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Abstract
In this article, a compressible two-phase reduced five-equation flow model is numerically in-

vestigated. The model is non-conservative and the governing equations consist of two

equations describing the conservation of mass, one for overall momentum and one for total

energy. The fifth equation is the energy equation for one of the two phases and it includes

source term on the right-hand side which represents the energy exchange between two flu-

ids in the form of mechanical and thermodynamical work. For the numerical approximation

of the model a high resolution central upwind scheme is implemented. This is a non-oscil-

latory upwind biased finite volume scheme which does not require a Riemann solver at

each time step. Few numerical case studies of two-phase flows are presented. For valida-

tion and comparison, the same model is also solved by using kinetic flux-vector splitting

(KFVS) and staggered central schemes. It was found that central upwind scheme produces

comparable results to the KFVS scheme.

Introduction
Multiphase flows are commonly observed in nature and science, from stand storms, to volcanic
clouds, blood flow in vessels and motion of rain droplets. There are also numerous examples
where multiphase flow occurs in industrial applications, for example energy conversion, paper
manufacturing, food manufacturing as well as in chemical and process engineering. Due to
their wide range applications, suitable models are required for the accurate prediction of the
physical behavior of such flows. However, modeling and simulation of flows is a complex and
challenging research area of the computational fluid dynamics (CFD).

Multiphase flow problems involve the flow of two or more fluids separated by sharp inter-
faces. The coupling of interfaces with the flow model is a challenging part in the simulation of
such flows, as coupling miss-match may introduce large errors in the numerical simulations. It
is important to mention that this work is only concerned with two-phase flow problem.

Several two-phase flow models exist in the literature for describing the behavior of physical
mixtures. These models use separate pressures, velocities and densities for each fluid. More-
over, a convection equation for the interface motion is coupled with the conservation laws of
flow models. In the literature such models are known as seven-equation models. One of such
models for solid-gas two-phase flows was initially introduced by Baer and Nunziato [1] and
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was further investigated by Abgrall and Saurel [2, 3], among others. The seven-equation model
is considered as the best and established two-phase flow model. However, it inherit a number
of numerical complexities. To resolve such difficulties researchers have proposed reduced
models containing three to six equations [4–6].

The Kapila’s five-equation model [4] deduced from Baer and Nunziato seven-equation
model [1] is a well known reduced model and has been successfully implemented to study in-
terfacing compressible fluids, barotropic and non-barotropic cavitating flows. The model con-
tains four conservative equations, two for mass conservation, one for total momentum and one
for total energy conservation. The fifth equation is a non-zero convection equation for the vol-
ume fraction of one of two phases.

Although, this five-equation model is simple, but, it involves a number of serious difficulties.
For example, the model is non-conservative and hence it is difficult to obtain a numerical solu-
tion which converges to the physical solution. In the presence of shocks, the volume fraction
may become negative. Another issue is related to non-conservative behavior of the mixture
sound speed [7].

To overcome the associated difficulties of Kapila’s five-equation model, Kreeft and Koren
[5] introduced a new formulation of the Kapila’s model. The new model [5] is also non-conser-
vative containing two equations for the conservation of mass, one each for mixture momentum
and total energy respectively. The fifth equation is the energy equation for one of the two
phases and it includes source term on the right hand side which represents the energy exchange
between two fluids in the form of mechanical and thermodynamical work. In the current
model, the first four equations are conservative and the non-conservativity in the models is due
to the energy exchange term in the fifth equation. Consequently, the implementation of finite
volume type schemes are relatively convenient to such models.

Very recently, diffuse interface method, finite volume WENO scheme and discontinuous
Galerkin method have been used to solve the multiphase flow models [8–10]. However, in this
work, the central upwind scheme [11] is proposed to solve the same five-equation model [5].
The proposed scheme uses information of local propagation speeds and estimates the solution
in terms of cell averages. Further, the scheme has an upwind nature, because it takes care of
flow directions by means of one-sided local speeds. Moreover, this scheme can be extended to
incompressible flow problems e.g. it can be extended to solve incompressible two-phase shal-
low flow model [12]. The suggested scheme is applied to both one and two-dimensional flow
models. For validation, the results of central upwind scheme are compared with those obtained
from the KFVS [13–16] and the non-oscillatory staggered central scheme [17, 18]. The numeri-
cal results of the schemes are analyzed qualitatively and quantitatively. It was found that the
proposed central upwind scheme has comparable results to the KFVS scheme and are more ac-
curate than the staggered central scheme.

One-dimensional two-fluid flowmodel
In this section, the one-dimensional two-fluid flow model [5] is presented. The selected model
is the reformulation of original five-equation model of Kapila et al. [4]. Here, it is assumed that
both fluids are mass conservative and have same velocity and pressure on both sides the inter-
face. Moreover, heat conduction and viscosity are not considered. In this model, first four
equations describe the conservative quantities: two for mass, one for over all momentum and
one for total energy. The fifth equation is the energy equation and it includes source term on
the right hand side which gives the energy exchange between two fluids in the form of mechan-
ical and thermodynamical work. The state vector q of primitive variables has the form q = (ρ,
u, p, α)T. Here, the bulk mixture density is denoted by ρ, u = (u, 0, 0) are the bulk velocities
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along each characteristic direction, p denotes the bulk pressure and α represents the volume
fraction of fluid 1. This means that a part α of a small volume dV is filled with fluid 1 and a part
(1—α) with fluid 2.

For bulk quantities, such as mixture density ρ and mixture total energy E, we assume that α
is a volume fraction of fluid 1 and (1—α) of fluid 2. Using these conventions, we can define

r ¼ ar1 þ ð1� aÞr2 ; rE ¼ ar1E1 þ ð1� aÞr2E2 ð1Þ

and the total energies of each fluid as

E1 ¼ e1 þ
1

2
u2 ; E2 ¼ e2 þ

1

2
u2; ð2Þ

where e1 and e2 denote the internal energies of fluid 1 and fluid 2, respectively. The internal en-
ergies e1 and e2 are given in terms of their respective densities and pressure through equations
of state

e1 ¼ e1 ðr1; pÞ; e2 ¼ e2 ðr2; pÞ: ð3Þ

In one space dimensions, the two-fluid flow model can be written as [5]

wt þ fðwÞx ¼ s ; ð4aÞ

where

w ¼ ðr; ru; rE; r1a; r1E1aÞT ; ð4bÞ

fðwÞ ¼ ðru; ru2 þ p; ruE þ pu; r1ua; r1E1uaþ puaÞT ; ð4cÞ

sðwÞ ¼ ð0; 0; 0; 0; 0; s5ÞT : ð4dÞ

Here, w represents the vector of conservative variables, f is the vectors of fluxes, s is a vector of
source terms with only last non-zero term. The term s5 represents the total rate of energy ex-
change per unit volume between fluid 1 and fluid 2 and is equal to the sum of rates of mechani-
cal s5

M and thermodynamic s5
T works [5], i.e. s5 ¼ s5

M þ s5
T , with

s5
M ¼ uðpaÞx � bupx; ð5Þ

s5
T ¼ pað1� aÞ t2 � t1

t
ux : ð6Þ

The term b ¼ r1a
r represents the mass fraction of fluid 1, while the relations t1 ¼ 1

r1c
2
1

and t2 ¼
1

r2c
2
2

denote the isentropic compressibilities of both fluids. Here, c1 and c2 represent the sound

speeds of fluid 1 and fluid 2. The bulk isentropic compressibility is defined as

t ¼ at1 þ ð1� aÞt2 : ð7Þ

Assume that the equations of state in Eq (3) are the stiffened equations of state [19]

riei ¼
pþ pigi
gi � 1

; i ¼ 1; 2 ; ð8Þ
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where γi, πi are the material specific quantities. Therefore, the sound speeds in each fluid are
given as

ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ piÞgi

ri

s
; i ¼ 1; 2 : ð9Þ

The expressions for the sound speeds are normally obtained from the second law of thermody-
namics. The total energies of fluids 1 and 2 can be given as

r1E1a ¼ pþ p1g1
g1 � 1

aþ 1

2
r1au

2 ; ð10Þ

r2E2ð1� aÞ ¼ pþ p2g2
g2 � 1

ð1� aÞ þ 1

2
ðr� r1aÞu2 : ð11Þ

Using Eqs (4), (10) and (11), we obtain the primitive variables as

r ¼ w1; u ¼ w2

w1

; ð12Þ

a ¼

b1

b1 þ b2

; if p1 ¼ 0 ¼ p2 ;

p2g2 � p1g1 � b1 � b2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2g2 � p1g1 � b1 � b2Þ2 þ 4b1ðp2g2 � p1g1Þ

q
2ðp2g2 � p1g1Þ

; otherwise ;

ð13Þ

8>>>>><
>>>>>:

p ¼ b1 þ b2 � ap1g1 � ð1� aÞp2g2 ; ð14Þ
where

b1 ¼ ðg1 � 1Þ w5 �
w4ðw2

2Þ
2w2

1

� �
; ð15Þ

b2 ¼ ðg2 � 1Þ w3 � w5 �
ðw1 � w4Þðw2

2Þ
2w2

1

� �
: ð16Þ

Here, wi; i = 1,. . .,5, represent the components of w, the vector of conserved variables. More-
over, in Eqs (12)–(14) the primitive variables are expressed in terms of conserved variables.
While in Eq (13) the positive sign is chosen for (π2 γ2−π1 γ1)> 0 and negative otherwise. Be-
cause of Eq (9)

t1 ¼
1

r1c21
¼ 1

ðpþ p1Þg1
; t2 ¼

1

r2c22
¼ 1

ðpþ p2Þg2
: ð17Þ

One dimensional Central upwind scheme
In this section, the central upwind scheme of Kurganov and Tadmor [11] is derived for the
one-dimensional five-equation two-fluid flow model Eq (1). Let N represents the total number
of discretization points and ðxi�1

2
Þi 2 f1; � � � ;N þ 1g denotes the divisions of the given domain

[0, xmax]. A uniform width Δx for each cell is considered, while, xi represents the cell centers
and xiþ1

2
refer to the cell boundaries.
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Further, we take

x1

2

¼ 0; xNþ1
2
¼ xmax; xiþ1

2
¼ i � Dx: ð18Þ

Moreover,

xi ¼
xi�1

2
þ xiþ1

2

2
and Dx ¼ xiþ1

2
� xi�1

2
¼ xmax

N þ 1
: ð19Þ

Let Oi :¼ xi�1
2
; xiþ1

2

h i
for i� 1. The cell average values of conservative variables wi are defined

as

wi :¼ wiðtÞ ¼
1

Dx

Z
Oi

wðt; xÞdx : ð20Þ

Integration of Eq (4) over the interval Oi gives

dwiðtÞ
dt

¼ �
Hiþ1

2
ðtÞ � Hi�1

2
ðtÞ

Dx
þ siðtÞ

Dx
; ð21Þ

whereHiþ1
2
ðtÞ is the numerical flux defined by

Hi�1
2
ðtÞ ¼

f wþ
i�1

2

� �
ðtÞ þ f w�

i�1
2

� �
ðtÞ

2
�
ai�1

2

2
wþ

i�1
2
ðtÞ �w�

i�1
2
ðtÞ

h i
: ð22Þ

The first four components of the source vector si in Eq (21) are zero and the fifth non-zero
component is given as

s5iðtÞ ¼
u�
iþ1

2
þ uþ

i�1
2

� �
2

� ðpaÞ�iþ1
2
� ðpaÞþi�1

2

� �

þ
b�
iþ1

2
þ bþ

i�1
2

� �
2

u�
iþ1

2
þ uþ

i�1
2

� �
2

� ðpÞ�iþ1
2
� ðpÞþi�1

2

� �

þ
Z�
iþ1

2
þ Zþ

i�1
2

� �
2

� u�
iþ1

2
� uþ

i�1
2

� �
;

ð23Þ

where Z ¼ pað1� aÞ t2�t1
t ux.

The intermediate valuesw�
iþ1

2
andwþ

iþ1
2
are given as

w�
iþ1

2
¼ wi �

1

2
wx

i ; wþ
iþ1

2
¼ wi þ

1

2
wx

i : ð24Þ

The numerical derivativeswx
i are approximated through a nonlinear limiter which guarantees

the positivity of the reconstruction procedure Eq (24).

wx
i ¼ MM yDwiþ1

2
;
y
2

Dwiþ1
2
þ Dwi�1

2

� �
; yDwi�1

2

� �
: ð25Þ
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Here,MM denotes the min-mod non-linear limiter

MMfx1; x2; :::g ¼

minifxig if xi > 0 8i ;

maxifxig if xi < 0 8i ;

0 otherwise :

ð26Þ

8>>><
>>>:

Moreover, aiþ1
2
ðtÞ represents the maximal local which in the generic case could be

aiþ1
2
ðtÞ :¼max r

@f

@w
w�

iþ1
2

� �
ðtÞ

� �
; r

@f

@w
wþ

iþ1
2

� �
ðtÞ

� �� �
: ð27Þ

To achieve the second order accuracy in time, a second order TVD RK-method is applied to
the Eq (21). For simplicity if the right hand side of the Eq (21) is taken as L(w), then two stage
TVD RK-method to update w is given as under

wð1Þ ¼ wn þ DtLðwnÞ ; ð28aÞ

wnþ1 ¼ 1

2
wn þwð1Þ þ Dt Lðwð1ÞÞ	 


; ð28bÞ

where wn is a solution at previous time step and wn+1 is updated solution at next time step.
Moreover, Δt represents the time step.

Two-dimensional two-fluid flowmodel
In two-dimensional space, the two-fluid flow model can be written as [5]

wt þ f ðwÞx þ gðwÞy ¼ s ; ð29aÞ

where

w ¼ ðr; ru; rv; rE; r1a; r1E1aÞT ; ð29bÞ

f ðwÞ ¼ ðru; ru2 þ p; ruv; ruE þ pu; r1ua; r1E1uaþ puaÞ; ð29cÞ

gðwÞ ¼ ðrv; rvu; rv2 þ p; rvE þ pv; r1ua; r1E1vaþ pvaÞ ; ð29dÞ

sðwÞ ¼ ð0; 0; 0; 0; 0; s6Þ: ð29eÞ

Here, w represents the vector of conservative variables, f, g are vectors of fluxes in x and y direc-
tions, s is a vector of source terms with only last non-zero term. The term s6 represents the
total rate of energy exchange per unit volume between fluid 1 and fluid 2 and is equal to the
sum of rates of mechanical s6

M and thermodynamic s6
T work [5], i.e. s6 ¼ s6

M þ s6
T , with

s6
M ¼ uðpaÞx þ vðpaÞy � bupx � bvpy; ð30Þ

s6
T ¼ pað1� aÞ t2 � t1

t
ðux þ vyÞ : ð31Þ
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Let j u j:¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
, the total energies of fluids 1 and 2 are given as

r1E1a ¼ pþP1g1
g1 � 1

aþ 1

2
r1ajuj2 ; ð32Þ

r2E2ð1� aÞ ¼ pþP2g2
g2 � 1

ð1� aÞ þ 1

2
ðr� r1aÞjuj2 : ð33Þ

Since the energy equation is directional independent, therefore for one- and two-dimensional
problems the procedure of calculating primitive variables are the same. In two-dimensional
space, the primitive variables can be retrieved in the following manner. Using Eqs (29), (32)
and (33), we obtain

r ¼ w1; u ¼ w2

w1

; v ¼ w3

w1

; ð34Þ

a ¼

b1

b1 þ b2

; if P1 ¼ 0 ¼ P2 ;

P2g2 �P1g1 � b1 � b2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP2g2 �P1g1 � b1 � b2Þ2 þ 4b1ðP2g2 �P1g1Þ

q
2ðP2g2 �P1g1Þ

; otherwise ;

ð35Þ

8>>>>><
>>>>>:

p ¼ b1 þ b2 � aP1g1 � ð1� aÞP2g2 ; ð36Þ
where

b1 ¼ ðg1 � 1Þ w6 �
w5 ðw2

2 þ w2
3Þ

2w2
1

� �
; ð37Þ

b2 ¼ ðg2 � 1Þ w4 � w6 �
ðw1 � w5Þðw2

2 þ w2
3Þ

2w2
1

� �
: ð38Þ

Similarly, as in case of one-dimensional model, wi; i = 1,. . .,6, represent the components of w,
the vector of conserved variables. In Eq (35) the positive sign is chosen for (P2 γ2−P1 γ1)> 0
and negative otherwise.

Two dimensional Central upwind scheme
In this section, the central upwind scheme [11] is extended to two-dimensional five-equation
two-phase flow model Eq (1). To implement the scheme, first we need to discretize the
computational domain.

Let Nx and Ny be the large integers in x and y-directions, respectively. We consider a carte-

sian grid with rectangular domain [x0, xmax] × [y0, ymax] and it is covered by the cells Cij �
xi�1

2
; xiþ1

2

h i
� yi�1

2
; yiþ1

2

h i
where 1� i� Nx and 1� j� Ny. Here, the representative coordinates

in a cell Cij are denoted by (xi, yj).
Further, we take

x1
2

; y1
2

� �
¼ ð0; 0Þ; xi ¼

xi�1
2
þ xiþ1

2

2
; yj ¼

xj�1
2
þ xjþ1

2

2
; ð39Þ
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and

Dxi ¼
xiþ1

2
þ xi�1

2

2
; Dyj ¼ yjþ1

2
� yj�1

2
: ð40Þ

The cell average values conservative variable wi, j at any time t are given as

wi;j :¼ wi;jðtÞ ¼
1

DxiDyj

Z
Cij

wðt; x; yÞdydx : ð41Þ

The following linear piecewise interpolant is constructed as under

wðx; y; tÞ ¼
X
i;j

wi;j þwx
i;jðx � xiÞ þwy

i;jðy � yjÞ
h i

wi;j: ð42Þ

Here, χi, j is the characteristics function corresponding to the cell xi�1
2
; xiþ1

2

� �
� yi�1

2
; yiþ1

2

� �
,

ðwÞxi;j and ðwÞyi;j are the approximations of x and y-derivatives of w at cell centers (xi, yj). In

two-dimensional case to compute the derivative a generalizedMM limiter is used

ðwxÞni;j ¼ MM y
wiþ1;j �wi;j

Dx
;
wiþ1;j �wi�1;j

2Dx
; y

wi;j �wi�1;j

Dx

� �
; ð43Þ

ðwyÞni;j ¼ MM y
wi;jþ1 �wi;j

Dy
;
wi;jþ1 �wi;j�1

2Dy
; y

wi;j �wi;j�1

Dy

� �
: ð44Þ

Here, 1� θ� 2 andMM is defined in Eq (26). Integration of Eq (29) over the cell Cij gives the
following two-dimensional extended scheme

dwi;jðtÞ
dt

¼ �
Hx

iþ1
2;j
ðtÞ � Hx

i�1
2;j
ðtÞ

Dx
�
Hy

i;jþ1
2
ðtÞ � Hy

i;j�1
2
ðtÞ

Dy
ð45Þ

þ sxi;jðtÞ
Dx

þ syi;jðtÞ
Dy

: ð46Þ

Here,

Hx
iþ1

2;j
ðtÞ ¼

f wþ
iþ1

2;j

� �
ðtÞ þ f w�

iþ1
2;j

� �
ðtÞ

2
�
ax
iþ1

2;j

2
wþ

iþ1
2;j
ðtÞ �w�

iþ1
2;j
ðtÞ

h i
; ð47Þ

Hy

i;jþ1
2
ðtÞ ¼

g wþ
i;jþ1

2

� �
ðtÞ þ g w�

i;jþ1
2

� �
ðtÞ

2
�
ay
i;jþ1

2

2
wþ

i;jþ1
2
ðtÞ �w�

i;jþ1
2
ðtÞ

h i
; ð48Þ

CUP Scheme for Compressible FlowModel

PLOS ONE | DOI:10.1371/journal.pone.0126273 June 3, 2015 8 / 26



and for the non-zero component of the source term is

sx6i;jðtÞ ¼
u�
iþ1

2;j
þ uþ

i�1
2;j

� �
2

� ðpaÞ�iþ1
2;j
� ðpaÞþi�1

2;j

� �

þ
b�
iþ1

2;j
þ bþ

i�1
2;j

� �
2

u�
iþ1

2;j
þ uþ

i�1
2;j

� �
2

� ðpÞ�iþ1
2;j
� ðpÞþi�1

2;j

� �

þ
Z�
iþ1

2;j
þ Zþ

i�1
2;j

� �
2

� u�
iþ1

2;j
� uþ

i�1
2;j

� �
:

ð49Þ

sy6i;jðtÞ ¼
u�
i;jþ1

2
þ uþ

i;j�1
2

� �
2

� ðpaÞ�i;jþ1
2
� ðpaÞþi;j�1

2

� �

þ
b�
i;jþ1

2
þ bþ

i;j�1
2

� �
2

u�
i;jþ1

2
þ uþ

i;j�1
2

� �
2

� ðpÞ�i;jþ1
2
� ðpÞþi;j�1

2

� �

þ
Z�
i;jþ1

2
þ Zþ

i;j�1
2

� �
2

� u�
i;jþ1

2
� uþ

i;j�1
2

� �
:

ð50Þ

The intermediate values in the present case are given as

w�
iþ1

2;j
¼ wi;j �

Dx
2
wx

i;j ; wþ
iþ1

2;j
¼ wi;j þ

Dx
2
wx

i;j ;

w�
i;jþ1

2
¼ wi;j �

Dy
2
wy

i;j ; wþ
i;jþ1

2
¼ wi;j þ

Dy
2
wy

i;j :

ð51Þ

Further, ax
iþ1

2;j
ðtÞ and ay

i;jþ1
2
ðtÞ are the maximal local which are given as

ax
iþ1

2;j
ðtÞ ¼ max

�
r

@f

@w
w�

iþ1
2;j

� �� �
; ay

i;jþ1
2
ðtÞ ¼ max

�
r

@g

@w
w�

i;jþ1
2

� �� �
: ð52Þ

For details and complete derivation of the scheme, see [11].

Numerical test problems
This section presents some numerical test problems (both one and two-dimensional) to check
the capability of central upwind and KFVS schemes to compressible two-phase reduced five-
equation flow model. The results are compared with those obtained from central scheme [18].

One-dimensional test problems
In this section six one-dimensional test problems are considered to verify the efficiency and ac-
curacy of the proposed schemes.

Sod’s problem. The Sod’s problem [6] is the well known test problem in the single phase
gas dynamics. In this problem, gases are separated by a very thin membrane placed at x = 0.5
and are initially at rest. The left side gas has high density and pressure as compared to right
side gas. After removing the membrane, the gases evolution in time take place. The initial data
for the problem are given as

ðr; u; p; aÞ ¼ ð10; 0; 10; 1Þ ; if x � 0:5 ; ð53Þ

ðr; u; p; aÞ ¼ ð0:125; 0; 0:1; 0Þ ; if x > 0:5 : ð54Þ
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The ratio of specific heats for the left and right side gases are taken as γL = 1.4 and γR = 1.6, re-
spectively. The Fig 1 shows the numerical results on 400 mesh cells at t = 0.015. We can observe
a left-going rarefaction wave, right-going shock wave and the right-moving two-fluid interface
in the solution. In Fig 1, the solutions of central upwind and KFVS schemes are compared. The
reference solution is obtained from the same central upwind scheme at 2000 grid points. Both
schemes give correct location of the discontinuities and have comparable accuracy. Moreover,
no pressure oscillations are observed in the solution. Further, Fig 2 shows the graphical repre-
sentation of the errors in density and volume fraction. The results show that KFVS scheme pro-
duces less error in density solutions compared to the central upwind and central schemes.
Moreover, in volume fraction solution the central upwind scheme produces less error com-
pared to the other two schemes.

Two-fluid mixture problem. The initial data are given as

ðr; u; p; aÞ ¼ ð2:0; 0; 1000; 1Þ ; if x � 0:5; ð55Þ

ðr; u; p; aÞ ¼ ð1; 0; 0:01; 0Þ ; if x > 0:5 : ð56Þ

Fig 1. Results of Sod’s problem on 400mesh cells at t = 0.015.

doi:10.1371/journal.pone.0126273.g001
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Here, γL = 1.4 and γR = 1.2,PL = 0 =PR, and CFL = 0.5. This problem is also considered in
[14]. It is a hard test problem for a numerical scheme. From the solution we can see a left mov-
ing rarefaction wave, a contact discontinuity, and a right moving shock wave. The right moving
shock hits the interface at x = 0.5. The shock continues to move towards right and a rarefaction
wave is created which is moving towards left. The results are simulated on 400 mesh cells and
the final simulation time is taken as t = 0.012. The solutions are presented in the Fig 3. All the
schemes give comparable results. However, from the zoomed graph it can be noted that KFVS
scheme gives better resolution of peaks and discontinuities.

No-reflection problem. The initial data are given as

ðr; u; p; aÞ ¼ ð3:1748; 9:435; 100; 1Þ ; if x � 0:5; ð57Þ

ðr; u; p; aÞ ¼ ð1; 0; 1; 0Þ ; if x > 0:5 : ð58Þ

The ratio of specific heats are γL = 1.667 and γR = 1.2. Moreover,PL = 0 =PR and CFL = 0.4.
We discretize the computational domain [0, 1] into 500 mesh cells and the final simulation
time is t = 0.02. This is a hard test problem for a numerical scheme due to large jumps in pres-
sure at the interface. The choice of pressure and velocity jump over the shock prevents the crea-
tion of a reflection wave. Therefore, a shock wave moves to the right. The results are depicted
in Fig 4. Wiggles can be seen in the velocity and pressure plots of all schemes, representing
small waves that are reflected to the left. However, unlike real velocity and pressure oscillations,
these wiggles reduces on refined meshes. Similar type of wiggles are also reported in the results
of [5].

Water-air mixture problem. This one-dimensional problem corresponds to the water-air
mixture [5, 20]. The initial data are given as

ðr; u; p; aÞ ¼ ð525; 0; 109; 0:5Þ ; if x � 0:5; ð59Þ

ðr; u; p; aÞ ¼ ð525; 0; 105; 0:5Þ ; if x > 0:5 : ð60Þ

Here, γL = 1.4, γR = 4.4,PL = 0,PR = 6 × 108 and CFL = 0.5. The domain [0, 1] is divided into
200 mesh cells and the final simulation time is t = 200. The numerical results are shown in Fig

Fig 2. Errors in density and volume fraction.

doi:10.1371/journal.pone.0126273.g002
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5. Although the initial composition of the mixture is constant, it evolves in space and time. It
can be observed that the three schemes give comparable results. Moreover, our results are in
good agreement with the results in [20].

Water-air mixture problem. Again a one-dimensional water-air mixture problem [5, 20]
is considered. However, this problem differs from the previous problem by allowing changes in
the mixture composition. The initial data are given as

ðr; u; p; aÞ ¼ ð1; 0; 109; 0:2Þ ; if x � 0:7; ð61Þ

ðr; u; p; aÞ ¼ ð103; 0; 105; 0:8Þ ; if x > 0:7 : ð62Þ

Here, γL = 1.4, γR = 4.4,PL = 0,PR = 6 × 108 and CFL = 0.5. The results are simulated on 200
mesh cells and the final simulation time is t = 200. The numerical results are shown in Fig 6.

Fig 3. Results of Two-fluid mixture problem on 400mesh cells at t = 0.012.

doi:10.1371/journal.pone.0126273.g003
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From figure it can be noted that central upwind scheme give comparable results with other
schemes. Moreover, the numerical results are in good agreement with those published in [20].

Translating two-fluid interface. The initial data for the problem are given as

ðr; u; p; aÞ ¼ ð1000; 1; 1; 1Þ ; if x � 0:25; ð63Þ

ðr; u; p; aÞ ¼ ð1; 1; 1; 0Þ ; if x > 0:25 : ð64Þ

The ratio of specific heats are given as γL = 1.4 and γR = 1.6. We have chosen 200 mesh cells
and the final simulation time is t = 0.1. This problem is a contact discontinuity of water-air
density ratio. The numerical results are shown in Fig 7. The same problem was also considered
in [5, 6]. In this problem, both pressure and velocity are the same. Therefore, the interface is
moving to the right with uniform speed and pressure. The numerical results show that KFVS

Fig 4. Results of No-reflection problem on 500mesh cells at t = 0.02.

doi:10.1371/journal.pone.0126273.g004
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scheme resolves the two-fluid interface very well as compared to the central scheme. Moreover,
both velocity and pressure profiles are oscillation free.

Two-dimensional test problems
To check the performance of proposed numerical scheme in two-dimensional space, we con-
sidered two test problems. In these problems the impact of a shock in air on a bubble of a ligh-
ter and a heavier gas is studied. Initially, Haas and Sturtevant [21] investigated these problems.
Later, Quirk and Karni [22], Marquina and Mulet [23], Kreeft and Koren [5] and Wackers and
Koren [6] also discussed these test cases. A schematic computational setup for these two prob-
lems is sketched in Fig 8. A shock tube of length 4.5 and width 0.89 is considered. The top and
bottom walls of the tube are solid reflecting walls, while both ends of the tube are open. A cylin-
der of very thin cellular walls filled with gas is placed inside the tube. A shock wave is generated

Fig 5. Results of Water-air mixture problem on 200mesh cells at t = 200.

doi:10.1371/journal.pone.0126273.g005
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in the right end of the shock tube and is moving from right to left. After hitting by shock, the
walls of the cylinder ruptures and the shock interacts with the gas of the cylinder. Due to fast
interaction both gases do not mix in large amount, leading to a two-fluid flow problem. As the
shock approaches to the surface of the bubble a reflected shock is generated from the surface of
the bubble which moves towards right back in the air. At later time, this interaction become
more and more complicated. The shock continues to move towards right in the air after pass-
ing through bubble and produces secondary reflected waves in the bubble when it hits the sur-
face of the bubble.

The wave patterns generated by interaction are strongly depending on the density of the gas
inside the bubble. However, some of the waves can be observed in almost all cases [5, 6]. Here,
a light helium gas and a heavy R22 gas are considered inside the cylindrical bubble.

Helium bubble. In this problem, we study the interaction ofMs = 1.22 planar shock, mov-
ing in air, with a cylindrical helium bubble contaminated with 28% of air. The bubble is

Fig 6. Results of Water-air mixture problem on 200mesh cells at t = 200.

doi:10.1371/journal.pone.0126273.g006
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Fig 7. Results of Translating two-fluid interface problem on 200mesh cells at t = 0.1.

doi:10.1371/journal.pone.0126273.g007

Fig 8. Sketch of computational domain.

doi:10.1371/journal.pone.0126273.g008
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assumed to be in thermodynamical and mechanical equilibrium with the surrounding air. The
initial data are given as

ðr; u; v; p; gÞ ¼ ð1:40000; 0:0; 0:0; 1:0; 1:4Þ ; pre� shock air;

ðr; u; v; p; gÞ ¼ ð1:92691;�0:33361; 0:0; 1:5698; 1:4Þ ; post� shock air;

ðr; u; v; p; gÞ ¼ ð0:25463; 0:0; 0:0; 1:0; 1:648Þ ; helium:

The position of key features occurred during the time evolution are well explained in [5, 6, 23].
Therefore, we omit discussion on these features. The computational domain is discretized into
800 × 200 mesh cells. The contours for density, pressure and volume fraction are depicted in
Figs 9, 10 and 11 at time: 0.25, 0.30, 0.35, 0.40. These results agree closely with the plots given
in [5, 6, 21, 22] at times: 32 μs, 52 μs, 62 μs, 82 μs. In Figs 10 and 11 the contours of pressure

Fig 9. Density contours of HeliumBubble problem (shock hitting helium bubble).

doi:10.1371/journal.pone.0126273.g009
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and volume fraction show a perfect splitting of the pressure waves and the interface. The
shocks and interface are sharp during the simulation. As observed in [6], the last interface is
slowly bending inwards in Fig 11. The phenomena will continue at later times until the bubble
split in two vortices. The comparison between KFVS and central schemes can be clearly ob-
served in Fig 12.

R22 bubble. Here, the sameMs = 1.22 planar shock moving in air hits a cylindrical R22
bubble which has higher density and lower ratio of specific heats than air. This results in about
two times lower speed of sound. For more details, the reader is referred to [5, 6]. The initial
data are given as

ðr; u; v; p; gÞ ¼ ð1:40000; 0:0; 0:0; 1:0; 1:4Þ ; pre� shock air;

ðr; u; v; p; gÞ ¼ ð1:92691;�0:33361; 0:0; 1:5698; 1:4Þ ; post� shock air;

ðr; u; v; p; gÞ ¼ ð4:41540; 0:0; 0:0; 1:0; 1:249Þ ; R22:

Fig 10. Pressure contours of HeliumBubble problem (shock hitting helium bubble).

doi:10.1371/journal.pone.0126273.g010
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The computational domain is discretized into 800 × 200 mesh cells. Due to the lower speed of
sound, the shock in the bubble and the refracted shock lag behind the incoming shock. More-
over, due to the circular shape of the bubble the refracted, reflected and shock waves are curved.
The results for density, pressure and volume fraction are displayed in Figs 13, 14 and 15 at
times: 0.35, 0.60, 0.70, 0.84, 1.085, 1.26. These results shows good agreement with the results [5,
6, 21, 22] at times: 55 μs, 115 μs, 135 μs, 187 μs, 247 μs, 318 μs. The splitting in pressure and in-
terface is observed in flow pattern of density contours. Moreover, no wiggles are visible in our
results and the pressure is continuous over the interface. Hence, the numerical results of our
scheme reflect all key features as explained in [5, 6, 21]. Fig 16 compare the results of KFVS
and central schemes along the centerline y = 0.445. Both the schemes have
comparable accuracy.

Fig 11. Volume fraction contours of Helium Bubble problem (shock hitting helium bubble).

doi:10.1371/journal.pone.0126273.g011
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Fig 12. Plots along y = 0.445 of Helium Bubble problem (shock hitting helium bubble).

doi:10.1371/journal.pone.0126273.g012
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Fig 13. Density contours of R22 Bubble problem (shock hitting R22 bubble).

doi:10.1371/journal.pone.0126273.g013
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Fig 14. Pressure contours of R22 Bubble problem (shock hitting R22 bubble).

doi:10.1371/journal.pone.0126273.g014
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Fig 15. Volume fraction contours of R22 Bubble problem (shock hitting R22 bubble).

doi:10.1371/journal.pone.0126273.g015
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Fig 16. Plots along y = 0.445 for R22 Bubble problem (shock hitting R22 bubble).

doi:10.1371/journal.pone.0126273.g016
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Conclusions
A central upwind finite volume scheme was extended to solve the compressible two-phase re-
duced five-equation model in one and two-dimensional space. The suggested scheme is based
on the estimation of cell averages by using the information of local propagation speed. In two-
dimensional space the scheme is implemented in a usual dimensionally split manner. The non-
differential part of the source terms are approximated by the cell averaged values, whereas the
differential part terms are approximated similar to the convective fluxes. To preserve the posi-
tivity of the scheme a min-mod non-linear limiter is used. To achieve the second order accura-
cy in time a TVD Runge-Kutta method is utilized. For validation, the results of the proposed
numerical scheme are compared qualitatively and quantitatively with those of KFVS and stag-
gered central schemes. Good agreements were observed in the results of all three schemes. It
was found that in some test problems central upwind scheme produced more accurate results,
while KFVS scheme performed well in other problems. Perhaps, this is due to the reason that
both the schemes are upwind biased. The staggered central scheme was found diffusive in all
test problems.
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