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Abstract

Background: Diabetic retinopathy (DR) is one of the leading causes of blindness in the United States and world-wide. DR is
a silent disease that may go unnoticed until it is too late for effective treatment. Therefore, early detection could improve
the chances of therapeutic interventions that would alleviate its effects.

Methodology: Graded fundus photography and systemic data from 3443 ACCORD-Eye Study participants were used to
estimate Random Forest (RF) and logistic regression classifiers. We studied the impact of sample size on classifier
performance and the possibility of using RF generated class conditional probabilities as metrics describing DR risk. RF
measures of variable importance are used to detect factors that affect classification performance.

Principal Findings: Both types of data were informative when discriminating participants with or without DR. RF based
models produced much higher classification accuracy than those based on logistic regression. Combining both types of
data did not increase accuracy but did increase statistical discrimination of healthy participants who subsequently did or did
not have DR events during four years of follow-up. RF variable importance criteria revealed that microaneurysms counts in
both eyes seemed to play the most important role in discrimination among the graded fundus variables, while the number
of medicines and diabetes duration were the most relevant among the systemic variables.

Conclusions and Significance: We have introduced RF methods to DR classification analyses based on fundus photography
data. In addition, we propose an approach to DR risk assessment based on metrics derived from graded fundus
photography and systemic data. Our results suggest that RF methods could be a valuable tool to diagnose DR diagnosis and
evaluate its progression.
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Introduction

Diabetes results from the insufficient generation of insulin by the

pancreas, or deficient insulin processing in the body. In 2011, the

National Institutes of Health estimated there were 25.8 million

people affected by diabetes in the US (8.3% of the population).

Diabetic retinopathy (DR) is a common complication of diabetes;

it affects more than 4.4 million people in the US aged 40 and

older, and is one of the leading causes of blindness in the nation.

Among those with diabetes, it is estimated that worldwide,

approximately 93 million people may have some DR, and 28

million may have sight-threatening stages of DR [1]. Some of the

major DR risks are considered to be duration of diabetes, blood

pressure, glycemic control [2,3], dyslipidemia [4], and nephrop-

athy. Since not all diabetic patients develop DR some researchers

believe genetic factors are involved [5].

DR is a silent disease that may not be detected until it is too late

for effective treatment; therefore early detection could improve the

chances of therapeutic interventions to alleviate its effects.

Currently, DR detection is based on clinical examination or

evaluation of digital color fundus photographs of the retina. These

photographs are examined for evidence of lesions associated with

DR, such as microaneurysms, hemorrhages, neovascularization or

other vascular abnormalities and hard exudate deposits. Although

this approach works well in general, the expertise needed to detect

these problems is uncommon and intra- and inter-observer

variability can affect the quality of the process [6]. Lack of

expertise and equipment to diagnose DR is common, especially in

rural areas or less developed countries. This has motivated
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increasing efforts to develop automated methods for DR detection

using image processing, pattern recognition, and machine learning

methods [6–8]. Most efforts have focused on creating automated

systems that use the fundus photography images as input [9–12].

While good progress has been made and automated systems are

beginning to reach standards similar to those of clinicians, the

examination of fundus photography by experts still remains the

gold standard.

Most previous machine learning research for potential use in

DR is based on support vector machines (SVM) or other methods.

Here we introduce Random Forests (RF) to DR classification

analyses based on fundus photography data. RF is a powerful

machine learning method for classification and regression which

compares well with other state-of-the-art classifiers such as SVM

[13] and ADABOOST [14]. The strengths of the RF approach

are that: 1) it does not overfit; 2) it is robust to noise; 3) it has an

internal mechanism to estimate error rates, called out-of-the-bag

(OOB) error; 4) it provides indices of variable importance; 5) it

naturally works with mixes of continuous and categorical variables;

and 6) it can be used for data imputation and cluster analysis.

These properties have made RF increasingly popular in the last

few years, especially in the field of genetics and imaging [15–19].

In addition, rather than focusing on discriminating patients with

DR from controls we proposed metrics for DR risk assessment

based on Random Forests methods [20] using existing graded

fundus photography and systemic data. The graded data from

fundus photography can potentially contain subtle multivariate

patterns predictive of early DR undetected by human experts. In

this situation, the ability of high-dimensional machine learning

algorithms to deal with multiple variables could be of great benefit.

The Action to Control Cardiovascular Risk in Diabetes

(ACCORD) trial was designed to evaluate the effects of intensive

versus standard interventions to control glucose, systolic blood

pressure, and lipid levels on incidence of serious cardiovascular

events in people with type 2 diabetes mellitus [21–23]. ACCORD-

Eye was a substudy that sought to assess the effects of the

interventions on retinal pathology at baseline and after 4 years in a

subset of ACCORD participants [24]. The prospective study

design, large sample size, baseline and follow-up fundus photog-

raphy data, and the systematic record of eye events in ACCORD-

Eye provided an opportunity to develop methods for early DR

prediction.

We take advantage of our access to a well-characterized clinical

database such as ACCORD-Eye to introduce RF to classification

analyses of DR. We evaluated (a) its performance relative to

logistic regression, a more conventional statistical approach, and

(b) the impact of sample sizes on both classifiers. Finally, we have

recently proposed the class-conditional probabilities generated by

high-dimensional classifiers as a measure of risk for progression to

Alzheimer’s disease (AD) [25–29]. Here we evaluate the use of

class-conditional probabilities produced by RF to assess risk of

future DR events in ACCORD-Eye participants. Our DR risk

assessment metrics were derived from the fundus photography

grading and systemic data obtained in the ACCORD study. These

results could be a useful contribution for early detection of DR,

and provide an interesting application for a highly valuable fundus

photography database from over 3,400 individuals with diabetes

mellitus.

Materials and Methods

ACCORD-eye Study
The design of the ACCORD-Eye study has been previously

reported [24]. Briefly, in ACCORD, 10,251 middle-aged and

elderly people with type 2 diabetes, hemoglobin A1C levels $

7.5%, and additional cardiovascular disease risk factors were

randomized to a glucose-lowering trial and either a blood

pressure-lowering or fibrate trial. Cardiovascular events were

ascertained every 4 months. ACCORD participants without a

history of proliferative diabetic retinopathy treated with laser

photocoagulation or vitrectomy also were eligible for the

ACCORD Eye study. All ACCORD-Eye study participants

provided written informed consent both for the overall ACCORD

trial and the substudy. The ACCORD trial’s primary outcome

was a composite comprising the first occurrence of a nonfatal

myocardial infarction (MI), nonfatal stroke, or cardiovascular

death. Secondary outcomes analyzed included total MIs and total

strokes (i.e. fatal or nonfatal), cardiovascular death, and death from

any cause. These study outcomes were adjudicated by investiga-

tors masked to treatment allocation. The mean follow-up period

for the primary outcome and mortality were 4.7 years and 5.0

years, respectively.

The eye assessment consisted of comprehensive standardized

eye examinations by a study ophthalmologist or optometrist, and

fundus photography comprising seven standard stereoscopic fields

obtained at baseline from 3433 subjects and at 4 years of follow-up

available for 2856 participants. The fundus photographs were

centrally graded by individuals masked to treatment allocation

according to a modified version of the Early Treatment Diabetic

Retinopathy Study (ETDRS) [30]. The severity of retinopathy at

baseline and follow-up was classified as either no retinopathy; mild

nonproliferative diabetic retinopathy (NPDR); moderate NPDR;

or severe retinopathy (i.e. severe NPDR, proliferative retinopathy,

or incident laser therapy or vitrectomy since baseline). Deterio-

ration in diabetic retinopathy was classified as a ,2-step, 2- to 3-

step, or §3-step change using the steps in the ETDRS person

scale that evaluated both eyes. Anyone who had laser therapy or

vitrectomy was deemed to have developed the most severe stage of

diabetic retinopathy and was grouped with the .3-step change

category. In this work, we will refer to changes from baseline

leading to the §3-step change category as DR events. Information

about the number of participants and DR events during follow-up

in each DR severity group and follow-up diagnosis for the healthy

participants at baseline is provided in Tables 1–2.

Random Forests
RF is one of the so-called ensemble methods for classification,

because a committee of learners (trees in this case) is generated and

each one casts a vote for the predicted label of a given instance.

The trees are built using the classification and regression trees

methodology (CART) [31]. In constructing the ensemble of trees,

RF uses two types of randomness: first, each tree is grown using a

bootstrapped version of the training data. A second level of

randomness is added when growing the tree by selecting a random

sample of predictors at each node to choose the best split. The

number of predictors selected at each node and the number of

trees in the ensemble are the two main parameters of the RF

algorithm. The RF developers have reported [20] that the method

does not require much tuning of the parameters and the default

values often produce good results for many problems. Once the

forest is built, assigning a new instance to a class is accomplished

by combining the trees, using a majority vote. As a result of using a

bootstrap sampling of the training data, around one-third of the

samples are omitted when building each tree. These are the so-

called out-of-the-bag (OOB) samples that can be used to assess the

performance of the classifier and to build measures of importance.

In this work, we used the permutation importance index to

assess variable importance. The importance of a variable is

Random Forests Analyses of Diabetic Retinopathy
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evaluated by estimating the change in prediction error occurring

when the variable in the OOB data is randomly permuted while

others are left unchanged. The calculations are carried out tree by

tree as the random forest is constructed. If a variable is important

in a problem under analysis, permuting its values at random leads

to larger changes in prediction performance compared to those

that are unimportant. We used here the randomForest package in

R [32] and its default parameters for RF: number of trees (ntree)

equal to 500 and number of variables analyzed at each node to

find the best split G where p is the total number of variables in the

problem.

Finally, we used RF capabilities for data imputation, which is

based on the concept of proximities in RF. Proximities form a

square matrix (p|p) and in some sense are a measure of distance

between two samples. To compute proximities after a tree is

grown, all of the data, both training and OOB, are put down the

tree. If two observations are in the same terminal node, their

proximity is increased by one. At the end, the proximities are

normalized by dividing by the number of trees. The proximity

matrix is used to update the imputation of the missing values. For

continuous predictors, the imputed value is the weighted average

of the non-missing observations, where the weights are the

proximities. For categorical predictors, the imputed value is the

category with the largest average proximity. This process is

iterated several times.

Analyses
As variables we used measurements derived from fundus

photography and systemic baseline data (see Tables S1 and S2)

from the 3,433 ACCORD Eye participants. Follow-up data were

available for 2856 participants. The data were formatted for

analyses using the randomForest R library and the software

package Weka [33]. Missing data were imputed using RF

imputation methods [34]. Fields providing explicit information

about DR severity were removed from the graded data.

For classification analyses we collapsed mild, moderate and

severe DR groups into one class of subjects having DR which

produced two classes: 1) those with no DR and 2) those with DR

according to the graders assessments. Using baseline ACCORD-

Eye data, we evaluated the accuracy of different classification

models generated by combining (concatenating) fundus photogra-

phy grading data with systemic variables. Specifically, we studied

the value of the grading data (Eye data) and systemic data

independently and combined for discriminating participants with

and without DR, using both RF and the standard logistic

regression. We selected logistic regression because: a) it is a

conventional statistical method that models conditional probabil-

ities, and b) it can highlight differences between RF and a

traditional statistical method. The RF permutation index of

variable importance was used to determine which variables play a

major role when discriminating participants with and without DR.

In addition, we studied the impact of the sample size on both

algorithms’ performance. Sample sizes varied from 50 to 1700. In

each case, 100 data training and testing datasets of the same size

were drawn at random from the entire dataset. The models were

estimated using the training datasets, while classification accuracy

was estimated using the testing datasets, which is equivalent to a

two-fold cross-validation. To evaluate the quality of the OOB RF

mechanism, we calculated OOB accuracy rates to compare them

with the results of the two-fold cross-validation. We also asked an

expert to select a subset of eye variables with more clinical

relevance (see Table S3). The analyses were rerun to study the

impact of this selection on the performance of both methods.

Table 1. Baseline stratification of subjects across DR severity groups and numbers of eye events per group is provided.

Groups DR Event All

No Event Event

No DR 1536 92 1628

Mild DR 1331 84 1415

Moderate DR 201 23 224

Severe DR 114 52 166

All 3182 251 3433

DR events represent changes§3 steps in the ETDRS scale during follow-up.
doi:10.1371/journal.pone.0098587.t001

Table 2. Diagnosis after four years of follow-up for subjects without DR at baseline, and eye events for each subgroup.

Groups DR Event All

No Event Event

No follow-up 253 13 266

No DR 531 29 560

Mild DR 606 39 645

Moderate DR 75 4 79

Severe DR 71 7 78

All 1536 92 1628

DR events represent changes§3 steps in the ETDRS scale during follow-up.
doi:10.1371/journal.pone.0098587.t002
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Finally, we computed a RF model using data from all

participants. The class-conditional probabilities of having DR

were estimated at baseline for all participants who were diagnosed

as not having DR and had follow up data. We then compared the

probabilities of the subjects who later had eye events with the

probabilities of those who did not, using the Wilcoxon rank sum

test. Statistical testing was performed in SAS. The analyses were

performed using probabilities computed for three different

scenarios: 1) RF based on all variables; 2) RF based on

ACCORD-Eye data only; and 3) RF based on systemic data only.

Results

Figure 1 shows the RF classification accuracy estimated using

the OOB mechanism built into RF, compared with the

classification accuracy estimated using the testing datasets. Our

results show that the RF OOB mechanism produces accurate

estimates of RF performance within the evaluated sample sizes,

suggesting reliable estimates of classifier performance for the full

sample size in this study. RF outperformed LR in terms of

classification accuracy across the three situations we studied

(Figure 2). This advantage is very likely explained by RF

nonlinearity and its capability to detect important variables in

the model while discarding the effects of the non-relevant ones.

Selecting a subset of clinical relevant variables in the graded

fundus photography data based on an expert’s assessment led to

moderate improvements in classification performance for logistic

regression but had a much smaller impact on RF performance (see

Figure 3). This experiment highlights RF robustness to the

presence of large amount of non-relevant variables in the model.

Studies that report performance of classifiers’ performance

across sample sizes are uncommon. We took advantage here of the

size of the ACCORD-Eye dataset to evaluate the behavior of RF

across sample sizes. Our experiments with fundus photography

data provide empirical support for some reported RF properties

such as the excellent quality of the estimates of accuracy provided

by the OOB RF mechanism and its capability to discard the effect

of non-relevant variables. The combination of graded fundus

photography data with systemic variables in the model did not

increase prediction performance, although systemic variables were

informative regarding disease status (accuracy .75%). Finally, RF

performance tended to stabilize at 500 samples. Further sample

sizes increases produced very little or no gain in performance. On

the other hand, LR-associated accuracies seemed to increase as the

sample size increased.

This work provides insight into which variable might be most

relevant to diagnose DR. The five most important variables for

each scenario are presented in Table 3. RF measure of variable

importance permutation index was used to rank the variables.

Microaneurysm counts in both eyes were detected by RF as the

most important variable for classification, both in the eye data only

and in the combined data analyses. Number of medicines and

diabetes duration also were important role in the analyses. Table 4

presents the average probabilities of having DR for two groups of

participants who were not diagnosed with DR at baseline (a)

participants who had a DR event (§ 3 step ETDRS progression,

vitrectomy, or laser photocoagulation) during the 4 years of follow

up, and (b) participants who did not have a DR event. Participants

who had the DR events were at a significantly higher risk of DR at

baseline relative to those who did not have the DR events during

follow-up. Although adding systemic data did not increase

classification accuracy, combining both types of data lead to

increased statistical discrimination of DR risk between those who

did not have DR events during follow up and those who did.

Discussion

The main contribution of this work is the introduction of

Random Forests methods to DR data analyses. Most previous

work is based on the use of support vector machines (SVM) or

other pattern recognition techniques. RF has shown great

potential for DR classification and detection of relevant features

in the fundus photography data. RF is highly nonlinear and works

well with high-dimensional data clearly outperforming classic

logistic regression. Another contribution is that while previous

machine learning-based DR research has focused on classification

Figure 1. Estimates of RF classification accuracy obtained using the OOB mechanism and two-fold CV. RF models were estimated using
all the available variables.
doi:10.1371/journal.pone.0098587.g001
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of fundus photography images from patients with or without DR,

here we have addressed the development of metrics to identify

subjects at risk of DR in the very early stages. Our results suggest

that it is possible to devise metrics that identify groups of

participants at higher risk of DR. In the DR literature, only

Rajendra and colleagues (using a very different rationale) have

proposed an integrated index for DR identification based on

images texture parameters [35]. Our work, on the other hand, is a

translation of our Alzheimer’s disease (AD) research, where we

have shown that similar metrics generated by classifiers estimated

using neuroimaging and cognitive data are informative when

discriminating between groups of subjects with mild cognitive

impairment who will progress to AD from those who remain stable

[28,29,36,37]. Studies of the sample size effect on performance of

machine learning algorithms are rare in the literature. Besides the

mathematical interest of this question, this knowledge could save

resources in clinical trials by reducing unnecessary computation

when estimating prediction models.

Here, RF capabilities to detect relevant patterns in the data

produced very meaningful results that correlate well with criteria

Figure 2. Performance across sample sizes of both RF (right panel) and LR is shown for three different scenarios: 1) Only eye data;
2) all variables in the study; and 3) only systemic data. The addition of systemic variables did not lead to significant increases in classification
accuracy.
doi:10.1371/journal.pone.0098587.g002

Figure 3. RF and LR performance using all available eye variables and a subset of eye variables selected by an expert as more
clinically relevant. While this selection led to some improvements for LR it had very little impact on RF performance.
doi:10.1371/journal.pone.0098587.g003

Random Forests Analyses of Diabetic Retinopathy
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for DR diagnosis and with known risk factors. For example,

microaneurysms counts, microvascular abnormalities and hard

exudates are important criteria used by clinicians to diagnose DR

and evaluate its severity when using fundus photography data.

Diabetes duration and blood pressure are widely recognized as

major DR risk factors [1]. The number of medicines is an

interesting finding. It could be an index of health status indicating

that RF is detecting worsening in health associated with the DR

group.

This work seeks to provide proof-of-concept for our methods in

the area of DR prediction. However, our study does have some

shortcomings. The main limitation is that our analyses were based

on graded fundus photography data instead of the images

themselves. To introduce into practice the approach proposed

here, classification should be performed automatically using the

fundus photographs replacing the grading by experts. We believe

the quantification of subtle patterns in the images by pattern

recognition and machine learning algorithms will help make these

metrics much more accurate. Another possible source of

improvement is using other types of information, such as genetic

data, when available. Perhaps more sophisticated methods for data

integration such as multiple kernel or manifold learning [38–40]

will be more successful achieving synergy between different types

of data than the concatenation of features we used. Another

limitation is that our results can be confounded by misclassification

errors by those who graded the images. This suggests an

interesting application for our metrics that we will pursue in the

future. Subjects declared as healthy by the graders but with high

probability of having DR should raise a suspicion of misclassifi-

cation error and those data should be reviewed by graders. This

method could be a very useful tool for quality control in such large

clinical trials as ACCORD-Eye. Finally, to have translational

value, a validation study is needed using other databases.

We envision several very promising applications for the metrics

proposed in this work that go beyond early detection. For

example, they could be used to study DR genetics, which in

general is poorly understood [41]. The genetic aspects of DR

genetics are complex due to its relationship with glycemic control

among other reasons. Our metrics could be used as quantitative

traits in imaging genetic analyses of DR. We have recently

reported that similar metrics derived from neuroimaging and

cognitive data could increase statistical power in genome-wide

association analyses of AD [27]. Recent research also provides

growing evidence of association between small vessel disease and

Table 3. Most relevant variables according to RF permutation index criterion for each type of data.

Type of Data Variables Permutation Index (%)

Eye Only Left microaneurysms count 53

Right microaneurysms count 53

Right abnormality2 41

Left abnormality2 37

Left Hard Exudate within grid 36

Systemic data Number of medicines 60

Diabetes duration 53

ACCORD arm randomization 49

Systolic blood pressure 28

Body mass index 27

Combined Left microaneurysms count 57

Right microaneurysms count 57

Number of medicines 48

Right abnormality2 39

Left abnormality2 38

The permutation index reflects decreases in classification performance when the values of a given variable have been randomly permuted. Abnormalities refer to the
presence of different lesions detected by reviewers (e.g. drusens, age-related macular degeneration features, etc. - see Table S1). ACCORD arm randomization refers to
membership to one of the eights arms of the ACCORD trial.
doi:10.1371/journal.pone.0098587.t003

Table 4. The RF probabilities of having DR were estimated for two groups of participants who were not diagnosed as DR at
baseline: a) those who had a DR event (. = 3 step ETDRS progression, vitrectomy, or laser photocoagulation) during follow-up and
2) those who did not.

DR event Eye Data Systemic data Combined

No event mean (std) 0.06 (0.16) 0.34 (0.21) 0.15 (0.15)

Eventmean (std) 0.09 (0.18) 0.39 (0.21) 0.20 (0.17)

*p-value 0.03 0.01 0.0003

*Wilcoxon rank sum test, std – standard deviation.
Estimation was made using baseline data.
doi:10.1371/journal.pone.0098587.t004

Random Forests Analyses of Diabetic Retinopathy
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brain structure and function, suggesting the use of retinopathy as

an earlier biomarker for brain small vessel disease [42]. A study

published by the Women’s Health Initiative found associations

between retinopathy, cognitive decline over 10 years, and ischemic

lesion burden [43]. However, because retinopathy was relatively

rare in that cohort, it was only evaluated as a dichotomized

variable, limiting the ability to evaluate different degrees of

retinopathy [42] – a situation where metrics such as those

proposed here could be of great use. Finally, the metrics we have

proposed here can be used to objectively select subjects at higher

risk of DR for clinical trials if needed. This can spare resources by

optimizing recruitment and decreasing required sample sizes.

Conclusions

In this work, we have introduced an approach based on

Random Forest methods to perform classification analyses of DR

fundus photography data. RF clearly outperforms logistic regres-

sion, a conventional statistical approach, in most of the situations

we evaluated. In addition, we generated metrics that assess risk of

diabetic retinopathy, using graded fundus photography and

systemic data. These metrics are sensitive to patterns in the data

associated with future DR events in subjects not presently affected

by DR. We will work towards refining these metrics by using other

types of information and more sophisticated machine learning

methods for multimodal data analyses.
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