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With the increasing demanding for precision of test feedback, cognitive diagnosis

models have attracted more and more attention to fine classify students whether

has mastered some skills. The purpose of this paper is to propose a highly effective

Pólya-GammaGibbs sampling algorithm (Polson et al., 2013) based on auxiliary variables

to estimate the deterministic inputs, noisy “and” gate model (DINA) model that have

been widely used in cognitive diagnosis study. The new algorithm avoids the Metropolis-

Hastings algorithm boring adjustment the turning parameters to achieve an appropriate

acceptance probability. Four simulation studies are conducted and a detailed analysis of

fraction subtraction data is carried out to further illustrate the proposed methodology.

Keywords: Bayesian estimation, cognitive diagnosis models, DINA model, Pólya-Gamma Gibbs sampling

algorithm, Metropolis-Hastings algorithm, potential scale reduction factor

1. INTRODUCTION

Modeling the interaction between examinee’s latent discrete skills (attributes) and items at the item
level for binary response data, cognitive diagnosis models (CDMs) is an important methodology
to evaluate whether the examinees have mastered multiple fine-grained skills, and these models
have been widely used in a variety of the educational and psychological researches (Tatsuoka,
1984, 2002; Doignon and Falmagne, 1999; Maris, 1999; Junker and Sijtsma, 2001; de la Torre
and Douglas, 2004; Templin and Henson, 2006; DiBello et al., 2007; Haberman and von Davier,
2007; de la Torre, 2009, 2011; Henson et al., 2009; von Davier, 2014; Chen et al., 2015). With
the increasing complexity of the problems in cognitive psychology research, various specific
and general formulations of CDMs have been proposed to deal with the practical problems.
There are several specific CDMs, widely known among them, are the deterministic inputs,
noisy “and” gate model (DINA; Junker and Sijtsma, 2001; de la Torre and Douglas, 2004; de
la Torre, 2009), the noisy inputs, deterministic, “and” gate model (NIDA; Maris, 1999), the
deterministic input, noisy “or” gate model (DINO; Templin and Henson, 2006) and the reduced
reparameterized unifiedmodel (rRUM; Roussos et al., 2007). In parallel with the specific CDMs, the
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general CDMs have also made great progress, including the
general diagnostic model (GDM; von Davier, 2005, 2008),
the log-linear CDM (LCDM; Henson et al., 2009), and the
generalized DINA (G-DINA; de la Torre, 2011). Parameter
estimation has been a major concern in the application of
CDMs. In fact, simultaneous estimations of items and examinee’s
latent discrete skills result in statistical complexities in the
estimation task.

Within a fully Bayesian framework, a novel and highly
effective Pólya-Gamma Gibbs sampling algorithm (PGGSA;
Polson et al., 2013) based on the auxiliary variables is proposed
to estimate the commonly used DINA model in this paper.
The PGGSA overcomes the disadvantages of Metropolis-
Hastings algorithm (Metropolis et al., 1953; Hastings, 1970;
Chib and Greenberg, 1995; Chen et al., 2000), which requires
to repeatedly adjust the specification of tuning parameters to
achieve a certain acceptance probability and thus increases
the computational burden. More specifically, the Metropolis–
Hasting algorithm depends on the variance (tuning parameter)
of the proposal distribution and is sensitive to step size. If the
step size is too small, the chain will take longer to traverse
the target density. If the step size is too large, there will
be inefficiencies due to a high rejection rate. In addition,
the Metropolis-Hastings algorithm is relatively difficulty to
sample parameters with monotonicity or truncated interval
restrictions. Instead, it can improve the accuracy of parameter
estimation by employing strong informative prior distributions
to avoid violating the restriction conditions (Culpepper,
2016).

The rest of this paper is organized as follows. Section
2 contains a short introductions of DINA model, its
reparameterized form, and model identifications. A detailed
implementation of PGGSA is shown in section 3. In section
4, four simulations focus on the performance of parameter
recovery for the PGGSA, the results of comparing with the
Metropolis-Hastings algorithm, the analysis of sensitivity of
prior distributions for the PGGSA, the results of comparing
with Culpepper (2015)’s Gibbs algorithm on the attribute
classification accuracy and the estimation accuracy of class
membership probability parameters. In addition, the quality
of PGGSA is investigated using a fraction subtraction test data
in section 5. We conclude the article with a brief discussion
in section 6.

2. MODELS AND MODEL
IDENTIFICATIONS

The DINA model focuses on whether the examinee i has
mastered the k attribute, where i = 1, . . . ,N, k = 1, . . . ,K. Let
αik be a dichotomous latent attribute variable with values of 0
or 1 indicating absence or presence of a attribute, respectively.

αi = (αi1,αi2, . . . ,αiK)
′

is a vector of K dimensional latent
attributes for the ith examinee. Given the categorical nature of the
latent classes, αi belongs to one of C = 2K attribute latent classes.
If the ith examinee belongs to the cth classification, the attribute

vector can be expressed as αc = (αc1,αc2, . . . ,αcK)
′

. Considering

a test consisting of J items, each item j is associated with a vector

of K dimensional item attributes, qj =
(
qj1, . . . , qjK

)′
, where

qjk =





1, if attribute k is required by item j,

0, if attribute k is not required by item j.

Therefore, a Q matrix, Q =

{
qjk
}
J×K

, can be obtained by the J

item attribute vectors. The DINA model is conjunctive. That is,
the examinee i must possess all the required attributes to answer
the item j correctly. The ideal response pattern ηij can be defined
as follows

ηij =





1, if the examinee i possesses all the required
attributes for the item j,

0, if the examinee i does not master at least one
attribute for the item j.

ηij = I
(
α

′

iqj = q
′

jqj

)
=

K∏
k=1

α
qjk
ik
, where I (·) denotes the indicator

function. The parameters for a correct response to item j when
given ηij are denoted by sj and gj. The slipping parameter sj and
the guessing parameter gj refer to the probability of incorrectly
answering the item when ηij = 1 and the probability of
correctly guessing the answer when ηij = 0, respectively. Let
Yij denote the observed item response for the ith examinee to
response jth item, Yij = 1 if the ith examinee correct answer
the jth item, 0 otherwise. The parameters sj and gj are formally
defined by

sj = p
(
Yij = 0

∣∣ηij = 1
)
and gj = p

(
Yij = 1

∣∣ηij = 0
)
.

The probabilities of observing response given attributes α are
represented by

fij = p
(
Yij = 1

∣∣αi, sj, gj
)
=
(
1− sj

)ηij

g
1−ηij
j =





1− sj, ηij =
K∏

k=1

α
qjk
ik

= 1,

gj, ηij =
K∏

k=1

α
qjk
ik

= 0.

(1)

and.

hij = 1− p
(
Yij = 1

∣∣αi, sj, gj
)
=

[
1−

(
1− sj

)ηij g1−ηij
j

]

=





sj, ηij =
K∏

k=1

α
qjk
ik

= 1,

1− gj, ηij =
K∏

k=1

α
qjk
ik

= 0.

(2)

2.1. The Reparameterized DINA Model
To describe the relationship between the attribute vector and the
observed response, we can reexpress the DINA model as follow:

p
(
Yij = 1 |αi

)
= gj +

(
1− sj − gj

) K∏

k=1

α
qjk
ik
, (3)
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where the model discrimination index can be defined as 1− sj −
gj = IDIj (de la Torre, 2008). Based on the traditional DINA
model, we reparameterize sj and gj from the probability scale to
the logit scale (Henson et al., 2009; DeCarlo, 2011; von Davier,
2014; Zhan et al., 2017). That is,

ζj = logit
(
gj
)
,

βj = logit
(
1− sj

)
− logit

(
gj
)
,

where logit(x) = log (x/ (1− x)) . Therefore, the
reparameterized DINA model (DeCarlo, 2011) can be written as

logit
[
p
(
Yij = 1

∣∣αi, ςj,βj

)]
= ςj + βj

K∏

k=1

α
qjk
ik
, (4)

where ςj and βj are the item intercept and interaction
parameters, respectively.

2.2. The Likelihood Function of the
Reparameterized DINA Model Based on
the Latent Class
Suppose that the vector of item responses for the ith examinee
can be denoted as Y i =

(
Yi1, . . . ,YiJ

)
′. Let the vector of intercept

and interaction parameters for J items be ς and β , where ς =(
ς1, . . . , ςJ

)
and β =

(
β1, . . . ,βJ

)
. Given the categorical nature

of the latent classes, αi belongs to one of C = 2K attribute latent
classes. For the ith examinee belonging to the cth classification,

the attribute vector is expressed as αc = (αc1,αc2, . . . ,αcK)
′

.
According the Equation (4), the probability of observing Y i that
the ith examinee belonging to the cth latent class answers J items
can be written as

p (Y i |αi = αc, ς ,β ) =

J∏

j=1

[
p
(
Yij = 1

∣∣αc, ςj,βj

)]Yij [1− p
(
Yij = 1

∣∣αc, ςj,βj

)]1−Yij .(5)

where αi = αc denotes the examinee i belongs to the cth latent
class. p

(
Yij = 1

∣∣αc, ςj,βj

)
is the probability that the examinee i

in class c correctly answers the item j.
Let πc = p (αc) be the probability of examinees for each class

c, c = 1, . . . ,C, and π = (π1, . . . ,πC)
′

is C dimensional vector of

class membership probabilities, where
C∑
c=1

πc = 1. Therefore, the

probability of observing Y i given item parameters ς , β and class
membership probabilities π can be written as

p (Y i |ς ,β ,π ) =

C∑

c=1

πcp (Y i |αi = αc, ς ,β ) . (6)

The likelihood function based on the latent class can be written as

p (Y |ς ,β ,π ) =

N∏

i=1

C∑

c=1

πcp (Y i |αi = αc, ς ,β ) . (7)

2.3. Model Identification
The model identification is an important cornerstone for
estimating parameters and practical applications. Chen et al.
(2015), Xu and Zhang (2016), and Xu (2017) discuss the DINA
model identification conditions. Gu and Xu (2019) further
provide a set of sufficient and necessary conditions for the
identifiability of the DINA model. That is,
Condition 1: (1) The Q-matrix is complete under the DINAmodel
and without loss of generality, we assume the Q-matrix takes the
following form:

Q =

(
IK

Q∗

)

J×K

, (8)

where IK is the K × K identify matrix and Q∗ is a (J − K) × K
submarix of Q.
(2) Each of the K attributes is required by at least three items.
Condition 2: Any two different columns of the submatrix Q∗ in
(8) are distinct.
Under the above two conditions, Gu and Xu (2019) give the
following identifiability result.
Theorem (Sufficient and Necessary Condition) Conditions 1 and
2 are sufficient and necessary for the identifiability of all the DINA
model parameters.

3. PÓLYA-GAMMA GIBBS SAMPLING
ALGORITHM

Polson et al. (2013) propose a new data augmentation strategy
for fully Bayesian inference in logistic regression. The data
augmentation approach appeals to a new class of Pólya-
Gamma distribution rather than Albert and Chib (1993)’s
data augmentation algorithm based on a truncated normal
distribution. Next, we introduce the Pólya-Gamma distribution.

Definition: Let {Tk}
+∞
k=1

is a iid random variable sequences from
a Gamma distribution with parameters λ and 1. That is, Tk ∼

Gamma (λ, 1) . A random variable W follows a Pólya-Gamma
distribution with parameters λ > 0 and τ ∈ R, denoted W ∼

PG (λ, τ), if

W
D
=

1

2π

+∞∑

k=1

Tk(
k− 1

2

)2
+ τ 2

4π2

, (9)

where
D
= denotes equality in distribution. In fact, the

Pólya-Gamma distribution is an infinite mixture of gamma
distributions which provide the plausibility to sample from
Gamma distributions.

Based on Polson et al. (2013, p. 1341, Equation 7)’s Theorem
1, the likelihood contribution of the ith examinee to answer the
jth item can be expressed as

L
(
ςj,βj,αi

)
=

[
exp

(
ςj + βj

K∏

k=1

α
qjk
ik

)]Yij

1+ exp

(
ςj + βj

K∏

k=1

α
qjk
ik

)
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∝ exp

[
kij

(
ςj + βj

K∏

k=1

α
qjk
ik

)]

×

∞∫

0

exp



−

Wij

(
ςj + βj

K∏

k=1

α
qjk
ik

)2

2




p
(
Wij |1, 0

)
dWij, (10)

where kij = Yij −
1
2 . p

(
Wij |1, 0

)
is the conditional density of

Wij. That is, Wij ∼ PG (1, 0) . The auxiliary variable Wij follows
a Pólya-Gamma distribution with parameters (1, 0). Biane et
al. (2001) provide proofs of Equation (10). In addition, Polson
et al. (2013) further discuss Equation (10). Therefore, the full
conditional distribution of ς ,β ,α given the auxiliary variables
Wij can be written as

p
(
ς ,β j,α |W,Y

)
∝





N∏

i=1

J∏

j=1




exp

[
kij

(
ςj + βj

K∏

k=1

α
qjk
ik

)]

exp



−

Wij

(
ςj + βj

K∏

k=1

α
qjk
ik

)2

2











×





J∏

j=1

[
p
(
ςj
)
p
(
βj

)]




{
N∏

i=1

p (αi)

}
. (11)

where p (ς) , p (β), and p (α) are the prior distributions,
respectively. The joint posterior distribution based on the latent
classes is given by

p
(
ς ,β j,α,π ,W |Y

)
∝





N∏

i=1

J∏

j=1

C∏

c=1

[
p
(
Yij = yij

∣∣ςj,βj,αi = αc

)

f
(
Wij

∣∣ςj,βj,αi = αc

)]}

×





J∏

j=1

[
p
(
ςj
)
p
(
βj

)]




{
C∏

c=1

p (πc)

}
.

where p (ς) , p (β), and p (π) are the prior
distributions, respectively.

Step 1: Sampling the auxiliary variable Wij, given the item
intercept and interaction parameters ςj,βj and αi = αc.
According to Equation (10), the full conditional posterior

distribution of the random auxiliary variableWij is given by

f
(
Wij

∣∣ςj,βj,αi = αc

)
∝ exp



−

Wij

(
ςj + βj

K∏

k=1

α
qjk
ik

)2

2




p
(
Wij |1, 0

)
, (12)

According to Biane et al. (2001) and Polson et al. (2013; p. 1341),
the density function p

(
Wij |1, 0

)
can be written as

p
(
Wij |1, 0

)
=

∞∑

v=0

(−1)v
(
2k+ 1

)
√
2πWij

exp

[
−

(
2k+ 1

)2

8Wij

]
. (13)

Therefore, f
(
Wij

∣∣ςj,βj,αi = αc

)
is proportional to

∞∑

v=0

(−1)v
(
2k+ 1

)
√
2πWij

exp



−

(
2k+ 1

)2

8Wij
−

Wij

(
ςj + βj

K∏

k=1

α
qjk
ik

)2

2



.

(14)
Finally, the specific form of the full conditional distribution of
Wij is as follows

Wij ∼ PG

(
1,

∣∣∣∣∣ςj + βj

K∏

k=1

α
qjk
ik

∣∣∣∣∣

)
. (15)

Next, the Gibbs samplers are used to draw the item parameters.
Step 2: Sampling the intercept parameter ςj for each item

j. The prior distribution of ςj is assumed to follow a normal
distribution, that is, ςj ∼ N

(
µς , σ

2
ς

)
. Given Y , W, β ,

and α, the fully condition posterior distribution of ςj is
given by

p
(
ςj
∣∣Y ,W,α,βj

)
∝

N∏

i=1





[
exp

(
ςj + βj

K∏

k=1

α
qjk
ik

)]Yij

1+ exp

(
ςj + βj

K∏

k=1

α
qjk
ik

)

f
(
Wij

∣∣ςj,βj,αi = αc

)}
p
(
ςj
)
, (16)

where f
(
Wij

∣∣ςj,βj,αi = αc

)
is equal to the following

equation (the details see Polson et al., 2013; p. 1341)
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f
(
Wij

∣∣ςj,βj,αi = αc

)
=

{
cosh

(
2−1

∣∣∣∣∣ςj + βj

K∏

k=1

α
qjk
ik

∣∣∣∣∣

)}
20

Ŵ (1)

×

∞∑

v=0

(−1)v
(
2k+ 1

)
√
2πWij

exp



−

(
2k+ 1

)2

8Wij
−

Wij

(
ςj + βj

K∏

k=1

α
qjk
ik

)2

2



. (17)

After rearrangement, the full conditional posterior
distribution of ςj can be written as follows

p
(
ςj
∣∣Y ,W,α,βj

)
∝

N∏

i=1





[
exp

(
ςj + βj

K∏

k=1

α
qjk
ik

)]Yij

1+ exp

(
ςj + βj

K∏

k=1

α
qjk
ik

) (18)

[
cosh

(
2−1

∣∣∣∣∣ςj + βj

K∏

k=1

α
qjk
ik

∣∣∣∣∣

)]

× exp



−

(
ςj + βj

K∏

k=1

α
qjk
ik

)2

Wij

2








p
(
ςj
)
.

Varβj ×




µβσ−2
β +

N∑

i=1



(

K∏

k=1

α
qjk
ik

)2

Wij







N∑

i=1

(
2Yij

K∏

k=1

α
qjk
ik

−

K∏

k=1

α
qjk
ik

− 2ςjWij

K∏

k=1

α
qjk
ik

)

2

N∑

i=1



(

K∏

k=1

α
qjk
ik

)2

Wij










Therefore, the fully condition posterior distribution of ςj
follow normal distribution with mean

Varςj×




µςσ−2
ς +

(
N∑

i=1

Wij

)



N∑

i=1

2Yij − 1− 2βjWij

K∏

k=1

α
qjk
ik

2

N∑

i=1

Wij






,

and variance

Varςj =

(
σ−2

ς +

(
N∑

i=1

Wij

))−1

.

Step 3: Sampling the interaction parameter βj for each item

j. The prior distribution of βj is assumed to follow a truncated

normal distribution to satisfy the model identification restriction

(Junker and Sijtsma, 2001; Henson et al., 2009; DeCarlo, 2012;

Culpepper, 2015). That is, βj ∼ N
(
µβ , σ

2
β

)
I
(
βj > 0

)
. Similarly,

given Y ,W, ς , and α, the full condition posterior distribution of
βj is given by

p
(
βj |Y ,W,α, ς

)
∝

N∏

i=1





[
exp

(
ςj + βj

K∏

k=1

α
qjk
ik

)]Yij

1+ exp

(
ςj + βj

K∏

k=1

α
qjk
ik

)

[
cosh

(
2−1

∣∣∣∣∣ςj + βj

K∏

k=1

α
qjk
ik

∣∣∣∣∣

)]
(19)

× exp



−

(
ςj + βj

K∏

k=1

α
qjk
ik

)2

Wij

2








p
(
βj

)
.

Therefore, the fully condition posterior distribution of ςj
follow the truncated normal distribution with mean

and variance

Varβj =



σ−2

β +

N∑

i=1



(

K∏

k=1

α
qjk
ik

)2

Wij







−1

(20)

Step 4: Sampling the attribute vector αi for each examinee i.
Given Y ,W, ς , and β , we can update the ith examinee’s attribute
vector αi from the following multinomial distribution

αi |Y i,W i, ς , β ∼ Multinomial (1, [λi1, . . . , λiC]) . (21)

where the probability that the attribute vector αi belongs to the
cth(c = 1, . . . ,C) class can be written as

λic = P (αi = αc |Y i,W i, ς ,β ,π )

=
πcp (Y i |αi = αc, ς ,β ) f (W i |αi = αc, ς ,β )

C∑

c=1

πcp (Y i |αi = αc, ς ,β ) f (W i |αi = αc, ς ,β )

. (22)
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Step 5: Sampling the class membership probabilities π . The
prior of π is assumed to follow a Dirichlet distribution. I.e., π =

(π1, . . . ,πC) ∼Dirichlet(δ0, . . . , δ0) . The full condition posterior
distribution of the class membership probabilities π can be
written as

π |α1, . . . ,αC ∼ Dirichlet

(
δ0 +

N∑

i=1

I (αi = α1) , . . . , δ0

+

N∑

i=1

I (αi = αC)

)
. (23)

4. SIMULATION STUDY

4.1. Simulation 1
4.1.1. Simulation Design
In this simulation study, the purpose is to assess the performance
of the Pólya-Gamma Gibbs sampling algorithm. Considering
the test length is J = 30, and the number of the attribute
is set equal to K = 5. The Q-matrix is shown in Table 1,
where the design of Q-matrix satisfies Gu and Xu (2019)’s DINA
model identification conditions. For the true values of the class
membership probabilities, we only consider themost general case
that the class membership probabilities are flat though all class,
i.e., πc = 1

2K
, c = 1, . . . ,C, where C = 2K . Next, two factors

and their varied test conditions are simulated. (a) two sample
sizes (N = 1000, 2000) are considered; (b) Following Huebner
and Wang (2011) and Culpepper (2015), four noise levels are
considered to explore the relationship between noise level and
recovery by constraining the true values of the item parameters.
For each item, (b1) low noise level (LNL) case: sj = gj = 0.1;
the corresponding true values of reparameterized parameters are
ζj = −2.1972, βj = 4.3945; (b2) high noise level (HNL) case :
sj = gj = 0.2; the corresponding true values of reparameterized
parameters are ζj = −1.3863, βj = 2.7726; (b3) slipping higher
than guessing (SHG) case: sj = 0.2, gj = 0.1; the corresponding
true values of reparameterized parameters are ζj = −2.1972,
βj = 3.5835; (b4) guessing higher than slipping (GHS) case: sj =
0.1, gj = 0.2; the corresponding true values of reparameterized
parameters are ζj = −1.3863, βj = 3.5835. Fully crossing the
different levels of these two factors yield 8 conditions.

4.1.2. Priors
Based on the four noise levels, the corresponding four kinds of
non-informative prior are used. I.e.,

(b1) ζj ∼ N
(
−2.1972, 105

)
,βj ∼ N

(
4.3945, 105

)
I
(
βj > 0

)
;

(b2) ζj ∼ N
(
−1.3863, 105

)
,βj ∼ N

(
2.7726, 105

)
I
(
βj > 0

)
;

(b3) ζj ∼ N
(
−2.1972, 105

)
,βj ∼ N

(
3.5835, 105

)
I
(
βj > 0

)
;

(b4) ζj ∼ N
(
−1.3863, 105

)
,βj ∼ N

(
3.5835, 105

)
I
(
βj > 0

)
,

where the purpose of using non-informative priors is to eliminate
the influence of prior uncertainty on posterior inferences.
Similarly, the non-informative Dirichlet prior distribution is
employed for the class membership probabilities π . I.e.,

(π1, . . . ,πC) ∼ Dirichlet (1, . . . , 1).

TABLE 1 | The Q matrix design in the simulation study 1.

Attribute Q(matrix) Attribute Q(matrix)

Item α1 α2 α3 α4 α5 Item α1 α2 α3 α4 α5

1 1 0 0 0 0 16 0 1 0 1 0

2 0 1 0 0 0 17 0 1 0 0 1

3 0 0 1 0 0 18 0 0 1 1 0

4 0 0 0 1 0 19 0 0 1 0 1

5 0 0 0 0 1 20 0 0 0 1 1

6 1 0 0 0 0 21 1 1 1 0 0

7 0 1 0 0 0 22 1 1 0 1 0

8 0 0 1 0 0 23 1 1 0 0 1

9 0 0 0 1 0 24 1 0 1 1 0

10 0 0 0 0 1 25 1 0 1 0 1

11 1 1 0 0 0 26 1 0 0 1 1

12 1 0 1 0 0 27 0 1 1 1 0

13 1 0 0 1 0 28 0 1 1 0 1

14 1 0 0 0 1 29 0 1 0 1 1

15 0 1 1 0 0 30 0 0 0 1 1

4.1.3. Convergence Diagnostics
As an illustration of the convergence of parameter estimates, we
only consider the low noise level (LNL) case and the number
of examinees is 1,000. Two methods are used to check the
convergence of parameter estimates. One is the “eyeball” method
to monitor the convergence by visually inspecting the history
plots of the generated sequences (Hung and Wang, 2012; Zhan
et al., 2017), and another method is to use the Gelman-Rubin
method (Gelman and Rubin, 1992; Brooks and Gelman, 1998)
to check the convergence of parameter estimates.

To implement the MCMC sampling algorithm, chains of
length 20,000 with an initial burn-in period 10,000 are chosen.
Four chains started at overdispersed starting values are run for
each replication. The trace plots of Markov Chains for three
randomly selected items and class membership probabilities are
shown in Figure 1. In addition, the potential scale reduction
factor (PSRF; Brooks and Gelman, 1998) values of all parameters
are <1.1, which ensures that all chains converge as expected. The
trace plots of PSRF values are shown in the simulation 2.

4.1.4. Evaluation Criteria for Convergence and

Accuracy of Parameter Estimations
The accuracy of the parameter estimates is measured by two
evaluation criteria, i.e., Bias and Mean Squared Error (MSE). Let
η be the interested parameter. Assume thatM = 25 data sets are
generated. Also, let η̂(m) be the posterior mean obtained from the
mth simulated data set form = 1, . . . ,M.
The Bias for parameter is defined as

Bias (η) =
1

M

M∑

m=1

(
η̂(m) − η

)
, (24)
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FIGURE 1 | The trace plots of the arbitrarily selected item and class membership probability parameters.

and the MSE for parameter is defined as

MSE (η) =
1

M

M∑

m=1

(
η̂(m) − η

)2
. (25)

For illustration purposes, we only show the Bias and MSE of
ς , β , and π for the four noise levels based on 1,000 sample sizes
in Figures 2, 3. In the four noise levels, the Bias of ς , β , and π

are near the zero values. However, the MSE of ς and β increase
as the number of attributes required by the item increases. In the
low noise level, the performances of the recovery for ς and β are
well-based on the results of MSE, and the MSE of ς and β are

<0.0250. The performances for the high noise level are worst in
the four diagnosticity cases. Moreover, we find that when the item
tests a attribute, the MSE of ς is not much different from that of
β . However, the MSE of β is greater than that of ς when the item
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FIGURE 2 | The Bias of intercept, interaction and the latent class parameters under four different noise levels. The Q Matrix denotes the skills required for each item

along the x axis, where the black square = “1” and white square = “0.” The αck denotes the examinee who belongs to the cth latent class whether has mastered kth

skill, where the black square = “1” for the presence of a skill and white square = “0” for the absence of a skill, αc = (αc1, . . . ,αcK )
′. Note the Bias values are estimated

from 25 replications.

requires multiple attributes. The reason is due to a fact that the
number of examinees for ηij = 1 is almost equal to that of ηij = 0
when the item tests a attribute, which is accurate for estimating
the ς and β . Along with the increase in the attributes required
by the item, the number of examinees for ηij = 1 reduces and
the number of examinees for ηij = 0 increases, thus resulting in
the MSE of β higher than that of ς . Note that the MSE of β is
dependent on the number of examinees for ηij = 1.

The average Bias and MSE for ς , β , and π based on
eight different simulation conditions are shown in Table 2. The
following conclusions can be obtained. (1) Given a noise level,
when the number of examinees increases from 1,000 to 2,000,
the average MSE for ς and β show a decreasing trend. More
specifically, when the number of examinees increases from 1,000
to 2,000, in the case of low noise level (LNL), the average MSE of
ς decreases from 0.048 to 0.034, the average MSE of β decreases
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FIGURE 3 | The MSE of intercept, interaction and class membership probability parameters under four different diagnosticity cases. The Q Matrix denotes the skills

required for each item along the x axis, where the black square = “1” and white square = “0.” The αck denotes the examinee who belongs to the cth latent class

whether has mastered kth skill, where the black square = “1” for the presence of a skill and white square = “0” for the absence of a skill, αc = (αc1, . . . ,αcK )
′. Note the

MSE values are estimated from 25 replications.

from 0.0141 to 0.0107. In the case of high noise level (HNL), the
average MSE of ς decreases from 0.0163 to 0.0117, the average
MSE of β decreases from 0.0254 to 0.0239. In the case of the
slipping higher than the guessing (SHG), the average MSE of ς

decreases from 0.0139 to 0.0078, the average MSE of β decreases
from 0.0172 to 0.0159. In the case of the guessing higher than the
slipping (GHS), the average MSE of ς decreases from 0.0088 to
0.0041, the average MSE of β decreases from 0.0198 to 0.0181.

(2) Given a noise level, when the number of examinees increases
from 1,000 to 2,000, In the case of four kinds of noises, the
average MSE of π are basically the same and close to 0 under
the conditions of four noise levels. (3) Compared with the other
three noise level, the average MSE of ς and β are largest at
high noise level. In summary, the Bayesian algorithm provides
accurate estimates for ς , β , and π in term of various numbers
of examinees.
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4.2. Simulation 2
In this simulation study, we compare MH algorithm and PGGSA
from two aspects: the accuracy and convergence. We consider
1,000 examinees to answer 30 items, and the number of the
attribute is set equal to K = 5. The true values of ζj and βj are set
equal to −2.1972 and 4.3945 for each item. The corresponding
true values of sj and gj are equal to 0.1 for each item. The class
membership probabilities are flat though all classes, i.e., πc =
1
2K
, c = 1, . . . ,C, where C = 2K . We specify the following

non-informative priors to the PGGSA and MH algorithm:

TABLE 2 | The average Bias and MSE for ς , β, and π .

Number of examinees 1,000

LNL (b1) HNL (b2) SHG (b3) GHS (b4)

BIAS

ς 0.0023 0.0046 0.0042 −0.0039

β −0.1077 −0.1016 −0.0235 −0.0248

π −0.0000 −0.0000 −0.0000 −0.0000

MSE

ς 0.0048 0.0163 0.0139 0.0088

β 0.0141 0.0254 0.0172 0.0198

π 0.0000 0.0000 0.0000 0.0000

Number of examinees 2,000

BIAS

ς 0.0089 0.0089 0.0023 −0.0020

β −0.0890 0.0588 −0.0003 −0.0041

π −0.0000 0.0000 −0.0000 0.0000

MSE

ς 0.004 0.0117 0.0078 0.0041

β 0.0107 0.0239 0.0159 0.0181

π 0.0000 0.0000 0.0000 0.0000

Note that the Bias and MSE denote the average Bias and MSE for the parameters. ς

represents all intercept parameters, β represents all interaction parameters, π represents

all class membership probabilities parameters.

ζj ∼ N
(
−2.1972, 105

)
,βj ∼ N

(
4.3945, 105

)
I
(
βj > 0

)
and

(π1, . . . ,πC) ∼ Dirichlet (1, . . . , 1) .
It is known that an improper proposal distribution for MH

algorithm can seriously reduce the acceptance probability of
sampling. Most of the posterior samples are rejected. Therefore,
the low sampling efficiency is usually unavoidable, and the
reduction in the number of valid samples may lead to incorrect
inference results. In contrast, our PGGSA takes the acceptance
probability as 1 to draw the samples from fully condition
posterior distributions. The following proposal distributions for
the intercept and interaction parameters are considered in the
process of implementing MH algorithm. The sampling details of
MH algorithm, see Appendix. Note that the class membership
probabilities are updated through the same way for the PGGSA
and MH algorithms.

• Case 1: ςj ∼ N(ς
(r)
j , 0.1), βj ∼ N(β

(r)
j , 0.1)I

(
βj > 0

)
.

• Case 2: ςj ∼ N(ς
(r)
j , 1),βj ∼ N(β

(r)
j , 1)I

(
βj > 0

)
.

To compare the convergence of all parameters for the PGGSA
and MH algorithm with different proposal distributions,
the convergence of item and class membership probability
parameters are evaluated by judging whether the values of
PSRF are <1.1. From Figure 4, we find that the intercept,
interaction and class membership probability parameters have
already converged at the 5,000 step iterations for the PGGSA.
The fastest convergence is the class membership probability
parameters followed by intercept parameters. For the MH
algorithm, some parameters do not converge after 5,000 step
iterations for the proposal distributions with the variances of 0.1.
The convergence of the proposal distributions with the variances
of 1 is worse than the convergence of the proposal distributions
with the variances of 0.1, even some parameters do not reach
convergence at the end of the 10,000 step iterations. Moreover,
the Bias and MSE are used to evaluate the performances of
the two algorithms in Table 3. It has been proved that the
selection of the proposal distribution has an important influence
on the accuracy of parameter estimation. The process of finding
the proper turning parameter is time consuming. In addition,

FIGURE 4 | The trace plots of PSRF values for the simulation study 2.
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we investigate the efficiency of the two algorithms from the
perspective of the time consumed by implementing them. On a
desktop computer [Intel(R) Xeon(R) E5-2695 V2 CPU] with 2.4
GHz dual core processor and 192 GB of RAM memory, PGGSA
and MH algorithm, respectively consume 3.6497 and 4.7456 h
when Markov chain are run for 20,000 iterations for a replication
experiment, where MH algorithm is used to implement the Case
1. In summary, PGGSA is more effective than MH algorithm in
estimating model parameters.

4.3. Simulation 3
This simulation study is to show that PGGSA is sufficiently
flexible to recover various prior distributions for the item and
class membership probability parameters. The simulation design
is as follows:

The number of the examinees is N = 1, 000, and the test
length is J = 30, and the number of the attributes is set equal
to K = 5. The true values of item intercept and interaction
parameters are −2.1972 and 4.3945 for each item at low noise
level. The class membership probabilities are flat though all
classes, i.e., πc =

1
2K
, c = 1, . . . ,C, where C = 2K .

The non-informative Dirichlet prior distribution is employed
for the class membership probabilities π . I.e., (π1, . . . ,πC) ∼

Dirichlet (1, . . . , 1), and two kinds of prior distributions are
considered for the intercept and interaction parameters:

TABLE 3 | Evaluating accuracy of parameter estimation using the two algorithms

in the simulation study 2.

PGGSA MH algorithm
under Case 1

MH algorithm
under Case 2

Bias MSE Bias MSE Bias MSE

ς 0.0023 0.0048 0.0016 0.0069 0.0021 0.0081

β −0.1077 0.0141 −0.1042 0.0152 −0.1087 0.0174

π −0.0000 0.0000 −0.0007 0.0005 −0.0004 0.0011

Note that the Bias and denote the average Bias and MSE for the parameters. ς represents

all intercept parameters, β represents all interaction parameters, π represents all latent

class probabilities parameters.

TABLE 4 | Evaluating the accuracy of parameters based on different prior

distributions in the simulation study 3.

Type of prior Evaluation index ς β π

Type I Bias 0.0024 −0.1044 −0.0000

MSE 0.0047 0.0134 0.0000

Type II Bias 0.0026 −0.1059 −0.0000

MSE 0.0047 0.0138 0.0000

Type III Bias 0.0022 −0.1068 −0.0000

MSE 0.0048 0.0140 0.0000

Type IV Bias 0.0023 −0.1077 −0.0000

MSE 0.0048 0.0141 0.0000

Note that the Bias and denote the average Bias and MSE for the parameters. ς represents

all intercept parameters, β represents all interaction parameters, π represents all latent

class probabilities parameters.

(1) Informative prior: Type I: ζj ∼ N (−2.1972, 0.5) ,
βj ∼ N (4.3945, 0.5) I

(
βj > 0

)
; Type II: ζj ∼

N (−2.1972, 1) ,βj ∼ N (4.3945, 1) I
(
βj > 0

)
;

(2) Non-informative prior: Type III: ζj ∼ N
(
−2.1972, 103

)
,

βj ∼ N
(
4.3945, 103

)
I
(
βj > 0

)
; Type IV: ζj ∼

N
(
−2.1972, 105

)
,βj ∼ N

(
4.3945, 105

)
I
(
βj > 0

)
.

PGGSA is iterated 20,000 times. The first 10,000 iterations are
discarded as burn-in period. 25 replications are considered in
this simulation study. The PSRF values of all parameters for
each simulation condition are <1.1. The Bias and MSE of the ζ ,
β , and π based on two kinds of prior distributions are shown
in Table 4.

TABLE 5 | Evaluating accuracy of attribute and class membership probability

parameter estimations using PGGSA and Gibbs algorithm in the simulation

study 4.

Attribute(α) CMP(π)

Noise level Algorithm CPCR AAMA Bias MSE

LNL PGGSA 0.8740 0.9693 −0.0000 0.0000

Gibbs 0.8722 0.9688 −0.0000 0.0000

HNL PGGSA 0.5643 0.8696 −0.0000 0.0000

Gibbs 0.5697 0.8718 −0.0000 0.0000

SHG PGGSA 0.7480 0.9336 −0.0000 0.0000

Gibbs 0.7429 0.9308 −0.0000 0.0000

GHS PGGSA 0.8436 0.9310 −0.0000 0.0000

Gibbs 0.8484 0.9338 −0.0000 0.0000

Note that the CMP denotes the class membership probability. Bias and MSE denote the

average Bias and MSE for the class membership probability parameters.

FIGURE 5 | The trace plots of PSRF values for the real data.
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4.3.1. Result Analysis
From Table 4, we find that the Bias and MSE of ς , β and π

are almost the same under different prior distributions. More
specifically, the Bias of ς ranges from 0.0022 to 0.026, β ranges
from−0.1077 to−0.1044, and the Bias of π under the two kinds
of prior distributions is equal to−0.0000. In addition, theMSE of
ς ranges from 0.0047 to 0.0048, β ranges from 0.0134 to 0.0141,
and the MSE of π under the two kinds of prior distributions
is equal to −0.0000. This shows that the accuracy of parameter
estimation can be guaranteed by PGGSA, no matter what the
informative prior or non-informative distributions are chosen.

4.4. Simulation 4
The main purpose of this simulation study is to compare PGGSA
and Culpepper (2015)’s Gibbs sampling algorithm (Geman and
Geman, 1984; Tanner andWong, 1987; Gelfand and Smith, 1990;
Albert, 1992; Damien et al., 1999; Béguin and Glas, 2001; Sahu,
2002; Bishop, 2006; Fox, 2010; Chen et al., 2018; Lu et al., 2018) on
the attribute classification accuracy and the estimation accuracy
of class membership probability parameter (π).

The number of the examinees is N = 1, 000. Considering
the test length is J = 30, and the number of the attribute is set
equal to K = 5. The Q-matrix is shown in Table 1. Four noise
levels are considered in this simulation, i.e., LNL, HNL, SHG, and
GHS. The true values of item parameters under the four noise
levels, see the simulation study 1. For the true values of the class
membership probabilities, we only consider themost general case
that the class membership probabilities are flat though all classes,
i.e., πc =

1
2K
, c = 1, . . . ,C, where C = 2K .

For the prior distributions of the two algorithms, we use the
non-informative prior distributions to eliminate the influence
of the prior distributions on the posterior inference. The

non-informative Dirichlet prior distribution is employed for
the class membership probabilities π . I.e., (π1, . . . ,πC) ∼

Dirichlet (1, . . . , 1), and the non-informative prior distributions
of item parameters under the two algorithms based on the four
noise levels are set as follows

• (LNL case): PGGSA: ζj ∼ N
(
−2.1972, 105

)
,βj ∼

N
(
4.3945, 105

)
I
(
βj > 0

)
. v.s. Gibbs algorithm:

sj ∼ Beta (1, 1) , gj ∼ Beta (1, 1) I
(
gj < 1− sj

)
;

• (HNL case): PGGSA: ζj ∼ N
(
−1.3863, 105

)
,βj ∼

N
(
2.7726, 105

)
I
(
βj > 0

)
. v.s. Gibbs algorithm:

sj ∼ Beta (1, 1) , gj ∼ Beta (1, 1) I
(
gj < 1− sj

)
;

• (SHG case): PGGSA: ζj ∼ N
(
−2.1972, 105

)
,βj ∼

N
(
3.5835, 105

)
I
(
βj > 0

)
. v.s. Gibbs algorithm:

sj ∼ Beta (1, 1) , gj ∼ Beta (1, 1) I
(
gj < 1− sj

)
;

• (GHS case): PGGSA: ζj ∼ N
(
−1.3863, 105

)
,βj ∼

N
(
3.5835, 105

)
I
(
βj > 0

)
. v.s. Gibbs algorithm:

sj ∼ Beta (1, 1) , gj ∼ Beta (1, 1) I
(
gj < 1− sj

)
.

PGGSA and Gibbs algorithm are iterated 20,000 times. The
first 10,000 iterations are discarded as burn-in period for the
two algorithms. Twenty-five replications are considered for the
two algorithms in this simulation study. The PSRF values of all
parameters for each simulation condition are <1.1. Culpepper’s
the R “dina” package is used to implement the Gibbs sampling.

The correct pattern classification rate (CPCR), the average
attribute match rate (AAMR) are used as the evaluation criteria
to evaluate the attributes. These statistics are defined as

CPCR =
1

N

N∑

i=1

I (αi = α̂i) , AAMA =
1

N × K

N∑

i=1

K∑

k=1

I (αik = α̂ik) .

(26)

TABLE 6 | The Q matrix design and MCMC estimations of ς and β.

Attribute(Q Matrix) ς̂ β̂

Item α1 α2 α3 α4 α5 EAP SD HPDI EAP SD HPDI

1 1 0 0 0 0 −2.3274 0.0277 [−2.4998,−1.9766] 3.3884 0.0662 [2.8484, 3.8721]

2 1 1 1 1 0 −1.2990 0.0225 [−1.5639,−1.0087] 3.4200 0.0947 [2.8714, 4.0615]

3 1 0 0 0 0 −1.2247 0.0276 [−1.5357,−1.0000] 4.2999 0.0294 [3.9575, 4.4999]

4 1 1 1 1 1 −1.8944 0.0358 [−2.2841,−1.5472] 3.8815 0.1217 [3.2857, 4.4977]

5 0 0 1 0 0 −1.7971 0.1042 [−2.4667,−1.2948] 2.9899 0.1145 [2.5007, 3.6131]

6 1 1 1 1 0 −2.3961 0.0113 [−2.4999,−2.1653] 3.7058 0.0817 [3.1377, 4.2461]

7 1 1 1 1 0 −2.1109 0.0322 [−2.4999,−1.8117] 4.3549 0.0223 [4.0401, 4.4998]

8 1 1 0 0 0 −1.3433 0.0409 [−1.7158,−1.0005] 4.1817 0.0558 [3.7427, 4.4999]

9 1 0 1 0 0 −1.6266 0.0566 [−2.0725,−1.1512] 4.2735 0.0384 [3.8794, 4.4998]

10 1 0 1 1 1 −1.5226 0.0246 [−1.8180,−1.2110] 4.1072 0.0796 [3.5678, 4.4999]

11 1 0 1 0 0 −1.7813 0.0681 [−2.3048,−1.2903] 4.0454 0.0884 [3.5121, 4.4999]

12 1 0 1 1 0 −2.3802 0.0119 [−2.4998,−2.1534] 4.2212 0.0481 [3.7945, 4.4994]

13 1 1 1 1 0 −1.8221 0.0399 [−2.2142,−1.4328] 3.5878 0.1009 [2.9818, 4.1937]

14 1 1 1 1 1 −2.4279 0.0058 [−2.4999,−2.2647] 3.8646 0.0982 [3.3310, 4.4741]

15 1 1 1 1 0 −2.4298 0.0060 [−2.4999,−2.2551] 4.0033 0.0765 [3.5339, 4.4946]

Note that α1 denotes the skill of subtract basic fractions, α2 denotes the skill of reduce and simplify, α3 denotes the skill of separate whole from fraction, α4 denotes the skill of borrow

from whole, α5 denotes the skill of convert whole to fraction. EAP denotes expected a posteriori estimator. SD denotes standard deviation. HPDI denotes 95% highest posterior density

intervals (HPDI).
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TABLE 7 | The posterior probability distribution of the latent class parameters for

the Fraction Subtraction Test.

Latent classes π̂

α1 α2 α3 α4 α5 EAP SD HPDI

0 0 0 0 0 1.909% 0.0003 [0.0000, 0.0542]

1 0 0 0 0 0.766% 0.0000 [0.0000, 0.0208]

0 1 0 0 0 1.743% 0.0002 [0.0000, 0.0504]

0 0 1 0 0 1.299% 0.0001 [0.0000, 0.0367]

0 0 0 1 0 2.001% 0.0002 [0.0000, 0.0533]

0 0 0 0 1 1.790% 0.0002 [0.0000, 0.0540]

1 1 0 0 0 0.677% 0.0000 [0.0000, 0.0190]

1 0 1 0 0 1.898% 0.0001 [0.0000, 0.0443]

1 0 0 1 0 0.756% 0.0000 [0.0000, 0.0203]

1 0 0 0 1 0.822% 0.0000 [0.0000, 0.0222]

0 1 1 0 0 1.162% 0.0001 [0.0000, 0.0339]

0 1 0 1 0 1.808% 0.0002 [0.0000, 0.0507]

0 1 0 0 1 1.943% 0.0003 [0.0000, 0.0567]

0 0 1 1 0 1.242% 0.0001 [0.0000, 0.0330]

0 0 1 0 1 1.165% 0.0001 [0.0000, 0.0328]

0 0 0 1 1 1.778% 0.0002 [0.0000, 0.0486]

1 1 1 0 0 10.146% 0.0039 [0.0002, 0.2029]

1 1 0 1 0 0.709% 0.0000 [0.0000, 0.0198]

1 1 0 0 1 0.764% 0.0000 [0.0000, 0.0205]

1 0 1 1 0 0.546% 0.0000 [0.0000, 0.0140]

1 0 1 0 1 1.782% 0.0001 [0.0000, 0.0419]

1 0 0 1 1 0.751% 0.0000 [0.0000, 0.0201]

0 1 1 1 0 1.326% 0.0001 [0.0000, 0.0370]

0 1 1 0 1 1.181% 0.0001 [0.0000, 0.0357]

0 1 0 1 1 1.675% 0.0002 [0.0000, 0.0473]

0 0 1 1 1 1.167% 0.0001 [0.0000, 0.0335]

1 1 1 1 0 9.680% 0.0002 [0.0667, 0.1264]

1 1 1 0 1 11.119% 0.0038 [0.0001, 0.2078]

1 1 0 1 1 0.688% 0.0000 [0.0000, 0.0195]

1 0 1 1 1 0.429% 0.0000 [0.0000, 0.0119]

0 1 1 1 1 1.119% 0.0001 [0.0000, 0.0320]

1 1 1 1 1 34.142% 0.0004 [0.2998, 0.3844]

Note that α1 denotes the skill of subtract basic fractions, α2 denotes the skill of reduce

and simplify, α3 denotes the skill of separate whole from fraction, α4 denotes the skill of

borrow from whole, α5 denotes the skill of convert whole to fraction.

where α̂i = (α̂i1,αi2, . . . ,αiK)
′

represents examinee i′s estimated
attribute patterns. Next, the evaluation results of the accuracy of
the two algorithms for attribute patterns and class membership
probability parameters are shown in Table 5.

In Table 5, we find that the results of the attributes
classification accuracy (CPCR and AAMA criteria) are basically
the same for PGGSA and Gibbs algorithm under four kinds of
noise levels. More specifically, the values of CPCR and AAMA
for two algorithms under the HNL case are lowest. At the LNL
case, the values of CPCR and AAMA for two algorithms are
the highest. In addition, the CPCR value for the SHG case is
lower than the CPCR value for the GHS, while the corresponding
AAMA values are basically the same for the SHG case and GHS

case. This indicates that slipping parameters (s) have important
influence on the CPCR. In term of the two algorithms, the Bias
and MSE of the classification membership parameters (π) are
basically the same and close to zero under the four noise levels.

5. EMPIRICAL EXAMPLE

In this example, a fraction subtraction test data is analyzed
based on Tatsuoka (1990), Tatsuoka (2002), and de la Torre
and Douglas (2004). The middle school students of 2,144 take
part in this test to response 15 fraction subtraction items, where
five attributes are measured, including subtract basic fractions,
reduce and simplify, separate whole from fraction, borrow from
whole, and convert whole to fraction. We choose 536 of 2,144
students in this study. These students are divided into 25 latent
classes based on the five attributes. The reparameterized DINA
model is used to analyze the cognitive response data.

The priors of parameters are also the same as the simulation 1.
I.e., the non-informative priors are used in this empirical example
analysis. To implement PGGSA, chains of length 20,000 with an
initial burn-in period 10,000 are chosen. The PSRF is used to
evaluate the convergence of each parameters. The trace plots of
PSRF values for all parameters is shown in Figure 5. We find that
the values of PSRF are <1.1.

The Q matrix, the expected a posteriori (EAP) estimators of
the item parameters, the corresponding standard deviation (SD),
and 95% highest posterior density intervals (HPDIs) of these
item parameters are shown in Table 6. Based on the Table 6, we
transform intercept and interaction parameters into traditional
slipping and guessing parameters to analyze item characteristics.
We find that the expected a posteriori (EAP) estimations of
the five items with the lowest slipping are item 3, item 8,
item 9, item 10, and item 11 in turn. The EAP estimations of
slipping parameters for the five items are 0.0461, 0.0585, 0.0708,
0.0754, and 0.1039. This shows that these items are not easy to
slipping compared with the other ten items. In addition, the EAP
estimations of five itemswith the highest guessing are item 3, item
2, item 8, item 10, and item 11 in turn. The EAP estimations
of guessing parameters for the five items are 0.2271, 0.2143,
0.2069, 0.1790, and 0.1441. Furthermore, we find that items 3,
8, 10, and 11 have low slipping parameters and high guessing
parameters, which indicates that these items are more likely to
be guessed correctly.

The EAP estimations of the class membership probabilities,
π̂c, c = 1, . . . , 32, and the corresponding SD and 95% HPDI
are reported in Table 7. The top five classes that the majority
of examinees are classified into these classes are respectively
“11111,”“11101,”“11100,”“11110,” and “00010.”The estimation
results show that π̂32 = 34.142% of the examinees have mastered
all the five skills, and π̂28 = 11.119% of the examinees have
mastered the four skills except the skill of borrow from whole,
and the examinees who only have mastered the three skills of
subtract basic fractions, reduce and simplify, separate whole from
fraction account for π̂17 = 10.146%, and π̂27 = 9.680% of the
examinees have mastered the four skills except the skill of convert
whole to fraction, and the examinees who only have mastered
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a skill of skill of borrow from whole account for π̂3 = 2.001%.
In addition, among the thirty-two classes, the class with the
lowest number of the examinees is π̂30 = 0.429%. I.e., when the
examinees have mastered the skills of subtract basic fractions,
separate whole from fraction, borrow from whole, and convert
whole to fraction, the proportion of examinees who do notmaster
the skill of reduce and simplify is very low. According to the π̂3 =

1.743% and π̂30 = 0.429%, we find that the skill of reduce and
simplify is easier to master than the other four skills.

6. CONCLUSION

In this paper, a novel and effective PGGSA based on
auxiliary variables is proposed to estimate the widely applied
DINA model. PGGSA overcomes the disadvantages of MH
algorithm, which requires to repeatedly adjust the specification
of tuning parameters to achieve a certain acceptance probability
and thus increases the computational burden. However, the
computational burden of the PGGSA becomes intensive
especially as the CDMs become more complex, when a large
number of examinees or the items is considered, or a large
number of the MCMC sample size is used. Therefore, it is
desirable to develop a standing-alone R package associated with
C++ or Fortran software for more extensive CDMs and large-
scale cognitive assessment tests.

In addition, Pólya-Gamma Gibbs sampling algorithm can be
used to estimate many cognitive diagnosis models, which is not
limited to the DINA model. These cognitive diagnostic models

include DINO (Templin and Henson, 2006), Compensatory

RUM (Hartz, 2002; Henson et al., 2009), and log-linear CDM
(LCDM; von Davier, 2005; Henson et al., 2009) and so on. More
specifically, first of all, the parameters of these cognitive diagnosis
models are reparameterized, and then the logit link function is
used to link these parameters with the response. Further, we can
use Pólya-Gamma Gibbs sampling algorithm to estimate these
reparameterized cognitive diagnosis models. Discussions of the
reparameterized cognitive diagnosis models based on logit link
function, see Henson et al. (2009).
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