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In the first part of our study, we substantiated that the embryonic reontogenesis and malignant growth
(disintegrating growth) pathways are the same, but occur at different stages of ontogenesis, this mecha-
nism is carried out in opposite directions. Cancer has been shown to be epigenetic-blocked redifferentia-
tion and unfinished somatic embryogenesis. We formulated that only this approach of aging elimination
has real prospects for a future that is fraught with cancer, as we will be able to convert this risk into a
rejuvenation process through the continuous cycling of cell dedifferentiation–differentiation processes
(permanent remorphogenesis). Here, we continue to develop the idea of looped ontogenesis and formu-
late the concept of the rejuvenation circle.

Lay abstract: Here, we continue to develop the idea of looped ontogenesis and formulate the concept of
the rejuvenation circle. We also briefly consider the issue of the applicability of our concept to postmitotic
cells, which is of fundamental importance for the rejuvenation of the body as a whole and outline some
areas of practical implementation of our proposed concept.
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So I do not know how to tell you that I only can see that cancer become a friend to protect or even create
a situation in our body that we can live longer. I am absolutely certain that time will change. But still
mankind’s do have ideas that they have the power to influence all nature and put themselves above God.
Illness has – like everything in all nature – an evolutionary process. Cancer is one of the last steps in this
process and accumulate especially at the end of every aion (+/− 2000 years). It is the cosmic sign, that
the apocalypse (a total change of mind) is coming. As longer as people do not want to see – see it, to feel
it, to smell it – deep inside they will go on with enemy-thinking.
S.W. Bok, May 21, 1997.
If everything regenerated, there would be no death.
Richard J Goss, Principles of Regeneration [1].

Currently, there are different views on the nature of aging and various methods of geroprotection in the fight
against age-related diseases. Among them are the use of plasma factors (e.g., GDF11 and TIMP2), various variants
of metabolic intervention (including rapalogs, metformin, resveratrol etc.), ablation of senescent cells (including
senolytics) and the effects on telomerase. It should be noted that the main approaches are aimed at correcting the
individual mechanisms associated with aging and age-related diseases. The same happens in oncology, although
there is a wide variety and continuing improvement in the field of cancer treatment methods, they are all aimed at
the killing of cancer cells. However, even with certain achievements, we are still far from radical results – victory over
aging and cancer. In this article, we continue to elaborate the essence of our concept of the relationship between
carcinogenesis and aging, which was described in part one [2].
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Tumor cells: enemies born as friends (short retrospection)
Aging is a process and a consequence of processes brought about by steadily increasing restriction of the self-
renewal ability, limiting life expectancy and leading to an increase in the probability of death and, inevitable
death resulting from the fading of functions, failure of the regulatory mechanisms, occurrence of endogenous
disorders and increased susceptibility to exogenous factors [3]. In our opinion, one of the fundamental (systemic)
flaws of gerontology is the idea of the existence of a special aging program and the search for the cause of aging,
which states that if removed, aging can be eliminated. However, there is only one general program, a program
of growth and development (ontogenesis), of which aging is an integral part. The essence of this program is the
stabilization of multicellular integrity by submitting the purposes of the constituent parts (cells) to the purposes
of the whole (tissues, organs and the body in entirety), through the epigenetic restriction of cell potencies in
favor of perfecting (complicating) tissue specialization, for what we pay for with aging, all types of endogenous
pathology and, as a result, mortality. From this, it follows that the ‘cause’ of aging is not some special mechanism
but a program/order, which can be overridden only by implementing another program, a program, of permanent,
unlimited, quantitative and qualitative full restoration of structures, functions and functional interconnections. In
other words, the linear unidirectionality of ontogenesis, fatally leading to aging and death, can only be overcome
with permanent reontogenesis, through the looping of this linearity. This does not require an application of any
force against nature, because similar processes were invented by nature itself and because they work in practically
immortal multicellular organisms, such as Hydra vulgaris. It is important to note that Hydra does not have cancer
as a pathological process. In other words, a periodic return or ‘rollback’ to the blast state does not cause cancer
(disintegrating growth, DG) in those types of immortal organisms.

It is the restoration of cells that restores tissues, organs and functions. aging at the whole-body level is prede-
termined by aging at the cellular level. Consequently, reontogenesis can be carried out only through cells that are
capable to continuously, unlimitedly, quantitatively and qualitatively self-renew. This can be performed only by
cells, for which senescence is not the final stage of development but only an intermediate one, that are capable of
constantly ‘zeroing out’ the genetic and metabolic ‘burden’, restoring functions and functional interconnections.
There are only two types of cells that satisfy these criteria. Cells of the first type are the non-aging totipotent or
pluripotent cells of early embryogenesis, which, in addition, effectively get rid of even advanced glycation end
products [4,5]. Cells of the second type are cells of precancerous tissues that, through spontaneous reprogramming
(via the same regulators, Notch, Wnt, Hedgehog, OSKM and others), can reverse aging, but, at the same time,
cause cancer [6,7]. It should be noted that the same happens as the result of using main cancer treatment methods
(chemotherapy, antiangiogenic therapy, radio- and immunotherapy), wherein senescence and death of tumor cells
give rise to a spontaneous de novo wave of reprogramming with the return of resistant forms of cancer [6], and for
all types of induced reprogramming for rejuvenation purposes [8,9].

Conclusion. Any methods affecting both individual ‘aging’ mechanisms and age-related pathology will only
alleviate the burden of aging, and these diseases slow down their progression but will eliminate neither aging nor
age-related diseases. By eliminating aging, we will eliminate age-related diseases.

In our early article [10], the proposed concept was first formulated, and we summarized data demonstrating that the
morphogenetic field of the embryonic environment reverses malignant phenotypes – ‘reprogramming’/’returning’
tumor cells back to normal cells ones. Based on this, we concluded that tumor cells do not lose their normal
morphogenetic potencies, but are also capable normalizing, and even giving rise to, a normal whole organism. As
it has been demonstrated in a number of studies [11–17], the ability of normalization is a characteristic not only
of germ cell tumors but also other tumors, such as leukemia, melanoma, liver and breast cancer, nephroblastoma,
medulloblastoma, glioblastoma and others. This indicates that tumor cells have the ability to ‘sense’ themselves
and the environment through morphogenetic signaling – to tune and self-adjust – integrating into the normal
morphogenesis. On the other hand, embryonic tissue transplants in non-immunoprivileged sites give rise to the
existence of tumors. In this case, there is not an escape from the morphogenetic field as suggested by Needham [18]

and Waddington [19], but there is an external blocking of the susceptibility of cells to morphogenetic signals.
The data of Shvemberger [20] on the normalization of tumor cells (rhabdomyosarcoma, Ehrlich ascites carcinoma)
in the non-embryonic zone of the eye anterior chamber, which has only immunoprivilege in common with the
embryonic zone, allowed us to state that it is the immunoprivilege that provides this ability to ‘sense’ oneself and the
environment, as well as how to be subject and object of normal morphogenesis. The immunoprivilege provided by
trophoblast and deciduas [21], and the transformation of immune surveillance effectors (T cells, Natural Killer [NK]
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cells, T helper [Th] 1 cells, M1 macrophages, dendritic cells [DC]) at the mother–fetus interface into regulatory
subtypes (T regulatory cells [reg], NK reg, Th2, M2 reg macrophages, DC reg), protects the embryo not only
from rejection but also from becoming a tumor. For example, maternal uterine NK reg (as well as the rest of
the regulatory subtypes) contributes to the implantation of the embryo by invading a trophoblast consisting of
nondividing cells, placentation, spiral artery remodeling and active immunotolerance [22,23]. An important role in
these processes belongs to trophoblast cells expressing human leukocyte antigen HLA-G and HLA-E isotypes of
the major histocompatibility complex [24,25]. The same happens with the participation of the same isotypes [26–28]

and mechanisms [29] in nonembryonic conditions. On the other hand, spontaneously reprogrammed cells that
recapitulate the program of early ontogenesis (embryogenesis) are in direct contact with immunity effectors, which
are transformed at the tumor–host interface into regulatory subtypes in the absence of a protective/shielding
trophoblast (absence of immunoprivilege). This results in the blocking of the ‘susceptibility’ to morphogenetic
signals, the distortion of a unified morphogenetic field, the reinforcement of a progressive autonomous status and
the conversion of normal growth processes into malignant (disintegrating) growth.

It should be noted that the reprogrammed cells, as well as the embryos, still have some kind of protective
‘shield’ the fibrinoid layer, so-called Nitabuch striae, masking their antigenic structures [30], because the activity of
enzymes contributing to the deposition of fibrin in these cells is significantly higher than in differentiated somatic
cells [31]. However, activated macrophages have significantly more fibrinolytic activity when compared with non-
activated ones and therefore, deprive these cells of this protective shield [32]. In addition, M2reg macrophages, like
other regulatory subtypes of immune response effectors, promote growth processes. Once again, it is important to
emphasize here that the transformation of immune surveillance effectors into regulatory subtypes at the mother–
fetus and tumor–host interface is not immunosuppression, but only immunomodulation. This manifests one of
the main morphogenetic functions of the immune surveillance system, maintaining cellular (tissue) homeostasis
(morphostasis), which is carried out through maintaining the growth process in damaged tissues. In this process,
the immune response to proliferating cells is carried out through the mechanism of active tolerance, when there is
an immune response; however, it does not kill but supports. As others also pointed out, the main behavior of the
immune system is determined by the rules governing cell survival and perpetuation and organismic homeostasis
maintenance and the self-versus-non-self recognition paradigm is no longer the center of the immune system
concerns [33]. This was described in more detail in the first part of the study [2].

It can be concluded that tumor cells at any stage of progression are able to revert to normal ones subject to two
conditions, namely, the presence of morphogenetic signaling of the environment and the ability to ‘hear’ it and
themselves, which is ensured by immune privilege or, in the of nonembryonic conditions, complete immunological
tolerance toward them.

Thus, we formulate tolerance as a defense strategy from cancer, as it has been proposed by Medzhitov et al. for
infectious pathology [34].

The cancer eradication paradigm on which all modern oncology is based plays a major role in the palliative
care of patients. However, we are confident and firm that this paradigm will never eliminate the cause of cancer
but will only reduce the probability of dying from cancer for some time and allow individuals to die from some
other pathology. On the other hand, when one attempts to eradicate cancer, one terminates rejuvenation, because
spontaneous reprogramming, which then turns into cancer, is an attempt by any living matter to self-renew. Full-
scale reprogramming (spontaneous or induced) that never turns into cancer does not have a fully fledged biological
alternative for simultaneously solving two main problems: eliminating both cancer and aging. They cannot be
solved separately, because the solution to these problems is the same. Trying to eliminate aging, we will ‘call for’
cancer. Moreover, trying to eradicate cancer, we will still be destined to aging.

It has to be emphasized that only half measures lead to half results. The goal of ‘truncated’ or partial reprogram-
ming protocols is clear: to avoid the formation of a tumor. However, this approach does not and most likely will not
lead to a radical elimination of aging, since it does not allow ‘to erase’ the critical hallmarks of aging. Furthermore, as
noted, "failure to erase critical hallmarks of aging may lead to refractory populations of cells and cellular senescence" [35].

One-way ticket: the death road or some thoughts about ontogenesis
Each of us is already born with a one-way ticket to the graveyard (Figure 1A). Our path begins with the merging
of two differentiated ancestors – germ cells. After approximately 3 days, we are just a few totipotent cells that can
divide (renew) without limitation, giving rise to any of the tissues of which we will later consist. Starting from day
4, an important event takes place: we get armor, which will be needed in order to survive in the womb, where we
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Figure 1. Linear (classical) ontogenesis or ’death road’. Linear ontogenesis (A). Looping ontogenesis or rejuvenation
circle (B).

are just a transplant (which, if everything goes according to the scenario, will be rejected at the right time through
birth).

The first differentiating event in ontogenesis begins with the formation of an armor called trophoblast. Tro-
phoblast is the first differentiated specialized tissue in our life that will accompany us until birth. It is its layer,
called syncytiotrophoblast (and then the deciduas), consisting of nondividing multinuclear cells and encounters
the invasion of the mother’s immune system effectors, that protects us from many unfavorable outcomes, such as
death, premature birth, transformation into teratoma/teratocarcinoma.

At this moment, everything, which later becomes us, is pluripotent, such that it can still proliferate without
limit and can give rise to everything, but also an ‘armor’. Covered with that ‘armor’, we begin the struggle for our
existence, engrafting ourselves into the uterus (implantation). Having finally implanted (7–8 days), we are divided
into three parts (three germ layers), while remaining unified, but moving at the same time toward three different
directions (gastrulation). As soon as the separation has occurred, each of those layers (ectoderm, mesoderm and
endoderm) can become only that tissue / organ, the formation of which is determined only by its path. Currently,
we already lose pluripotency and before becoming multipotent. Gastrulation (the mesoderm is formed later than all)
is completed by approximately day 35, and organogenesis begins, during which multipotency is gradually lost. By
the end of organogenesis (end of 4 months), we consist of completely differentiated tissues. We then grow/mature,
and by the due date, when the antigenic landscape of our armor (which has long time become a placenta) changes,
we get rejected as a classic transplant. Afterward, we are already incapable of unlimited self-renewal (only partially
recovering losses) and with a one-way ticket in hand, begin our unidirectional path to the graveyard. For the
Hayflick clock is already ticking and a certain number of ‘ticks’ are measured out, after which the spring is critically
shortened and the clock stands up. By this time, the critically senescent cells cease to reproduce themselves. Under
normal conditions, the spring can no longer be started. It’s like a guardian whose duty does not allow critically aged
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cells to multiply. We continue to live and accumulate waste and various by-products and it becomes more difficult
to get rid of them.

This is how differentiation (and specialization of cells and tissues), carried out through epigenetic drift, which
determines the unidirectional process (from totipotency to differentiation), ensures our existence in the form of an
integrated highly specialized whole organism. However, this also inevitably results in a narrowing of the spectrum
of adaptive properties and a decrease in the reparative and regenerative potential, as well as both quantitative and
qualitative restoration ability of the lost structures by new fully functional ones. It also leads to deterioration in the
ability to dispose the metabolic waste that in turn results in the decline of growth–reparative potential and relative
adaptive rigidity of differentiated structures. Indeed, in order to restore large volumes of damage, more freedom to
operate is needed than this can be provided in the framework of a relatively strict determination and the level of
differentiation determined by it.

This is the essence of senescence. Summing up for individual tissues and organs, it ultimately leads to the aging
of the whole organism (because aging of the whole is the sum, though not simple, of senescent parts). Initially,
there are no visible changes in the appearance; however, starting at some point, it begins to change, and the state
of the flesh also worsens. We are no longer able to adequately maintain an acceptable level of health.

What can be done? Live ‘slower’, get rid of senescent (and at the same time quiescent) cells, maintain a healthy
lifestyle and live on a schedule, watch every piece eaten and drunk? This may postpone the manifestation (and
maybe even initialization) of diseases. Perhaps they will not all pile up at once, and the sign ‘the end’ will also move
little further away, but no more. It can prolong and mitigate the aging itself, and this is the maximum you can hope
for. Look at the photos of centenarians. Do we just agree to fade in this way? In the end, is the difference so large?
What class do we travel if, after all, it is one-way ticket? Are we satisfied with waiting at the death reception hall,
even if it is huge and decorated with many various exciting and beautiful things? In fact, these are the only services
included in the one-way ticket.

Having created technologies that affect separate mechanisms, genes, pathways, one will eliminate neither aging
nor disease – but will only ease their course and delay their onset. There are no, and cannot be, any youthful factors
from a young environment (such as a blood plasma) or rejuvenating mixes, they are just palliatives, temporary
‘cosmetic’ products based on current and often conflicting trends. These are just modifications of the earlier
approaches. Only by creating the technology to eliminate aging can we eliminate both aging and the age-related
diseases. This is impossible to accomplish in principle by acting on individual mechanisms, genes and pathways,
because aging is an integral part of a development program (ontogenesis) and because only a program can override
a program, not a separate mechanism. This program does not need to be created artificially, because it is inborn
and was created by millions of years of evolution and can operate in us as it already operates in other immortal
organisms. Initialization of that kind a program will radically solve the problem of aging.

The intercellular environment is created by cells; therefore, an aging environment is created by senescent cells
but not vice versa. The aging environment only exacerbates the cellular senescence. No matter how you change
an intercellular environment to an ideally younger one, the cell will still age and die (which was demonstrated by
Hayflick). Therefore, the only option for a radical biological solution to the aging problem is radical reprogramming.
It is the cancer that starts as a spontaneous reprogramming (as rejuvenation attempt) and only then becomes cancer.
Knowing the cause for such a transformation, one will know its essence and then will be able to direct the processes
toward the rejuvenation, preventing their transformation into cancer. One can turn a mortal enemy into a friend
that can eliminate both cancer and aging. This is exactly what makes the proposed concept unique.

A complex specialized multicellular organism at the cellular level cannot but differentiate and, therefore, must
age to remain an integrated specialized structure. An alternative is the transformation into one large disorganized
structure (tumor) of ageless, pluripotent, immortal cells. However, we are actually capable not age at the level of
the whole organism, because DG is an unlimited (NB!) expansion of the potencies of the constituent parts within
the whole. It is this limitlessness that determines the disintegrating / malignant nature of tumor growth. However,
we can escape both cancer and aging if the recapitulation of the embryonic program will only be temporary and
cyclical in nature, not depriving cells the ability to differentiate again and making both senescence and rejuvenation
not final, but only intermediate stages (Figure 1B). That is the essence of the proposed solution, which can be
called as permanent reontogenesis or a rejuvenation circle. Multipotent tissue-specific progenitor cell status will be
sufficient only for normal tissue-specific regeneration, but may be not sufficient for complete self-renewal, at least
because these cells wouldn’t be able to cope with advanced glycation end products and demonstrate a stable decrease
in epigenetic age. That is why we have included ‘embryo-like cells’ in the rejuvenation circle, suggesting that only
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this type of cell status can provide a solution to the problem of complete quantitative and qualitative self-renewal
of tissues and functions.

Permanent reontogenesis or rejuvenation circle
Any primary cause has many consequences, each affecting this cause through various feedbacks, and they themselves
become the cause of many consequences. This complex polyphony consists of many notes (genes and factors encoded
by them) and melodic lines (signaling pathways). It is necessary to take into consideration various transcription
options from alternative promoters to post-transcriptional regulation, with the formation of functionally different
isoforms that regulate various additional signaling pathways, creating a truly cosmic ‘cobweb’ of relationships and
interdependencies with the cosmic variety of options through positive and negative feedbacks. In that orchestra,
each note and melody line are aware where to join and where to fade, when and how to combine with others, when
to upregulate and when to downregulate one’s activity. All cells, where this whole orchestra plays, hear themselves
and their environment through self-tuning and they know their path, becoming an integrated unit in the tissues
they form. As a result, cells create a sophisticated web of morphogenesis under conditions of immune privilege,
when nothing hampers them.

It is namely the incomplete/fragmented morphogenesis in the absence of this immune privilege is a cancer,
but not mutations that are secondary, being only an epiphenomenon/by-product [36–38] of this fragmentation and
non-blocked reverse of ontogenesis. As other authors noted, only a few mutations are found in the majority of
tumors, whereas the majority of mutations are observed in less than 5% of tumors [39]. The above is consistent
with the tissue organization field theory proposed by Sonnenschein and Soto [40], which, in our opinion, can
also be called the theory of the morphogenetic field (an area of an embryo that responds as a coordinated unit
to embryonic induction through the formation of multiple and differentiating – in a determined direction –
anatomical structures). The same researchers were right, pointing out the following: "Now, if neoplasia, as posited by
the somatic mutation theory, is due to the accumulation of multiple mutations, how can cells derived from these tumors
revert to behave as normal cells? It is statistically unlikely that random reverse mutational events that erase the previous
mutations would be responsible for this reversal" [41].

The above data on the normalization of tumor cells, as well as the fact that the administration of induced
pluripotent stem cells into the embryo with a mutation leading to the downregulation of p53 with the simultaneous
upregulation of growth/proliferative signaling pathways typical for embryonic stem cells (ESCs, which, when
introduced into an extraembryonic environment, would highly likely lead to the formation of a tumor), resulted
in to the development of a normal mouse [42]. This allows us once again conclude that where the morphogenetic
module is susceptible to embryonic induction, we have morphogenesis, and where is not, we have carcinogenesis.
This is precisely the essence of carcinogenesis.

Other authors also correctly noted in the article, which summarized the identical fundamental properties of
embryonic and cancer cells [43], placing cancer cells into a ‘normal’ embryonic morphogenetic field, can reverse
the malignant phenotype or ‘reprogram’ the cancer into normal cells. Therefore, it is not surprising that cancer
cells exposed to specific embryonic morphogenetic fields undergo significant modifications, ultimately leading to
complete phenotypic reversion. This is also supported by other authors [44,45]. It is important to note that some
studies validate the persistence of morphogenetic fields throughout whole postnatal ontogenesis: these fields control
histogenesis and organogenesis in embryogenesis, as well as maintaining and regenerating tissues throughout the
entire postnatal ontogenesis [46–48]. In addition, it should be noted that the generation of a morphogenetic field
in deficient tissues (partial hepatectomy) [48] is consistent with the fact that it is the early stages of embryogenesis,
which generate oncostatic as well as differentiating properties, in that no effects can be seen after morphogenesis
and organogenesis are complete [49,50].

Several misunderstandings occur when trying to present a whole picture of fundamental processes that coming
from the fact that the dualistic function of genes, factors, their encoded and signaling pathways through which
their actions, or their antagonistic bifunctionality, are not always taken into account [51]. This gives rise to seeming
paradoxes and opposing conclusions.

As Eicher and Washburn correctly pointed out, while each gene is perfectly wild-type within its ‘own field’, they
act as a deficient mutant when placed in a different environment [52]. As a consequence, the same gene can activate
different pathways in different fields [53]. Hence the situation where the interpretation of any fact in a particular
case seems to be correct, but when trying to build a whole picture on the basis of this interpretation, it turns out to
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be incorrect. That is why, for example, normal genes, the re-expression of which under non-embryonic conditions
is associated with cancer, are incorrectly called oncogenes, although they are not the cause of cancer per se.

It was not an intention to review all possible types of the interaction of genes, their isoforms and signaling
pathways, because the cosmic ‘web’ of relationships and interdependencies with the cosmic diversity of variants
is practically boundless. Without knowing the whole complex multidimensional picture of all interactions, inter-
connections and functions in a living organism, it is impossible to intervene in one or another link and count on
the desired effect. Based on some examples and reasoning, it has been demonstrated that living systems are able to
self-adjust and materialize their inherited potential created over a billion years of evolution, under conditions where
nothing interferes with them and without intrusion in complex occurring processes (no one controls embryogenesis,
is it right?), where still little is known and where only an insignificant part will be known for long time. Much still
remains unknown but, having rejected an enemy-thinking approach and accepting the principle of cooperation
rather than interference, it would be possible to solve many problems.

Thus, the task is as follows: to create conditions equivalent to embryonic development in the postnatal period
and, by achieving complete immunological tolerance to cells that restart the embryonic development program, to
prevent the transformation of reontogenesis into carcinogenesis.

The rate of P53 (localized on 17p13.1) mutations nearly accounts for 50% of human cancers [54]. However,
it should be noted that P53 is a classic recessive suppressor that requires a biallelic mutation to inactivate it [55],
which is extremely rare. In addition, the vast majority (80%) of P53 mutations are missense mutations, that is,
when the substitution of one base is similar in its physicochemical properties to the wild-type, the tertiary amino
acid structure is unchanged; therefore, the biological properties of the protein practically do not change. That
is why TP53 mutations do not strictly correlate at the individual level with the patient’s clinical outcome [56],
as it was also demonstrated by other authors. Moreover, 11 out of 24 types of cancers have shown significantly
poorer survival rate with a high P53 signature. No cancer variants have indicated poorer patient survival with a
low P53 signature [57]. When P53 is not mutated, which is in approximately 50% of tumors, the upregulation of
its negative inducer Mdm2, is mentioned. It is not always taken into account that normally the overexpression
of Mdm2 activates blockade mechanisms of cyclin-dependent kinases [58]. Such interconnections support the
balance between cell division/arrest cycle and dedifferentiation/differentiation, resulting not in tumor growth but
in morphogenesis. The same happens in embryogenesis, where Mdm2 is critically required, and unrestrained p53
activity during development causes early embryonic lethality, as occurs upon loss of the p53-negative regulators
Mdm2 or Mdmx [59]. At the same time, as it is known, the overexpression of P53 correlates with carcinogenesis
and is an early event in the development of some human carcinomas [60–63].

Two orthologs of p53 members of the P53 gene family are known, namely, tumor suppressors P73 (localized in
1p36.33) and P63 (3q27-29), which can compensate for the loss of P53 [64] and which extremely rarely mutate
(nature has developed reliable protection mechanisms for hundreds of thousands of years of evolution). All three
members of this gene family function as transcription factors and regulate the expression of similar gene groups
through direct binding to those sites, which are identified as p53-binding sites in the promoters. Transcriptional
activation of these target genes leads to the induction of cell cycle arrest and apoptosis.

Full-length isoforms TAp73 regulates tumor angiogenesis by suppressing pro-angiogenic and pro-inflammatory
cytokines. TAp73 activates p53-sensitive genes, such as CDKN1A (which encodes WAF1, also known as CIP1
and p21), P53R2, PUMA and BAX; therefore, like P53, it regulates growth arrest and cell death. In contrast,
dominant negative �Np73 leads to stimulation of tumor growth and angiogenesis, inhibiting both TAp73- and
p53-induced apoptosis. In turn, �Np73 is induced by TAp73 and p53, creating a dominant negative feedback
loop [65,66].

Similarly, full-length TAp63 suppresses tumors, but �Np63 has oncogenic functions [67] also due to functional
interplay between �Np63 and �133p53α [68]. However, �Np63α has been reported to inhibit cell invasion
in cancer [69]. At the same time, �Np63α transcriptionally activates the E3 ligase HERC3, which mediates the
ubiquitination of the c-Myc modulator MM1, making it the target of proteasome degradation, leading to cell cycle
progression; therefore, c-Myc is depressed by the �Np63α factor, and MM1 knockdown prevents cell aging induced
by a deficiency of either �Np63α or HERC3 [70,71].

It should be noted that not only the full-sized isoforms p73 and p63 play an important role in embryogenesis,
normal development and implementation of physiological functions [68] but also �Np73 [72,73] through the
expression of hTERT in telomerase-negative cells by blocking E2F-RB-mediated repression of the main promoter(s)
hTERT [74] and �Np63 [75–77].
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Antagonistic bifunctionality of P53 is also carried out through its isoforms, the formation of which occurs through
three possible mechanisms, namely, alternative splicing of pre-mRNA, initiation of transcription from alternative
promoters and alternative initiation of protein translation. At present, 12 protein isoforms of p53 encoded by
nine TP53 mRNA transcripts are known: (p53α, p53β, p53γ, �40p53α, �40p53β, �40p53γ, �133p53α,
�133p53β, �133p53γ, �160p53α, �160p53β, �160p53γ). They are expressed jointly and work in coordination
to regulate cellular responses. The p53 isoforms play an important role in normal embryogenesis and only in their
ectopic expression, disrupting the balance between them and deregulating the signaling pathways leading to
various disorders. For example, on the one hand, it is known that increased �40p53α expression is associated with
carcinogenesis. On the other hand, with mucinous ovarian cancer, �40p53α expression is associated with improved
recurrence-free survival, as well as functionally inactivates PTEN, which regulates insulin-like growth factor signal
transduction to Akt, thus dysregulating IGF-1 signaling and consequentially promoting cellular senescence and
reduced proliferation [78].

Elevated p53β and reduced �133p53α expression are a senescence-associated signature [79]. The restoration of
�133p53α expression was sufficient to extend the replicative life span and delay in aging Hutchinson-Gilford
progeria syndrome (HGPS) fibroblasts that exhibit low levels of �133p53α and high levels of p53β. Conversely,
�133p53α depletion or p53β overexpression accelerated the onset of aging in proliferative Hutchinson-Gilford
progeria syndrome fibroblasts [80]. In several cancer cell lines and normal fibroblasts, the p53β overexpression induces
apoptosis and cell senescence via the upregulation of genes such as BAX and p21 / miR34 in a p53-dependent
manner. On the other hand, �133p53β stimulates the expression of key pluripotency factors like SOX2, OCT3/4
and NANOG [81], the expression of which is a key target for reprogramming in regenerative medicine.

The overexpression of �133p53α associated with carcinogenesis [82–85] has been reported in cholangiocarcinoma,
cancer of the lungs, colon and ovaries and, has been associated with lower recurrence-free survival in patients with
colorectal cancer. However, the expression of �133p53α has been associated with an improvement in recurrence-
free survival and overall survival in advanced serous tissue of ovarian cancer with the TP53 mutant gene. This
suggests that it is impossible to attribute an absolute oncogenic or oncocompressive role to these isoforms, since
their activity depends on the function of cells, the cellular context and the co-expressed drivers [78]. Other authors
also point to this, noting that �133p53α may provide some protection against tumors [86].

It is known that �133p53α antagonizes p53 apoptotic activity and is an evolutionarily conservative pro-survival
factor in DNA damage, which prevents apoptosis and promotes DNA double stand break repair to inhibit cell aging
by enhancing the transcription of the repair genes rad51, lig4 and rad52 by binding to a p53-sensitive element in their
promoters [87]. Co-expression of �133p53 and the p53-p73 ortholog significantly stimulates DNA double stand
break repair mechanisms, including all three pathways, namely, homologous recombination, non-homologous
end joining and single-strand annealing [88]. At an early stage after damage, full-length p53(FLp53) is quickly
accumulated in cells containing severe DNA damage, which inhibits DNA repair and results in cells undergoing
apoptosis. In cells with smaller and fixable DNA damage, p53 is accumulated at a relatively low level in such a
way to activate the transcription of target genes, including MDM2 and �133p53α. The expression of MDM2
promotes degradation of the p53 protein, but not �133p53α, since �133p53α lacks the mdm2-interacting motif.
Thus, at a later stage, the accumulation of �133p53α not only protects cells from death due to its antiapoptotic
function but also provides genetic stability, contributing to the restoration of DNA double stand breaks [89].

It has been reported [90,91] that �133p53α plays an important role in embryogenesis and ESC, through
sequentially expressing significant levels of �133p53α (at least ten-times higher than human fibroblasts). �133p53α

inhibits FLp53-induced cellular senescence in normal human cells, including fibroblasts, CD8 T lymphocytes and
brain astrocytes. An elevated �133p53α level plays a causative role in the reprogramming of human cells into a
pluripotent state. Induced pluripotent stem cell clones obtained from overexpressing �133p53α fibroblasts, when
introduced into immunodeficient mice, form well differentiated benign teratomas with differentiation into all
tissues of the three germ layers and without malignant pathology. Thus, the activity of P53 in human pluripotent
stem cells is not simply inhibited but is coordinated by �133p53α to ensure the creation and maintenance of a
self-renewing ability with guaranteed genome stability. The authors conclude that �133p53α contributes to many
aspects of normal development and healthy lifespan in humans.

Other studies have demonstrated that �133p53α protects astrocytes from radiation-induced senescence,
promotes DNA repair and inhibits astrocyte-mediated neuroinflammation [92]. In addition, the restoration of
�133p53α cellular replicating potential may lead to a new therapeutic paradigm for treating immunosensation [93].
Overexpression of �133p53α sequentially delays the onset of cell senescence and induces telomerase reverse tran-
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scriptase expression, where telomerase activity and is crucial for reprogramming [94], promoting the transformation
of human somatic cells into self-renewing pluripotent stem cells with preserved apoptotic and DNA repair ac-
tivity [95]. Overexpression of �133p53α not only increases the efficiency of reprogramming, but also leads to an
improvement in the genetic quality in induced pluripotent stem cells [96].

Thus, from the very beginning of our life path, which is nothing more than a direct path to the graveyard,
genes/signaling pathways that can self-renew us unlimitedly, work less and less efficiently, and more and more
genes/signaling pathways, which are responsible for specialization, differentiation and, ultimately, aging, work
more and more. However, it is them who make us what we are – multicellular organisms integrated into a complex
hierarchical structure, which are based on tissue-specific differentiation and the basic principle of the adequate
functioning of complex multicellular organisms – the subordination of the interests of each unit to the interests of
the whole organism. Without these genes, we would be a pile of forever young cells with unlimited proliferative
potential and with the ability to turn into anything, anytime and without any regard to the environment. Aside
from that, the same genes/factors/signaling pathways allow us to repair DNA damage while preventing apoptosis
(p21), to cause apoptosis when repair is not possible (p53) and to carry out many other functions. Furthermore,
at a certain stage they contribute to the ‘inclusion’ of the mechanism of reprogramming (rejuvenation). Here
again, one can observe the phenomenon of antagonistic bifunctionality. For example, NKX3-1, under normal
conditions, is a negative regulator of cell growth and maintains cell differentiated status and its downregulation is
associated with the loss of differentiation and tumor growth [97]. Therefore, the function of NKX3-1 is directly
opposite to the pluripotency function. However, the expression of the same NKX3-1 precedes the activation of the
Yamanaka cell-reprogramming factor Oct4 during reprogramming. Moreover, NKX3-1 replaces exogenous OCT4
to reprogram both mouse and human fibroblasts with comparable efficiency and to generate completely pluripotent
stem cells [98].

Another so-called oncogene and Yamanaka factor, c-Myc, when overexpressed could lead to opposite effects, for
example, the inhibition of proliferative pathways [99] with the restoration of p53 function. However, at a certain
stage of expression, p53 activates its own negative regulator Mdm2.

A similar example is the long noncoding RNA gene PVT1, which is classified as the so-called oncogene and
carries out its function through recruiting of EZH2, stabilization of MDM2 protein expression and restraining
P53 expression, epigenetic regulation of p15 and p16, stimulation of proliferation and inhibition of apoptosis,
amplification and stabilization of Myc, targeting miR-200a, competing for miR-448 binding to regulate the
miRNA target SERBP and inducing epithelial-to-mesenchymal transition [100–107]. This is also confirmed by its
amplification in tumors [102,108]. Pvt1a or circular Pvt1 isoforms operate like the so-called oncogenes [102,103,106,109],
which include through its interacting with FOXM1 [110]. However, the authors of a recently published paper [111]

report that p53-dependent isoform Pvt1b ‘is necessary and sufficient to suppress Myc transcription in cis without
altering the chromatin organization of the locus’. This is consistent with data on tumor-suppressive elements in the
Pvt1 locus [109,112,113].

Described above, functional dualism is observed also in embryogenesis. As an example, ISY1 gene expression
during the naive-to-primed ESC transition determines a specific phase of ‘poised’ pluripotency. ISY1 promotes
exit from the naive state and is necessary and sufficient to induce and maintain balanced pluripotency; however,
persistent ISY1 overexpression inhibits the exit from the naive to the primed state [114].

Another example is the antagonistic double effect of phospholipase D2 produced by tumors. Instead of leading
to the loss of malignancy through stimulation of cell aging (and this is one of its properties), phospholipase D2
by stimulating aging, leads to the expression of pluripotency factors [115], closing the vicious cycle of cancer and
making it impossible to block pluripotency and differentiation accompanied with the loss of malignancy.

Under certain conditions, the senescent factors that age us (genes, transcription [translation] factors, signaling
pathways of aging), including p53, p63, p73, p15, p21, p27, p130, p16, p14, p18, p19, NKX3-1, Hippo and
others, can trigger rejuvenation processes. On the other hand, under certain conditions, the rejuvenation factors
that rejuvenate/reprogram/return to pluripotency (genes, transcription [translation] factors, signaling pathways),
including Oct4, Sox2, Klf4, c-Myc, Lin28, Nanog, Gata3, Eomes, Tfap2c, Esrrb, Sall4, Ronin, Rae28, Meis1,
c-Myb, Cbp, Gata-2, Mll, Bmi-1, c-Ets, c-Jun, MAPK (Ras, Raf ) LIF – STAT3, PI3K – Akt, Wnt/b-catenin and
others, can inhibit their own activity, contributing to differentiation and prevention of malignant phenotype, make
us old. Conversely, what ages us rejuvenates us, and this cell rejuvenation wheel would spin (Figure 2A), resulting
in nonaging at the phenotype level, if negative mechanisms of feedback/redifferentiation would not be blocked. As
a result of this blocking, instead of the circle of rejuvenation, we switch to the ‘death gear’ of cancer (Figure 2B).
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Figure 2. Rejuvenation Circle (RC) or reprogramming (spontaneous or induced) of adult somatic cell under complete immune tolerance
conditions (A). Cancer vicious circle (CVC) or reprogramming (spontaneous or induced) of adult somatic cell under active immune
tolerance condition (B).
RF: Reprogramming/rejuvenation factors, 1–6 – reprogramming steps; SF: Senescence factors.

Thus, there are no good and bad genes, isoforms or signaling pathways. All of them are normal genes, isoforms
or signaling pathways and carry out normal morphogenetic functions in a determined time and place. The
seemingly oncogenic realization of their usual normal functions during the onset of reontogenesis during postnatal
development is situationally determined and does not have destructive goals per se. Therefore, the task is to create
conditions for these genes in its ‘own field’ conditions that mimic immunoprivileged embryogenesis. This is the
essence of complete tolerance as a strategy for protecting against cancer with the simultaneous implementation of
reontogenesis processes directed toward the rejuvenation and termination of aging.

How to get postmitotic cells to ‘rebuild themselves’
During ontogenesis, cells such as neurons or myocardiocytes become postmitotic, thus playing an integrative role in
the functioning of an organism. The beginning of the ontogenetic program of development includes its own control
of division in relation to cells until its complete stop in postmitotic cells, making them one of the main targets for
aging processes. To increase the regenerative possibilities of an organism, it is necessary to make postmitotic cells
‘build themselves anew’. The main biological ways to accomplish this is full-scale reprogramming that brings cells
back to the early stages of pluripotency. It must be emphasized that what later becomes cancer is initially started
as spontaneous reprogramming and the goal is to prevent the transformation of this process into carcinogenesis
and direct it as rejuvenation. By creating similar conditions in the body, we can apply safe systemic-induced
reprogramming in vivo, without fear of resulting in cancer.

According to available data, the possibility of regeneration and reprogramming exists not only for dividing cells,
but also for postmitotic cells [116–118]. Presently, there is no data, showing how the continuous reprogramming
process can affect neuronal and central nervous system (CNS) functions in general, but there is every reason to
believe, that at a low rate of continuous reprogramming there will be no significant violations of the CNS fraction.
A not so radical but encouraging way to achieve the processes of rejuvenation in CNS neurons, is the directed
influence on their cellular environment, glial cells. According to available data [119,120], glial cells not only participate
in neuronal work but, what is especially important, directly affect their metabolism. These data allow us to hope
that postmitotic neuronal cells can achieve the effect of ‘division without division’ or metabolic return processes to
the state of self-supporting gene activity prevalence.

The proposed concept applied to postmitotic cells is also supported by the data that the reactivation of the
classical so-called oncogene (belonging to set of Yamanaka factors) Myc and the CCNT1 gene encoding cyclin T1,
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which in association with cyclin-dependent kinase 9 (CDK9) plays a key role in carcinogenesis [121], leads to the
restoration of the regenerative potential of postmitotic myocardial cells [122]. At the same time, the regenerative
transcriptome of postmitotic neurons resulting from damage of the corticospinal tract reverses to an embryonic
transcriptional state [123].

In conclusion, we believe it is appropriate to quote Elsasser: "There are good reasons to suspect that heterogeneity
(i.e., variability within any given set of samples) is an essential characteristic of organic life. This idea differs widely from
the traditional view that heterogeneity is only a nuisance that is to be circumvented or otherwise eliminated" [124].

Future perspective
Thus, we have formulated the concept of looped ontogenesis as a strategy for defeating cancer and aging. A
new paradigm has been proposed, and the implementation of which should allow switching spontaneous or
induced reontogenesis/remorphogenesis (reprogramming) into the direction of integrative growth (the submission
of potency of single cells composing an organism to the development program and functions of the whole
organism) while avoiding DG (cancer). For this purpose, it is necessary to model in postnatal ontogenesis a
principal condition for normal embryogenesis-immune privilege. The practical implementation of this approach
will require two different types of intervention strategies for the early postnatal period (immediately after birth),
when the presence of a thymus will allow developing stable central immunological tolerance, and for the later stages
of ontogenesis. How all above can be practically accomplished will be presented in Part III of our publication with
the subtitle ‘prerequisites and solutions’.

Executive summary

• Aging is not a special mechanism but a program/order that can be overridden only by implementing another
program – a program of permanent, unlimited, quantitatively and qualitatively full restoration of all structures
and functional interactions between them and functions. In other words, the linear unidirectionality of
ontogenesis, leading to aging and death, can only be overridden with permanent reontogenesis, through the
looping process.

• Reontogenesis can be carried out only by cells that are capable of continuous, unlimited, quantitative and
qualitative self-renewal. This can be executed only by cells, for which senescence is not the final stage of
development but is only an intermediate state, that are capable of constantly ‘zeroing out’ the genetic and
metabolic ‘burden’, restoring functional interconnections and functions. There are only two types of cells that are
capable of reversing aging, whichsatisfy those criteria: the nonaging totipotent/pluripotent cells of early
embryogenesis and the spontaneously reprogrammed cells in precancerous tissues (which then become CSC).

• Targeting one mechanism to revert aging/prevent diseases will not help, but the whole program must be
changed. We should find what is the better strategy: stop or help the reontogenesis cycle? Any methods directed
against individual mechanisms of ‘aging’ and pathologies associated with age will only ease the burden of aging
and associated diseases and slow down their progression but will eliminate neither aging nor disease. By
eliminating aging, one will eliminate the aging-related diseases.

• When one attempts to eradicate cancer, one terminates rejuvenation, because spontaneous reprogramming,
which then turns into cancer, is an attempt by any living matter to self-renew. Full-scale reprogramming
(spontaneous or induced) that never turns into cancer does not have a full-fledged biological alternative for
simultaneously solving two main problems: eliminating both cancer and aging. They cannot be solved separately,
because the solution to these problems is the same.

• Cancer starts as a spontaneous reprogramming (as a rejuvenation attempt) and only then becomes cancer.
Knowing the cause for such a transformation, one will understand its essence and will then be able to direct the
processes toward the rejuvenation, preventing their transformation into cancer.

• There are contradictory effects of some of the proteins involved in oncogenesis, gor example, P53, which
demonstrates the different functions of them and how they can be/cannot be involved in oncogenesis. There are
no good and bad genes, isoforms or signaling pathways. All of them are normal genes, isoforms or signaling
pathways and perform normal morphogenetic functions in the right time and place. The seemingly oncogenic
implementation of their usual normal functions at the onset of reontogenesis during postnatal development is
exclusively situational in nature and does not have destructive goals per se.

• Cancer cells in the right environment are not malignant and may be a mechanism of the body to protect from
aging.

• Generation of a morphogenetic field in postnatal organs has oncostatic and differentiating properties.
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Definitions
IG – integrating growth, defined here as the submission of potency of single cells composing an organism to the
development program and functions of the whole organism

DG – disintegrating growth, defined here as a priority of extension potency of single cells over the development
program and functions of the whole organism
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