). This oxidized purine
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nucleoside triphosphatase can hydrolyze oxidized purine nucleoside triphosphates (8-oxo-dGTP,
2-hyrdoxy-dATP) to the corresponding monophosphates [66,72]. MTH1-null mice were characterized
by a higher accumulation of 8-oxoG in mtDNA but not in nuclear DNA. This was accompanied by
a more significant decrease in tyrosine hydroxylase and dopamine transporter immunoreactivities
than in wild-type mice [66,72,76]. Abasic sites, formed in mtDNA due to a spontaneous base loss
or induced by ROS, are also harmful particularly in mitochondria due to the decreased activity of
mitochondrial DNA polymerase [77]. Generation of a mouse model with a mutated version of the
uracil N-glycosylase (UNG) DNA repair enzyme, which removed thymine from the mitochondrial
genome, revealed highly elevated levels of apyrimidinic sites in hippocampal mtDNA [78].

Studies performed using neuroblastoma SH-SY5Y cells treated with hydrogen peroxide
(100–1000 µM) revealed that at lower H2O2 concentrations the non-coding regulatory D-loop was
more vulnerable to H2O2 induced mtDNA damage than the three coding regions tested. At a higher
concentration of H2O2 (750–1000µM) the difference in the lesion rates disappeared [79]. Since replication
of mtDNA starts in the D-loop region [34–36] its higher sensitivity to ROS (H2O2) suggests different
rates of mtDNA damage and copy number recovery. Indeed, the initial hydrogen-peroxide mtDNA
damage almost reversed after 48 h, while the mtDNA copy number was reduced to 50% in the SH-SY5Y
cells [79].

4. Age-Related Changes in mtDNA

Generally, age-associated oxidation of mtDNA originates from an increased oxidative attack to
the nucleic acids and a decreased efficacy in mtDNA repair mechanisms [67,80,81]. The aging brain is
characterized by an increased oxidative damage of mtDNA evaluated by the formation of 8-oxoG,
commonly considered as the marker of oxidative DNA damage [80,81]. The age-related increase in
8-oxoG was found in several cerebral regions of aged human brains [82]. The extent of 8-oxoG in
mtDNA was one order of magnitude higher than in nuclear DNA [82]. The same trend was also
detected in brains (and hearts) of aged mice, rats, guinea pigs, and rabbits and also sheep, pigs, cows,
and horses [83]. Moreover, oxidative damage of mtDNA inversely correlated with the maximum life
span of these animals. This suggests the applicability of animal models for the study of PD.

The age-related increase in oxidative mtDNA damage is obviously associated with age-related
impairments of the components of the mitochondrial BER machinery (OGG1, UDG, APE1,
and polymerase γ) [84–86]. Mouse brain mtDNA repair activities demonstrated clear regiospecific
differences [86]. For example, in mice mtDNA glycosylase activities were lower in hippocampal
than in cortical mitochondria. Mitochondrial AP endonuclease activity increased in old animals in
both brain regions, while cortical but not hippocampal mtDNA glycosylase activities declined with
age [86]. In substantia nigra of neurologically healthy individuals the number of hOGG1-2a-positive
neurons (stained with antibody to the mitochondria specific isoform) demonstrated an age-dependent
increase [87].

The analysis of blood samples (n = 2491, age-range 0–60 years) revealed a significant age-dependent
increase in the mtDNA heteroplasmy [88]. These results are consistent with high levels of mtDNA
deletions found in substantia nigra neurons of the aged brain [89,90]. Nevertheless, dopaminergic
substantia nigra neurons of neurologically healthy individuals demonstrated an age-related increase in
mtDNA copy number and maintained the pool of wild-type mtDNA population despite accumulated
deletions [91].

Therefore, although it is reasonable to suggest that the increase in the oxidative damage of mtDNA
could account for age-related accumulations of point mutations and deletions in the mitochondrial
genome, there are certain concerns, whether these changes are a cause or consequence of the aging
process [92].
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5. MtDNA Changes in Parkinson’s Disease

5.1. MtDNA Mutations

Although mtDNA sequencing did not reveal characteristic pathogenic mutation(s) as a PD
signature [93], there was an age-dependent increase in mtDNA deletions associated with respiratory
chain dysfunction detected in the dopaminergic neurons of substantia nigra [89,90]. Dopaminergic
neurons with normal cytochrome oxidase activity were characterized by very high levels of mtDNA
deletions. The level of somatic mtDNA deletions was slightly higher in substantia nigra of PD patients
than in age-matched controls. Since mtDNA deletions were not seen in other types of neurons in aged
brains [89,90], it was suggested that they were specific for substantia nigra [89].

The other study also revealed that the number and variety of mtDNA deletions/rearrangements
were selectively increased in postmortem samples of substantia nigra from PD patients as compared to
both patients with other types of neurodegenerative pathology (movement disorders and Alzheimer’s
disease) and aged controls [94]. Other brain regions of PD patients also demonstrated increased
mtDNA deletions/rearrangements, thus indicating that in these patients mitochondrial dysfunction
was not limited to the substantia nigra [94]. This suggests that the accumulation of mtDNA
deletions/rearrangements could be not only a specific sign of PD but also an important factor
responsible for the development of mitochondrial dysfunction and neurodegeneration in PD. Table 2
lists some mutations in mtDNA associated with PD.

Table 2. Mitochondrial DNA (mtDNA) mutations associated with Parkinson’s disease (PD).

Gene Encoding
Nucleotide
Position in

mtDNA Genome

Mutation
Location Detected Effect References

tRNA threonine
tRNA (Thr) 15888..15953 nt.15927 and

nt.15928
Frequent point

mutations [95]

tRNA glutamine
tRNA (Gln) 4329..4400 nt.A4336G

Loss of the HpaII site,
increased frequency in

PD-women
The activity of complex I

may be decreased

[95–100]

tRNA leucine 1
(UUA/G) tRNA

(Leu)
3230..3304 nt.G3243A point mutation,

heteroplasmic state [101]

tRNA lysine
tRNA (Lys) 8295..8364 nt.A8344G point mutation [102]

12S ribosomal RNA
(RNR1) 648..1601 nt. 956-965,

nt. T1095C
5-nucleotide insertion,

point mutation [103,104]

16S RNA (RNR2) 1671..3229 nt.T2158C
nt.3196

associated with reduced
risk of PD

heteroplasmic 16S rRNA
variant

[103,105]

NADH
dehydrogenase,
subunit 1 (ND1)

3307..4262 nt.A3397G
nt.T4216C polymorphism [101,106]

NADH
dehydrogenase,
subunit 2 (ND2)

4470..5511

nt.G5460A
nt.C5178A

nt.4977
p.A5T, p.A5V,

p.M187T, p.M187I,
p.I239M, p.I239H

point mutation
point mutation

common deletion
amino acid substitutions

[98]
[107,108]
[109,110]
[111–113]
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Table 2. Cont.

Gene Encoding
Nucleotide
Position in

mtDNA Genome

Mutation
Location Detected Effect References

Cytochrome c
oxidase subunit I 5904..7445 nt.G6930A

Point mutation, causing
enhanced ROS
production a

[114–116]

NADH
dehydrogenase,
subunit 3 (ND3)

10059..10404 nt.A10398G

point mutation
Haplogroup I, J, or K had
a slightly decreased risk
of PD but an increased
risk of PDD Protective

effect for women

[99,117,118]

NADH
dehydrogenase,

subunit 4L (ND4L)
10470..10766 p.L77F amino acid substitution [111]

NADH
dehydrogenase,
subunit 4 (ND4)

10760..12137 nt.A11251G
point mutation

associated with reduced
risk of PD

[105]

NADH
dehydrogenase,
subunit 5 (ND5)

12337..14148
p.E145G, pE145V,

p.E145D
p.124-145

amino acid substitution,
deletion of 30 nts

[111]

[119]

12S ribosomal RNA
(RNR1) 648..1601 nt. 956-965,

nt. T1095C
5-nucleotide insertion

point mutation [103,104]

16S ribosomal RNA
(RNR2) 1671..3229 nt.T2158C

nt.3196

associated with reduced
risk of PD

heteroplasmic 16S rRNA
variant

[105]
[103]

NADH
dehydrogenase,
subunit 6 (ND6)

14149..14673 nt.T14487C
Point mutation causing

free radical damage
of cells b

[120,121]

mtDNA complete genome
16569 heteroplasmy [122]

mtDNA complete genome
16569 bp

Transversions G: C
→ T: A and T: A→

G: C in point
mutations

all point mutations
increase with age in the

frontal cortex (FCtx)
[123]

a Cybrids containing mtDNA carrying the stop-codon mutation or nonsense mutation; b cybrids containing mtDNA
carrying mutation in the NADH dehydrogenase subunit (see Section 5.4 of this review). PDD is Parkinson’s
disease dementia.

Data in Table 2 show that not all mutations recognized in the mitochondrial genome are
functionally linked to mitochondrial dysfunction and results of population genetic studies require
further functional studies.

5.2. Substantia Nigra Samples from PD Patients

The analysis of 11 brain regions of postmortem brain samples from PD patients and controls
revealed a selective increase in 8-oxoG levels in substantia nigra [124]. Since authors were limited in the
biological materials they investigated total cell DNA. However, the accumulation of 8-oxoG was later
demonstrated in mtDNA of nigrostriatal dopaminergic neurons of PD patients [66]. Substantia nigra
neurons from aged individuals and PD patients also had high levels of deletions in mtDNA [89].
These mtDNA lesions were associated with respiratory chain deficiency.

Using ultradeep sequencing of mtDNA it has been shown that individual dopaminergic neurons
of substantia nigra from PD patients contained a higher pool of mtDNA deletions than it was previously
reported [125]. Each substantia nigra neuron contained more than 30 distinct mtDNA deletions and



Biomedicines 2020, 8, 591 9 of 22

most of these deletions were found to be present in very low frequencies and were located in areas of
perfect or interrupted homology [125]. In contrast to neurons of control individuals demonstrating an
age-related increase in the mtDNA copy number and maintenance of wild-type mtDNA population,
corresponding neurons from PD patients were characterized by depletion of the wild-type mtDNA
population [91]. However, the neuronal mtDNA point mutational load did not increase in PD
patients [91]. The other study revealed increased expression of the mitochondrial isoenzyme, OGG1,
involved in mtDNA repair, in substantia nigra neurons of PD patients [87].

5.3. Other Cells from PD Patients

In addition to brain samples obtained post mortem, changes in mtDNA have been also investigated
using biopsy samples from PD patients. The study of mtDNA replication and transcription in skin
fibroblasts from patients with familial LRRK2-associated and idiopathic PD has shown that these
cells obtained from both groups of patients are characterized by similar dysfunctions of the mtDNA
replication and transcription machinery [126]. These included the accumulation of 7S mtDNA,
low mtDNA replication, high heavy strand transcription, and low cell-free mtDNA release [126].
The latter (cell free mtDNA release) is currently considered as an active physiological process regulated
by metabolic stress rather than a hallmark of cell lysis [126]. The altered level in 7S DNA, which plays
a role in the switch between replication and transcription of mtDNA [54], is considered as a basic
mechanism in the pathogenesis of idiopathic and monogenic LRRK2-associated PD.

5.4. Studies Using Cytoplasmic Hybrid (Cybrid) Cell Lines

In the context of studies aimed at elucidation of the role of mtDNA in mitochondrial dysfunction
and pathogenesis of PD, the cytoplasmic hybrid studies performed using mitochondria from cells
obtained from PD patients made a significant contribution [12,127,128]. Cybrid cells are generated by
mixing contents of a non-nucleated cell with a nucleated cell. The nucleated cell is usually a tumor
cell with depleted mtDNA (known as a %0 cell) and the platelet usually represents a source of the
non-nucleated cell containing functionally competent mitochondria [129]. Since cybrids share the same
nuclear genetic background, the differences in structure-functional parameters of the generated cybrid
cells containing mtDNA from various sources are obviously originated from the differences in their
mtDNA. Table 3 summarizes results obtained using such systems.

Table 3. The role of mtDNA alterations in the mitochondrial dysfunction and extramitochondrial
processes evaluated in PD cybrid cells.

Source of PD
mtDNA

Cell Line Used to
Generate Cybrids

Mitochondrial
Changes

Extramitochondrial
Changes Reference

Platelets from
sporadic PD

patients

SHSY5Y
neuroblastoma

Decreased complex I
activity and increased

ROS production

Increased susceptibility
MPP-induced

programmed cell death
[130]

PD patients with
low platelet

complex I activity

A549 lung
adenocarcinoma

combined complex I and
IV deficiencies [131]

PD patients with
reduced platelet

complex I activity

NT2
teratocarcinoma

cells

Decreased Complex I-IV
activities

Increased LDH release,
increased caspase-3
activity, increased

MPP+-induced activation
of caspase-9 and caspase-3

[132]

Platelets from
sporadic PD

patients

NT2
teratocarcinoma

cells

Decreased Complex I
activity and ATP level

Higher ROS production,
Increased number of

protein carbonyl groups,
microtubule alteration,

α-synuclein
oligomerization

[133]
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Table 3. Cont.

Source of PD
mtDNA

Cell Line Used to
Generate Cybrids

Mitochondrial
Changes

Extramitochondrial
Changes Reference

Platelets from PD
patients without

any nuclear
DNA mutation

NT2
teratocarcinoma

cells

Increased protein
ubiquitination,

microtubule
depolymerization, and

α-synuclein
oligomerization

[134]

Platelets from
PD patients

NT2
teratocarcinoma

cells

Decreased mitochondrial
calcium

Increased cytosolic
calcium, increased calpain
expression, and activation

[135]

PD patients with
reduced platelet

complex I activity

NT2
teratocarcinoma

cells

Decreased Complex I
activity, lower ATP,

depolarized
mitochondria, slightly

increased
ATP-independent

proton leak

Decreased levels of PGC1α
Decreased levels of SIRT1

phosphorylation
Higher transcriptional

activity of NF-κB

[136]

Platelets from
individuals with

idiopathic
(sporadic)

Parkinson’s disease
(sPD)

SH-SY5Y
Neuroblastoma

cells

Insignificant trend for
reduction of Complex I
respiration, unaltered
level of ETC subunit

proteins
mtDNA levels varied

mtDNA levels varied and
correlated with expression

of PGC-1α
[137]

Platelets from
Contursi kindred

PD subjects

SH-SY5Y
Neuroblastoma

cells

Lack of significant
changes in Complex I

and IV activities

Increased glutathione
peroxidase [138]

Platelets from
elderly PD patients HeLa cells

mtDNA transfer restored
mitochondrial

respiration of HeLa cells
No significant changes
were found between

control and PD cybrids

[139]

Platelets from a
patient with

mtDNA mutation
T14487C mutant

human
osteosarcoma

143B cells

Overproduction of ROS
causing increased
oxidation of lipids

and mtDNA

Increased lipid oxidation
Insignificant changes in

catalase and SOD

[121]
[120]

Enucleated cells
from patients with

mtDNA
mutationsA3243G

in tRNALeuUUR

and A8344G in
tRNALys

human
osteosarcoma cells

(A3243G in
tRNALeuUUR and

A8344G in
tRNALys)

both mutations showed
severe deficits of

complexes I, III, and IV

Increased ROS production
with a parallel increase in
the antioxidant enzyme
activities (SOD, catalase,
glutathione peroxidase)

[114]

It appears that certain but not all studied cybrids containing mtDNA from PD patients differ
from control cybrids containing mtDNA from non PD subjects. A decrease in Complex I activity
and increased generation of ROS are consistent with results obtained using various cells from PD
patients (see above). Since focal respiratory chain defects initially seen in platelets of patients with
other pathologies (e.g., Alzheimer’s disease) or documented lesions of mtDNA (e.g., some mutations,
see Table 2) have been reproduced in the cybrid cells, such cybrid cells represent an adequate model
for characterization of molecular events associated with mitochondrial dysfunction. Other processes
altered in cybrid cells, containing mitochondria from PD patients versus control cybrids (Table 3) reflect
complex interactions, including both effects of components transferred together with mitochondria to
the nucleated tumor %0 cell, as well as a functional crosstalk between mtDNA and nuclear DNA [140].
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6. Studies Using Animal Models of Parkinson’s Disease

6.1. MPTP-Induced Parkinsonism

In the context of PD models in animals, MPTP-induced Parkinsonism is one of the commonly used
experimental models reproducing the main neuropathological hallmarks of this disease [2,31,66,141,142].
In Parkinsonism induced by administration of MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(a protoxin) undergoes catalytic conversion by monoamine oxidase B (MAO B), which is self-inactivated
during this process. The resultant neurotoxin MPP+ (1-methyl-4-phenylpyridinium) inhibits complex I
of the respiratory chain and causes development of symptoms typical of PD [2,141,142].

A single dose administration of MTPT to mice (30 mg/kg) caused characteristic locomotor
impairments, rapidly developed within 90–120 min [143,144]. They were accompanied by increased
ubiquitination of oxidized proteins associated with brain mitochondria [144]. This points to an early
involvement of mitochondria in the cell response to the administered toxin. Administration of the
same dose of MPTP to mice caused accumulation of 8-oxoG in striatum and substantia nigra observed
12–24 h after the MPTP injection [66,72,76]. The accumulation of 8-oxoG in mtDNA induced by
MPTP administration was more pronounced in MTH1-null mice defective in the MTH1 gene encoding
8-oxo-dGTPase than in wild-type mice [66,76]. These changes (8-oxoG accumulation in mtDNA)
appeared in substantia nigra and striatum prior to loss of their neurons [76]. Interestingly, the level of
8-oxoG in nuclear DNA insignificantly differed between wild-type and MTH1-null mice [66,76].

The treatment of mice with MPTP (10 mg/kg for 4 days with a 3-day interval after the last injection)
caused mtDNA damage evaluated by quantitative PCR [145]. This damage was more pronounced in
old (1-year old) than in young (22-day old) mice and substantia nigra DNA was more affected than
caudate-putamen and cerebellum [145]. In vitro treatment of cells with MPP+, the toxin formed during
MAO B-dependent conversion of MPTP, also caused mtDNA damage. For example, the treatment of
SH-SY5Y cells with 1 mM MPP+ increased mitochondrial 8-oxoG after 1 h, while in the nucleus 8-oxoG
accumulation was observed 2 h later [146].

However, despite early mtDNA damage observed within 12–24 h after MPTP administration
(and development of movement disorder), proteomic analyses performed in other laboratories did not
reveal significant alterations in the level of proteins encoded by mtDNA [147,148]. About two hundred
genes, including genes encoding five subunits of complex I (Ndufa10, Ndufb5, Ndufs2, Ndufs7, Ndufb9)
and several ATP synthase subunits responded to MPTP administration. However, the only significant
change (downregulation) in the mitochondrial genome was found in the case of ATP synthase subunit
8 [147] encoded by the mitochondrial gene located on the H-strand (see Figure 1). This suggests
preferential involvement of the nuclearly encoded mitochondrial proteins in the MPTP-induced
changes at least within the particular protocol used: Four sequential injections of MPTP (15 mg/kg per
injection) at 2 h intervals with bilateral removal of striatum and other brain regions (cortex, cerebellum,
and the rest of the brain) 7 days after the injections [147]. We suggest that the selection of appropriate
experimental protocols appears to play an important role especially if we take into consideration
that the mtDNA damage and mtDNA copy number demonstrated different recoveries after the
ROS-dependent treatment of cells (see the last paragraph of Section 3).

6.2. Rotenone-Induced Parkinsonism

The other popular toxin-based model of PD is rotenone-induced Parkinsonism. In this model,
repeated systemic injections of the pesticide rotenone to rats caused the inhibition of mitochondrial
complex I in the nigrostriatal dopamine system [149,150] and also in the mitochondria of peripheral
organs (e.g., liver, [151]). Although histopathological and other examinations of about 40 organs
revealed several crucial targets (liver, bone marrow, and bone) [151], the brain rotenone treatment caused
selective degeneration of the nigrostriatal dopamine system and reproduced major clinical symptoms
typical of PD [149,150]. In the rotenone model of PD in rats the mtDNA damage (apurinic/apyrimidinic
(abasic) sites) was detected even after a single dose administration [150], which did not cause behavioral
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symptoms of Parkinsonism [149]. This mtDNA damage was detectable in substantia nigra (but not in
the cortex) and occurred before signs of nigrostriatal system degeneration.

Recently, the performed proteomic analysis using IMR-32 cells treated with retinoic acid for their
differentiation into dopaminergic neuron population has shown that the treatment with rotenone
affected the expression of more than 400 proteins [152]. However, the only protein encoded by mtDNA
was the COXII subunit and its level insignificantly differed from the control (the rotenone/control
ratio was 1.06) [152]. It would be interesting to repeat such proteomic analysis using rotenone-treated
animals, exhibiting symptoms of PD.

6.3. Polg Mutator Mice

DNA polymerase-γ is the principal enzyme in mtDNA replication and mtDNA proofreading.
The lack of this enzyme causes early embryonic death [153], while a missense mutation causing amino
acid substitution D257A only reduces the 3′–5′ exonuclease activity needed for proofreading without a
significant change of the mtDNA replication capacity [154,155]. The homozygous PolgD257A/D257A mice
carrying this mutation die prematurely at the age of about 12 months (41–59 weeks) due to increased
random accumulations of mtDNA mutations, while wild-type mice live more than 2 years [154,155].
The knock-in mice developed an mtDNA mutator phenotype with a several fold increase in the levels
of point mutations and increased amounts of deleted mtDNA. The rate of mtDNA mutations markedly
differed in various tissues of the mitochondrial mutator mice [156].

In the skeletal muscle mitochondria of 11-month old Polg mutator mice, the total content of
mitochondrial electron transport chain decreased by 35% (complex I); 37% (complex III), and by
50% (complex IV). The analysis of selected subunits revealed a significant decrease in both
nuclear-encoded (NDUFA9 and NDUFS3 subunits of complex I, 29 kDa and 48 kDa subunits of
complex III), and mitochondrial-encoded subunits (COXI subunit of Complex IV) [157]. Gene expression
profiling revealed 97 differentially expressed genes with the highest upregulation of genes encoding
extramitochondrial proteins (HD domain containing protein 3–9.7 fold; acetyl-CoA synthetase 6.8-fold;
Cd209e gene-like protein E—4.1-fold). The most prominent downregulation was observed for alpha
kinase 3 (−4.5-fold), immunoglobulin heavy locus (−4-fold), and 3-hydroxybutyrate dehydrogenase 1
(−3.6-fold) [157]. Interestingly, a similar study performed in young (3-month old) mutator mice did
not reveal differentially expressed genes [157]. No changes were also observed in 8-oxodG levels in
mtDNA between wild-type and mtDNA mutator mice [158].

Young (2–3 month old) PolgD257A/D257A mutator mice did not demonstrate higher neuronal
vulnerability than the wild-type mice [159]. In addition, another study has shown that DJ-1-deficient
mice, Polg mutator mice, and DJ-1-deficient Polg mutator mice had intact nigrastriatal pathways [160].
Neurons and muscle cells of mtDNA mutator mice maintained a well-preserved mitochondrial
respiratory chain [161]. Mitochondrial levels of hydrogen peroxide in the studied tissues (liver, kidney,
heart, and skeletal muscles) were basically the same in young Polg mutator mice and wild-type mice,
while in mature mtDNA mutator animals were higher in the heart and kidney [162].

Nevertheless, quantitative proteomic profiling revealed brain proteins differentially expressed
in the Polg mutator mice as compared with the wild-type mice [163]. At least several mitochondrial
respiratory chain subunits were significantly decreased and these included cytochrome c-oxidase
subunit 2 (COXII) encoded by the mitochondrial genome. However, RNA-Seq performed using
mRNA extracted from the same cohort male aged mice used in the proteomic experiment revealed
18 (of 28100 identified) genes expressed differently in Polg mutator mice as compared with the
wild-type mice and they did not overlap with proteomic data [163]. This points to the lack of direct
interrelationship between proofreading defects during mtDNA replication and the development of
age-related neurodegenerative pathology such as PD.
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7. Conclusions

Convincing evidence exists that mtDNA is involved in the mitochondrial dysfunction in
Parkinson’s disease. However, it still remains unclear, whether numerous mtDNA damages (oxidation,
deletions, mutations, and heteroplasmy) described in the literature are the cause or consequence
of PD [12,164,165]. On the one hand, the analysis of human (including postmortem brain) tissue
samples demonstrating various types of mtDNA damage suggests that the recognized changes may be
attributed to the final outcome of the disease. On the other hand, results of animal studies, simulating
crucial stages of PD, indicate that at least mtDNA oxidation/damage, seen for example in the MPTP
mouse model (see Section 7 of this review), may be referred to as one of the early events preceding
the appearance of detectable changes in the levels of differentially expressed proteins. However,
quantitative proteomic studies have shown that the level of mitochondrial proteins encoded by
mtDNA remains basically unchanged [147,148,152]. This is a common feature found not only in
the rodent but also in the MPTP-monkey model of PD. In the latter case, the proteomic analysis of
postmortem brains from both Macaca mulatta monkeys (the rhesus monkeys) demonstrating severe
parkinsonian symptoms and asymptomatic animals poorly responding to MPTP administration
revealed 86 differentially expressed proteins as compared with untreated monkeys [166]. However,
none of these proteins were encoded by mtDNA. The only protein related to mitochondria was the
ATP synthase subunit alpha encoded by nuclear DNA [166].

Such mitochondrial resistance may be attributed to different roles of particular subunits
encoded by mtDNA in the assembly and functioning of mitochondrial complexes (e.g., [167]).
For example, mutations in mitochondrial genes encoding ND1 and ND3 subunits of complex I
cause MELAS (mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes) [168] and
infantile mitochondrial encephalopathy and complex I deficiency [169], respectively. However, in the
case of the ND6 subunit, the transfer of mtDNA carrying a mutation in the gene encoding this
subunit to the other nuclear background exhibited a positive effect even in the absence of ND6 protein
synthesis: Complex I assembly and functioning recovered [170]. Such nuclear suppression of the
mitochondrial defect was also found in the case of the ND5 subunit [170]. This suggests that cross-talk
between nuclear and mitochondrial genomes plays an important role in the maintenance of cell
functioning. Such bidirectional cross-talk might include nuclear-encoded microRNAs influencing
the expression of mitochondrial genes [171] and small mitochondrial highly transcribed RNAs
(smithRNAs) regulating the expression of nuclear genes [172] and other known mechanisms (e.g., [173]).
However, the applicability of such scenarios for mitochondrial dysfunction in PD requires direct
experimental validation.

The role and mechanisms of nuclear suppression of mitochondrial defects clearly need better
understanding as it represents a promising area for therapeutic interventions. This will be particularly
interesting in the context of PD therapy.
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