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Abstract

Respiratory syncytial virus (RSV) primarily impacts infants and older adults, with seasonal

winter outbreaks in temperate countries. Biennial cycles of RSV activity have also been

identified in Northern Europe and some states in the United States. Delayed RSV activity

was reported worldwide during the 2009 influenza pandemic, and a disrupted biennial

pattern of RSV activity was observed in northern Stockholm following the pandemic.

Biennial patterns shifted to early/large outbreaks in even-numbered years and late/small

outbreaks in odd-numbered years. However, the mechanisms underpinning this change in

pattern remain unknown. In this work, we constructed an age-stratified mechanistic model

to explicitly test three factors that could lead to the change in RSV transmission dynamics:

1) birth rates, 2) temperatures, and 3) viral interference. By fitting the model to weekly RSV

admission data over a 20-year period and comparing different models, we found that viral

interference from influenza was the only mechanism that explained the shifted biennial

pattern. Our work demonstrates the complex interplay between different respiratory viruses,

providing evidence that supports the presence of interactions between the H1N1 pandemic

influenza virus and RSV at the population level, with implications for future public health

interventions.

Introduction

Respiratory syncytial virus (RSV) infections are a major public health concern for pediatric

populations, older adults, and immunocompromised individuals [1,2]. In 2019, an estimated

100,000 deaths of children under the age of 5 were attributed to RSV globally [3]. RSV is

highly seasonal, with winter epidemics in temperate countries. Biennial cycles of RSV

activity have also been identified in Northern Europe and some states in the United
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States.[4–9] In northern Stockholm, RSV activity shows a regular biennial pattern with early

and large epidemics in odd-numbered seasons (e.g., 2001/02 season), and late and small

epidemics in even-numbered seasons (e.g., 2002/03 season), influencing the risk of both

lower respiratory infection and hospitalizations [10,11].

Disruptions to RSV epidemics were observed worldwide following the 2009 influenza

pandemic, and delayed RSV activity was reported in the 2009/10 season [12–17]. In north

Stockholm, our observations revealed an unexpected annual pattern for RSV epidemics

during 2009-2011, characterized by large epidemics in two consecutive seasons. In

particular, the biennial pattern of RSV epidemics completely shifted to early and large

seasons on even-numbered years following the pandemic season. This disruption to the

previous patterns provides an opportunity to understand factors that influence the annual

and biennial epidemic cycles of RSV. To explain the change of RSV activity in northern

Stockholm, we propose three hypotheses: 1) a sudden increase of birth rates in 2009, 2)

extremely low temperatures during the winters of 2009/10 and 2010/11, and 3) the

occurrence of the 2009 influenza pandemic, which may interfere with RSV activity.

Mathematical models that explicitly depict the underlying mechanisms of virus transmission

have advantages in being able to integrate heterogeneous mechanisms and test different

hypotheses [18,19]. In this work, we started by analyzing weekly admission data for RSV

from 1998 to 2018 in north Stockholm and demonstrated when and how RSV activity was

disrupted in the area. We then constructed a mechanistic, age-stratified mathematical

model that allows us to investigate different hypotheses for why the RSV biennial pattern

may have shifted. Applying both a maximum likelihood method and a

sampling-importance-resampling method, we estimated climatic and viral interference

parameters and compared different models based on the hypotheses. Finally, we used the

best-fit model to predict RSV dynamics under different scenarios, explaining how the

number of susceptible individuals impacted RSV transmission.
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Results

Disruption of temporal patterns of RSV

Hospitalizations for RSV, from July 1998 to June 2018, were strongly seasonal and showed

an annual pattern of outbreaks occurring during the winter months in northern Stockholm

(Fig. 1A and 1B). A biennial pattern was also detected, with early/large RSV epidemics in

odd-numbered years (e.g., 1999/00 and 2001/02 years, highlighted in shaded areas, Fig.

1A) and late/small epidemics in even-numbered years (e.g., 2002/03 and 2000/01 years,

Fig. 1A) prior to 2009. In odd-numbered years prior to the 2009 influenza pandemic, the

mean timing (as indicated by the center of gravity) and the mean value of RSV activity

intensity (as indicated by the peak value of RSV hospitalizations) was 31.2 weeks and 30.6

cases, respectively, compared to 35.7 weeks and 19.2 cases in even-numbered years (Fig.

S1). However, we observed that the temporal pattern was disrupted during the 2009/10 and

2010/11 seasons. The timing of the biennial cycle exhibited a consistent pattern before

2009, but there was a sudden change in timing from 2009 to 2011 (Fig. 1C). The pattern

shifted to early/large epidemics in even-numbered years and to late/small epidemics in

odd-numbered years (highlighted in the shaded area, Fig. 1A) from 2010 to 2018. The

timing of the annual cycle was consistent over time. These patterns can be quantified using

the phase angle, which exhibits a shift in timing for the biennial cycles around 2009

Following the pandemic, the mean timing and the mean value of RSV activity intensity are

35.2 weeks and 22.8 cases in odd-numbered years, respectively, compared to 31.5 weeks

and 32 cases in even-numbered years (Fig. S1).
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Figure 1. RSV epidemics in northern Stockholm. (A) Weekly hospital admissions due to RSV from
July 1998 to June 2018 from the catchment area of Astrid Lindgren Children’s Hospital in northern
Stockholm. Odd-numbered seasons are highlighted in shaded areas. (B) The period (in years) of RSV
epidemics. (C) The phase angle (in degrees) of the annual period (gray) and biennial period (black) of
RSV epidemics.

Hypotheses for disrupted RSV dynamics

Having detected and quantified the disruption of RSV activity, we then sought to explore

what factors led to the pattern change. The disrupted period (i.e., 2009-2011 years)

coincided with three notable changes. The first observation was a sudden increase in the

birth rate. By analyzing the annual birth rate data in northern Stockholm, we found that there

was a 10% increase in the birth rate from 2010 to 2011 (Fig. S2A). Second, we observed

that the area experienced exceptionally cold weather during the winters of 2010 and 2011

(Fig. S2B). Third, the occurrence of the H1N1 influenza pandemic during the 2009-2010
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season (Fig. S2C). Therefore, we hypothesized that the three changes may be associated

with the disruption of RSV activity.

Dynamic model analyses

To explore the mechanistic relationship between these factors and the changes in the

biennial pattern, we built an age-stratified SIS (Susceptible-Infectious-Susceptible) model

for RSV transmission dynamics based upon the model from Pitzer et al. [20], accounting for

repeat infections (Fig. 2) and using natural history parameters derived from RSV cohort

studies (S1 Table). See Materials and Methods for a detailed model description.

Figure 2. Transmission dynamic model for RSV. Model diagram illustrating the structure of the RSV
transmission model (age is omitted for simplicity). Components - represent susceptible𝑆1 𝑆4
populations; components - represent infected populations, and components - represent𝐼1 𝐼4 𝑅0 𝑅4
temporarily-immune populations. The population with maternal antibodies is represented by M.
Components D and H represent the population that develops severe lower respiratory infections and
that is hospitalized, respectively. Note that the two components are not infection states in the model,
and they represent observed states. See S1 Text for detailed model equations.

To explore whether the sudden increase in birth rates explains the biennial pattern change,

we first calibrated the RSV transmission model to weekly RSV admissions from 1998 to

2008 (i.e., the seasons prior to the 2009 influenza pandemic) using a maximum likelihood
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method to estimate key parameters governing RSV transmission (see Materials and

Methods). We then forward-simulated the model with the estimated parameters. We found

that although the model could reproduce the biennial pattern before the disputed period

(i.e., 1999-2009), it could not capture the altered biennial pattern of RSV epidemics after the

pandemic season (i.e., 2009-2019, Fig. 3A). Using the same approach, we incorporated the

time-series of normalized temperatures and relative humidity data into the model, and fitted

it to weekly RSV admissions. Again, we found that the model with climatic factors could not

capture the disputed RSV epidemics following the influenza pandemic (Fig. 3B).

Next, we sought to investigate whether viral interference from influenza explains the change

in the biennial pattern of RSV transmission. For this, we introduced temporary immune

populations into the model (i.e., - , Fig. 2). We assumed that the temporary protection𝑅0 𝑅4

was mounted by influenza infection through the host innate immune response [21]. Here, we

did not explicitly model the transmission dynamics for pandemic influenza due to increased

model complexity. Instead, we used weekly influenza admissions data as model inputs, and

assumed that the conversion rate from susceptible (i.e., - ) to be temporarily immune𝑆1 𝑆4

was proportional to the number of influenza admissions.

Figure 3. Model fit to age-stratified RSV admissions to test different hypotheses (A) Model fit to
weekly RSV data, assuming no viral interference effects (i.e., , see S2 Table for estimatedξ = 0
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parameter values). (B) Model fit to weekly RSV, temperature and relative humidity data, assuming no
viral interference effects (i.e., , see S3 Table for estimated parameter values). (C) The numberξ = 0
of observed weekly RSV admissions are shown in blue; the median model prediction, given by the
median estimates of viral interference parameters, is shown in black, and other randomly selected
model predictions are shown in gray. The pandemic H1N1 influenza virus was introduced to the
model only in the 2009/10 season, and the pink dashed line indicates July 2009. Correlations
between (D) the center of gravity (in weeks) and (E) the intensity of observed and predicted seasonal
RSV epidemics from the best-fit model with the viral interference effect.

To estimate the effect of viral interference (i.e., ) and the duration of temporary protectionξ

(i.e., ), we implemented a sampling-importance resampling method (see Materials andη

Methods for details). With viral interference effects from influenza, we found that the model

could successfully capture the observed RSV dynamics (Fig. 3C). The model was able to

reproduce the shifted biennial pattern following the 2009/10 pandemic season, as observed

in the data, showing late/small epidemics in odd-numbered years and early/large epidemics

in even-numbered years. Notably, the model predicted a larger epidemic for the 2010/11

season as observed. We further calculated the intensity and mean timing of RSV activity of

each epidemic season for both observed and model-predicted data from different models.

For the models without the viral interference effect, we found negative correlations between

the observed and predicted center of gravity (Fig. S3A, S3C) and between the observed

and predicted RSV intensity (Fig. S3B, S3D), indicating poor alignment between the data

and model predictions. Instead, we found a positive correlation between the observed and

predicted center of gravity of RSV epidemics (Fig. 3D, Pearson's correlation coefficient =𝑟

0.56, p < 0.001), and between the observed and predicted RSV intensity (Fig. 3E, = 0.73,𝑟

p < 0.001). The results showed that the model with viral interference effects well

represented the observed RSV dynamics and the shifted biennial patterns, suggesting viral

interference from influenza had a significant role in impacting RSV transmission. We further

investigated if incorporating climate factors into the viral interference model improved the

model fit. However, we found that including temperature and relative humidity data did not

enhance the model fit (Fig. S4).

Parameter estimates suggest viral interference

The identified marginal distributions for viral interference parameters provided insight into

the effect of viral interference (i.e., ) and the duration of temporary protection (i.e., ) fromξ η

influenza against RSV infection (Fig. 4). The median estimate for the viral interference effect

parameter (on a log10-scale) was -1.80, with a 95% credible interval (CI) [-2.20, -1.12] (Fig.

4A). The median estimate for the duration of temporary immunity was 6.78 days with a 95%
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CI [1.46, 16.10] (Fig. 4B). The results suggest the existence of a viral interference effect from

pandemic influenza that contributed to the disrupted biennial pattern of RSV epidemics.

Notably, we observed a nonlinear negative correlation ( = 0.95, p < 0.001) between the two𝑟

viral interference parameters (Fig. 4C). We also found that the sampled parameter sets were

more concentrated around and reached the highest density at an effect size of 0.03 per

influenza case per week, and at the duration of protection of 3.76 days. The results

indicated a short-lived protection provided by host immunity against subsequent RSV

infection.

Figure 4. Estimated parameter space for viral interference parameters. (A) The marginal
distribution for the effect of viral interference parameter ( , on a log10-scale). The median estimate isξ
indicated by a red dashed line. (B) The marginal distribution for the duration of viral interference
parameter ( ). (C) Correlation between the estimated effects and the duration of viral interference.η
The parameter set with the highest density is represented by the black point.
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Linking susceptible population dynamics to RSV epidemics

Having demonstrated that the change of the RSV biennial pattern can be explained by viral

interference from the pandemic H1N1 influenza, we then sought to understand how viral

interference disrupted RSV epidemics. For this, we aggregated model-predicted time series

of susceptible populations from 2008 to 2012 (i.e., S1, Fig. 5; S2-S4 see Figs. S5-S7) of all

age groups from the best-fitting model with and without the viral interference effect,

respectively. We found a temporal change of susceptible populations in the presence of

viral interference. The temporary conversion of the susceptible population (i.e., S1, Fig. 5A)

to the temporarily-immune population (i.e., R1, Fig. 5A) delayed the availability of

susceptible individuals for RSV infection, consequently delaying an RSV epidemic in the

2009/10 season (Fig. 5B). This also provided an explanation for a large epidemic in the

2010/11 season, as there were more susceptible individuals after the pandemic season.

Furthermore, we observed that the altered susceptible population dynamic did not revert to

its pre-pandemic pattern, leading to the shifted biennial pattern for RSV transmission (Fig.

5B).

Figure 5. Model predictions of RSV epidemics following the influenza pandemic. (A) Predicted
time series of susceptible populations in the absence (black curve) or in the presence (red curve) of
viral interference effects. The predicted time series of the temporarily immune population is shown in
blue. (B) Predicted time series of infected populations in the absence (black curve) or in the presence
(red curve) of viral interference effects. Observed data are shown in blue. Predicted time series of
recovered susceptible populations (i.e., S2-S4) and reinfected susceptible populations (i.e., - )𝐼2 𝐼4
are provided in Figs. S5-S7.
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Discussion

By analyzing the unexpected disruption of the biennial pattern of RSV epidemics in northern

Stockholm, we found evidence supporting the presence of immunological interactions

between the 2009 H1N1 pandemic influenza virus and RSV [21,22] at the population level.

Using an age-stratified dynamic transmission model for RSV, we assessed three

hypotheses for the shift in the biennial pattern of RSV. We demonstrated that the sudden

rise in birth rates and unusually cold temperatures in 2009/10 and 2010/11 could not

explain the disruptions in RSV activity. Instead, only the model incorporating viral

interference effects could successfully reproduce the observed RSV pattern change

following the 2009 influenza pandemic, implying a significant role of viral interference from

influenza in influencing RSV transmission. By applying both a maximum likelihood method

and a sampling-importance resampling method, we estimated viral interference parameters,

showing the presence of viral interference from influenza on subsequent RSV infection for a

short period of time. In our previous work, we also demonstrated the presence of viral

interference effects from influenza that impacted RSV epidemics following the 2009

influenza pandemic in the United States [23]. We further analyzed the model-predicted time

series of susceptible populations, revealing that the change in the biennial pattern of RSV

could be explained by temporary disruptions in the susceptible population.

Mechanistic models provide a valuable approach for dissecting underlying causal

relationships among different components, integrating heterogeneous mechanisms and

studying various hypotheses. The presence of viral interaction between different viruses is

evident at the host level [24–28]. In particular, within-host effects of viral interference from

the pandemic H1N1 virus to subsequent RSV infection has been studied using a ferret

model [21]. Here, by utilizing a mechanistic model and fitting it to the dataset capturing

unusual disruptions of the biennial pattern of RSV, we demonstrated the impact of viral

interference on RSV transmission at the population level. One key finding from the model

estimates is that temporary protection from viral interference to subsequent RSV infection is

transient, lasting less than a week. This finding is consistent with an in vivo study [21],

indicating that viral interference effects were only observed when the time interval between

primary and challenge infections was less than 7 days.
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Changes in birth rates have been shown to affect infectious disease dynamics. Models that

incorporate changes in birth rates and vaccination levels can explain the complex transition

from annual epidemics to irregular or multi-year cycles in measles incidence [29]. More

generally, Morris et al. have shown that for diseases with high rates of loss of immunity, a

change in birth rate will have negligible impact on the timing of epidemics [30]. Longer-term

variations in birth rates may help explain changing patterns of RSV epidemics, such as the

transition from a biennial pattern to an annual pattern during the 2000s in California, United

States [20]. By contrast, our results showed that a temporary increase of birth rates in 2009

was not sufficient to explain the shift in the biennial pattern of RSV activity in northern

Stockholm. Although there may be a delayed and/or long-term impact of birth rates on RSV

dynamics, more work is needed to understand the causal relationship between birth rates

and RSV transmission.

Using statistical or mathematical models, several studies have examined the relationship

between climatic factors and RSV seasonality, and a significant association was found

between temperature [31–36], potential evapotranspiration [20], vapor pressure [20],

precipitation [20], and relative/absolute humidity [34,37] and RSV activity in different

geographic areas. In particular, Baker et al. demonstrated that local climate changes would

influence the future dynamics of RSV epidemics, and the timing and intensity of RSV

outbreaks would vary by location, influenced by the actual changes in climate [38]. Here,

our results showed that the fluctuation of climatic variables, including temperatures and

relative humidity, were not key factors responsible for the back-to-back large RSV

epidemics in 2009/10 and 2010/11 seasons in northern Stockholm. Climatic factors alone

could not reproduce the observed RSV pattern, and incorporating them into the viral

interference model did not improve its ability to explain the data. It is possible that extreme

temperatures in a single season might temporarily affect the timing of RSV activity, but they

are unlikely to have a lasting impact on RSV transmission. Additional studies across

different geographic settings could provide more insights into how different climatic factors

affect RSV activity.

There are some limitations to our study. First, we did not explicitly model RSV-A and RSV-B

in this work due to data scarcity in northern Stockholm. It is possible that the interaction

between RSV types A and B may help to explain some of the RSV transmission dynamics,
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as shown in [39]. However, differences in the predominant circulating subtype of RSV is

unlikely to be the main driver of biennial patterns of RSV transmission [5,40,41]. Second, we

could not differentiate between genetic subtypes of influenza viruses due to data

limitations, and our model only took into account influenza cases in the 2009/10 season,

assuming all admissions were due to infection with the pandemic H1N1 influenza virus. This

assumption is reasonable, because the pandemic H1N1 influenza virus circulated as the

dominating influenza virus in the 2009/10 season in Sweden (96.9% of 51,000 tested

samples were pandemic H1N1), and only influenza B was detected in the 2010/11 season

[42]. We assumed that viral interference occurs only with the pandemic H1N1 virus and not

with other A subtypes of influenza or influenza B. This assumption is based on the fact that

the innate immunity is stimulated differently by the pandemic influenza virus compared to

other seasonal influenza viruses (see review [40]). Third, we did not have age information on

the weekly admissions for RSV and influenza. Therefore, we assumed a well-mixed

population and did not account for varying levels of immunity across different age groups

beyond the age-specific contact matrices. We also tested a different model structure in

which we assumed that only older age groups could be temporarily protected by influenza

infection, but the model did not fit the data better.

Understanding the impact of the dynamics of susceptible populations on the transmission

of infectious diseases is critical for predicting and preparing for future outbreaks. By

studying the unique biennial pattern change in northern Stockholm, our study demonstrated

the complex interplay between different respiratory viruses and the implications for public

health interventions. We highlighted that even a temporary, small disruption of the

susceptible population caused by cross-protection mediated by viral interference effects led

to a change in RSV activity. The delay in the RSV epidemic during the 2009/10 season was

attributed to a temporary reduction in susceptible individuals, while the subsequent

increase in susceptibility led to a larger epidemic in the 2010/11 season. Similar results

were shown in a simulation study [43], where larger RSV outbreaks were expected after

non-pharmaceutical interventions were relaxed following the COVID-19 pandemic. A key

implication of the association between the dynamics of susceptible populations and RSV

transmission is that even a transient perturbation in susceptible populations could lead to a

shifted pattern of disease transmission. This can be crucial for deploying and evaluating

different vaccination strategies, and for assessing how vaccination coverage affects
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long-term disease patterns, contributing to informed decision-making in public health

interventions.

Materials and Methods

Data sources

The data were obtained from microbiologically verified pediatric hospitalizations due to RSV

and influenza virus at the Karolinska University Hospital. There was a consistent catchment

area for the hospital between July 1998 to June 2018. We also obtained data on annual

birth rates within the catchment area and weekly climate data, including temperature,

precipitation, and air pressure.

Demographic data

We used the smooth.spline function (with 10 degrees of freedom) implemented in R (version

4.3.2) to interpolate weekly birth rates. Within our transmission model, we divided the <1

year age class into 12-month age groups to more accurately capture aging among this age

class. The remaining population was divided into 9 age classes: [1,2) years, [2,3) years, [3,4)

years, [4,5) years, 5–9 years, 10–19 years, 20–39 years, 40–59 years and above 60 years

old. We estimated the net rate of immigration/emigration for each age group (detailed in S1

Text) to produce a rate of population growth and age structure similar to that of northern

Stockholm. Data on age-specific contact rates were obtained from [20] specifically, we

used the POLYMOD contact matrix from the Netherlands which had a similar contact

pattern as Sweden. Demographic data used in this study are publicly available on Github:

https://github.com/keli5734/Sweden_study.

Climatic data

The climatic variables used in this study were temperature (in Celsius) and relative humidity

(as a percentage) from July 1998 to June 2018, and were available from on Github:

https://github.com/keli5734/Sweden_study. Weekly averages were calculated from the daily

data. To incorporate the climate data into the RSV transmission model, we normalized the

data to between -1 and 1.
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The center of gravity and the intensity of RSV activity

The center of gravity of RSV activity for each season ( ) was measured as the mean𝐺
𝑠

epidemic week, with each week weighted by the weekly number of admissions ( ), such𝑌
𝑠,𝑤

that , where is an index for the week of each epidemic𝐺
𝑠

=
𝑤∈[1:52]

∑ 𝑤 × 𝑌
𝑠,𝑤

 / 
𝑤∈[1:52]

∑ 𝑌
𝑠,𝑤

𝑤

season, . The intensity of RSV activity for each season was determined by the maximal𝑠

values of hospitalizations.

Wavelet analysis

We obtained the timing of RSV epidemics in each season based on phase decomposition

obtained from wavelet analysis [44,45]. In the wavelet analysis, we used the 0.8–1.5 year

periodicity band from the wavelet spectrum to extract weekly phases.

Dynamic model description

Here, we used an age-stratified SIS (Susceptible-Infectious-Susceptible) model for RSV

transmission dynamics. The model was proposed by Pitzer et al. [20] to study the

environmental drivers of the spatiotemporal dynamics of RSV in the US. The model

assumed individuals are born with protective maternal immunity, which wanes

exponentially, leaving the infants susceptible to infection. We assumed a progressive

build-up of immunity following up to four previous infections. Following infection with RSV,

individuals develop partial immunity, reducing the rate of subsequent infection and relative

infectiousness of the following infections. We also assumed subsequent infections have a

shorter recovery time compared to the primary infection. The model was described by a

system of ordinary differential equations (ODEs); see S1 Text for details.

Parameter estimation

We first calibrated the transmission dynamic model for RSV to weekly RSV admissions from

July 1998 to June 2008 (i.e., 11 seasons before the influenza pandemic). We estimated four

parameters: a seasonal amplitude parameter ( ), a seasonal offset parameter ( , a baselineα ϕ)
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transmission rate parameter ( ), and a reporting fraction parameter ( ). Note that the forceβ
0

𝑓

of infection is given by , where denotes all infection states.λ = β
0
(1 + α cos(2π𝑣𝑡 − ϕ))𝐼* 𝐼*

Two additional parameters were estimated when climate data were incorporated into the

model: seasonal amplitude parameters for temperatures ( ) and relative humidity (α
𝑇𝑒𝑚𝑝

), such thatα
𝑅𝑒𝑙𝐻𝑢𝑚

λ = β
0
(1 + α cos(2π𝑣𝑡 − ϕ) + α

𝑇𝑒𝑚𝑝
× 𝑇𝑒𝑚𝑝 +  α

𝑅𝑒𝑙𝐻𝑢𝑚
× 𝑅𝑒𝑙𝐻𝑢𝑚 )𝐼*

where and are normalized data of temperatures and relative humidity. We𝑇𝑒𝑚𝑝 𝑅𝑒𝑙𝐻𝑢𝑚

estimated these parameters using a maximum likelihood approach, assuming the number of

hospitalizations in each age class during each week was Poisson-distributed with a mean

equal to the model-predicted number times the estimated reporting fraction. Other

parameter values for the model were adopted from [20], and they are provided in S1 Table.

We seeded the model with one RSV-infected individual in each age group except the <1

year group then used a burn-in period of 41 years to ensure the model reached a

quasi-equilibrium steady state.

To estimate viral interference parameters, we applied a sampling-importance resampling

method. We first used Latin Hypercube Sampling (LHS) to generate representative samples

from a wide range of values for the parameter space , where is a viralΦ = (ξ,  η) ξ

interference effect parameter, and is a parameter for the duration of viral interference. Weη

drew 100,000 samples from a uniform distribution for , and from a uniform𝑈(–5,  0) log
10

(ξ)

distribution for . Note that we drew samples using a log10-scale for the𝑈(1,  21) η

parameter because we had no prior knowledge of the magnitude of the parameter. Then,ξ

we generated forward simulations using the sampled parameter sets and fitted them to

weekly RSV admissions from July 2008 to June 2018. We calculated the log-likelihoods of

the model under each parameter set, assuming the number of hospitalizations in each age

class during each week was Poisson-distributed with a mean equal to the model-predicted

number times the estimated reporting fraction. We then normalized the log-likelihoods (as

weights) of each parameter set and resampled 10,000 parameters from the joint distribution

based on the weights.

15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.09.24310749doi: medRxiv preprint 

https://paperpile.com/c/36JZOj/yDxw
https://doi.org/10.1101/2024.08.09.24310749
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgments

This work was supported by a grant from the National Institutes of Health (R01AI137093).

The content is solely the responsibility of the authors and does not necessarily represent

the official views of the National Institutes of Health.

Competing interest statement

DMW has received consulting fees from Pfizer, Merck, and GSK, unrelated to this

manuscript, and has been PI on research grants from Pfizer and Merck to Yale, unrelated to

this manuscript.

Data and code availability

We used the R statistical software (v4.0.2) for all statistical analyses and visualization. Data

and code used in this study are publicly available on Github:

https://github.com/keli5734/Sweden_study

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.09.24310749doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.09.24310749
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

1. Tin Tin Htar M, Yerramalla MS, Moïsi JC, Swerdlow DL. The burden of respiratory
syncytial virus in adults: a systematic review and meta-analysis. Epidemiol Infect.
2020;148: e48.

2. Shi T, McAllister DA, O’Brien KL, Simoes EAF, Madhi SA, Gessner BD, et al. Global,
regional, and national disease burden estimates of acute lower respiratory infections
due to respiratory syncytial virus in young children in 2015: a systematic review and
modelling study. Lancet. 2017;390: 946–958.

3. Li Y, Wang X, Blau DM, Caballero MT, Feikin DR, Gill CJ, et al. Global, regional, and
national disease burden estimates of acute lower respiratory infections due to
respiratory syncytial virus in children younger than 5 years in 2019: a systematic
analysis. Lancet. 2022;399: 2047–2064.

4. Mlinaric-Galinovic G, Welliver RC, Vilibic-Cavlek T, Ljubin-Sternak S, Drazenovic V,
Galinovic I, et al. The biennial cycle of respiratory syncytial virus outbreaks in Croatia.
Virol J. 2008;5: 18.

5. Waris M. Pattern of respiratory syncytial virus epidemics in Finland: two-year cycles with
alternating prevalence of groups A and B. J Infect Dis. 1991;163: 464–469.

6. Berner R, Schwoerer F, Schumacher RF, Meder M, Forster J. Community and
nosocomially acquired respiratory syncytial virus infection in a German paediatric
hospital from 1988 to 1999. Eur J Pediatr. 2001;160: 541–547.

7. Weigl JAI, Puppe W, Schmitt HJ. Seasonality of respiratory syncytial virus-positive
hospitalizations in children in Kiel, Germany, over a 7-year period. Infection. 2002;30:
186–192.

8. Duppenthaler A, Gorgievski-Hrisoho M, Frey U, Aebi C. Two-year periodicity of
respiratory syncytial virus epidemics in Switzerland. Infection. 2003;31: 75–80.

9. Bloom-Feshbach K, Alonso WJ, Charu V, Tamerius J, Simonsen L, Miller MA, et al.
Latitudinal variations in seasonal activity of influenza and respiratory syncytial virus
(RSV): a global comparative review. PLoS One. 2013;8: e54445.

10. Eriksson M, Bennet R, Rotzén-Östlund M, von Sydow M, Wirgart BZ. Population‐based
rates of severe respiratory syncytial virus infection in children with and without risk
factors, and outcome in a tertiary care setting. Acta Paediatr. 2002;91: 593–598.

11. Reyes M, Eriksson M, Bennet R, Hedlund K-O, Ehrnst A. Regular pattern of respiratory
syncytial virus and rotavirus infections and relation to weather in Stockholm,
1984--1993. Clin Microbiol Infect. 1997;3: 640–646.

12. Casalegno JS, Ottmann M, Bouscambert-Duchamp M, Valette M, Morfin F, Lina B.
Impact of the 2009 influenza A(H1N1) pandemic wave on the pattern of hibernal
respiratory virus epidemics, France, 2009. Euro Surveill. 2010;15. Available:
https://www.ncbi.nlm.nih.gov/pubmed/20158981

13. Meningher T, Hindiyeh M, Regev L, Sherbany H, Mendelson E, Mandelboim M.
Relationships between A(H1N1)pdm09 influenza infection and infections with other
respiratory viruses. Influenza Other Respi Viruses. 2014;8: 422–430.

17

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.09.24310749doi: medRxiv preprint 

http://paperpile.com/b/36JZOj/B1fI
http://paperpile.com/b/36JZOj/B1fI
http://paperpile.com/b/36JZOj/B1fI
http://paperpile.com/b/36JZOj/D0o5
http://paperpile.com/b/36JZOj/D0o5
http://paperpile.com/b/36JZOj/D0o5
http://paperpile.com/b/36JZOj/D0o5
http://paperpile.com/b/36JZOj/HihY
http://paperpile.com/b/36JZOj/HihY
http://paperpile.com/b/36JZOj/HihY
http://paperpile.com/b/36JZOj/HihY
http://paperpile.com/b/36JZOj/HkMV
http://paperpile.com/b/36JZOj/HkMV
http://paperpile.com/b/36JZOj/HkMV
http://paperpile.com/b/36JZOj/m2qR
http://paperpile.com/b/36JZOj/m2qR
http://paperpile.com/b/36JZOj/ktrx
http://paperpile.com/b/36JZOj/ktrx
http://paperpile.com/b/36JZOj/ktrx
http://paperpile.com/b/36JZOj/jpHj
http://paperpile.com/b/36JZOj/jpHj
http://paperpile.com/b/36JZOj/jpHj
http://paperpile.com/b/36JZOj/c7eQ
http://paperpile.com/b/36JZOj/c7eQ
http://paperpile.com/b/36JZOj/H5Jk
http://paperpile.com/b/36JZOj/H5Jk
http://paperpile.com/b/36JZOj/H5Jk
http://paperpile.com/b/36JZOj/4FWi
http://paperpile.com/b/36JZOj/4FWi
http://paperpile.com/b/36JZOj/4FWi
http://paperpile.com/b/36JZOj/ovmk
http://paperpile.com/b/36JZOj/ovmk
http://paperpile.com/b/36JZOj/ovmk
http://paperpile.com/b/36JZOj/Obw5
http://paperpile.com/b/36JZOj/Obw5
http://paperpile.com/b/36JZOj/Obw5
https://www.ncbi.nlm.nih.gov/pubmed/20158981
http://paperpile.com/b/36JZOj/EJ9o
http://paperpile.com/b/36JZOj/EJ9o
http://paperpile.com/b/36JZOj/EJ9o
https://doi.org/10.1101/2024.08.09.24310749
http://creativecommons.org/licenses/by-nc-nd/4.0/


14. Hirsh S, Hindiyeh M, Kolet L, Regev L, Sherbany H, Yaary K, et al. Epidemiological
changes of respiratory syncytial virus (RSV) infections in Israel. PLoS One. 2014;9:
e90515.

15. Schnepf N, Resche-Rigon M, Chaillon A, Scemla A, Gras G, Semoun O, et al. High
burden of non-influenza viruses in influenza-like illness in the early weeks of H1N1v
epidemic in France. PLoS One. 2011;6: e23514.

16. Mak GC, Wong AH, Ho WYY, Lim W. The impact of pandemic influenza A (H1N1) 2009
on the circulation of respiratory viruses 2009-2011. Influenza Other Respi Viruses.
2012;6: e6–10.

17. Yang L, Chan KH, Suen LKP, Chan KP, Wang X, Cao P, et al. Impact of the 2009 H1N1
Pandemic on Age-Specific Epidemic Curves of Other Respiratory Viruses: A
Comparison of Pre-Pandemic, Pandemic and Post-Pandemic Periods in a Subtropical
City. PLoS One. 2015;10: e0125447.

18. Grassly NC, Fraser C. Mathematical models of infectious disease transmission. Nat Rev
Microbiol. 2008;6: 477–487.

19. Pinky L, Dobrovolny HM. Epidemiological Consequences of Viral Interference: A
Mathematical Modeling Study of Two Interacting Viruses. Front Microbiol. 2022;13:
830423.

20. Pitzer VE, Viboud C, Alonso WJ, Wilcox T, Metcalf CJ, Steiner CA, et al. Environmental
drivers of the spatiotemporal dynamics of respiratory syncytial virus in the United States.
PLoS Pathog. 2015;11: e1004591.

21. Chan KF, Carolan LA, Korenkov D, Druce J, McCaw J, Reading PC, et al. Investigating
Viral Interference Between Influenza A Virus and Human Respiratory Syncytial Virus in
a Ferret Model of Infection. J Infect Dis. 2018;218: 406–417.

22. Laurie KL, Guarnaccia TA, Carolan LA, Yan AWC, Aban M, Petrie S, et al. Interval
Between Infections and Viral Hierarchy Are Determinants of Viral Interference Following
Influenza Virus Infection in a Ferret Model. J Infect Dis. 2015;212: 1701–1710.

23. Li K, Thindwa D, Weinberger DM, Pitzer VE. The role of viral interference in shaping
RSV epidemics following the 2009 H1N1 influenza pandemic. medRxiv. 2024.
doi:10.1101/2024.02.25.24303336

24. Haney J, Vijayakrishnan S, Streetley J, Dee K, Goldfarb DM, Clarke M, et al. Coinfection
by influenza A virus and respiratory syncytial virus produces hybrid virus particles. Nat
Microbiol. 2022;7: 1879–1890.

25. Wu A, Mihaylova VT, Landry ML, Foxman EF. Interference between rhinovirus and
influenza A virus: a clinical data analysis and experimental infection study. Lancet
Microbe. 2020;1: e254–e262.

26. Cheemarla NR, Watkins TA, Mihaylova VT, Wang B, Zhao D, Wang G, et al. Dynamic
innate immune response determines susceptibility to SARS-CoV-2 infection and early
replication kinetics. J Exp Med. 2021;218. doi:10.1084/jem.20210583

27. Swets MC, Russell CD, Harrison EM, Docherty AB, Lone N, Girvan M, et al.
SARS-CoV-2 co-infection with influenza viruses, respiratory syncytial virus, or
adenoviruses. Lancet. 2022;399: 1463–1464.

18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.09.24310749doi: medRxiv preprint 

http://paperpile.com/b/36JZOj/1AFx
http://paperpile.com/b/36JZOj/1AFx
http://paperpile.com/b/36JZOj/1AFx
http://paperpile.com/b/36JZOj/4M07
http://paperpile.com/b/36JZOj/4M07
http://paperpile.com/b/36JZOj/4M07
http://paperpile.com/b/36JZOj/9TcU
http://paperpile.com/b/36JZOj/9TcU
http://paperpile.com/b/36JZOj/9TcU
http://paperpile.com/b/36JZOj/eEU3
http://paperpile.com/b/36JZOj/eEU3
http://paperpile.com/b/36JZOj/eEU3
http://paperpile.com/b/36JZOj/eEU3
http://paperpile.com/b/36JZOj/PqyH
http://paperpile.com/b/36JZOj/PqyH
http://paperpile.com/b/36JZOj/dLGs
http://paperpile.com/b/36JZOj/dLGs
http://paperpile.com/b/36JZOj/dLGs
http://paperpile.com/b/36JZOj/yDxw
http://paperpile.com/b/36JZOj/yDxw
http://paperpile.com/b/36JZOj/yDxw
http://paperpile.com/b/36JZOj/Pt96
http://paperpile.com/b/36JZOj/Pt96
http://paperpile.com/b/36JZOj/Pt96
http://paperpile.com/b/36JZOj/IsjD
http://paperpile.com/b/36JZOj/IsjD
http://paperpile.com/b/36JZOj/IsjD
http://paperpile.com/b/36JZOj/OqXl
http://paperpile.com/b/36JZOj/OqXl
http://paperpile.com/b/36JZOj/OqXl
http://dx.doi.org/10.1101/2024.02.25.24303336
http://paperpile.com/b/36JZOj/e1va
http://paperpile.com/b/36JZOj/e1va
http://paperpile.com/b/36JZOj/e1va
http://paperpile.com/b/36JZOj/03bM
http://paperpile.com/b/36JZOj/03bM
http://paperpile.com/b/36JZOj/03bM
http://paperpile.com/b/36JZOj/8w9I
http://paperpile.com/b/36JZOj/8w9I
http://paperpile.com/b/36JZOj/8w9I
http://dx.doi.org/10.1084/jem.20210583
http://paperpile.com/b/36JZOj/9bEW
http://paperpile.com/b/36JZOj/9bEW
http://paperpile.com/b/36JZOj/9bEW
https://doi.org/10.1101/2024.08.09.24310749
http://creativecommons.org/licenses/by-nc-nd/4.0/


28. Czerkies M, Kochańczyk M, Korwek Z, Prus W, Lipniacki T. RSV protects bystander
cells against IAV infection by triggering secretion of type I and type III interferons.
bioRxiv. 2022. p. 2021.10.11.463877. doi:10.1101/2021.10.11.463877

29. Earn DJ, Rohani P, Bolker BM, Grenfell BT. A simple model for complex dynamical
transitions in epidemics. Science. 2000;287: 667–670.

30. Morris SE, Pitzer VE, Viboud C, Metcalf CJE, Bjørnstad ON, Grenfell BT. Demographic
buffering: titrating the effects of birth rate and imperfect immunity on epidemic dynamics.
J R Soc Interface. 2015;12: 20141245.

31. Stensballe LG, Devasundaram JK, Simoes EA. Respiratory syncytial virus epidemics:
the ups and downs of a seasonal virus. Pediatr Infect Dis J. 2003;22: S21–32.

32. Paiva TM, Ishida MA, Benega MA, Constantino CRA, Silva DBB, Santos KCO, et al.
Shift in the timing of respiratory syncytial virus circulation in a subtropical megalopolis:
implications for immunoprophylaxis. J Med Virol. 2012;84: 1825–1830.

33. du Prel J-B, Puppe W, Gröndahl B, Knuf M, Weigl JAI, Schaaff F, et al. Are
meteorological parameters associated with acute respiratory tract infections? Clin Infect
Dis. 2009;49: 861–868.

34. Lapeña S, Robles MB, Castañón L, Martínez JP, Reguero S, Alonso MP, et al. Climatic
factors and lower respiratory tract infection due to respiratory syncytial virus in
hospitalised infants in northern Spain. Eur J Epidemiol. 2005;20: 271–276.

35. Noyola DE, Mandeville PB. Effect of climatological factors on respiratory syncytial virus
epidemics. Epidemiol Infect. 2008;136: 1328–1332.

36. Meerhoff TJ, Paget JW, Kimpen JL, Schellevis F. Variation of respiratory syncytial virus
and the relation with meteorological factors in different winter seasons. Pediatr Infect Dis
J. 2009;28: 860–866.

37. Welliver R. The relationship of meteorological conditions to the epidemic activity of
respiratory syncytial virus. Paediatr Respir Rev. 2009;10 Suppl 1: 6–8.

38. Baker RE, Mahmud AS, Wagner CE, Yang W, Pitzer VE, Viboud C, et al. Epidemic
dynamics of respiratory syncytial virus in current and future climates. Nat Commun.
2019;10: 5512.

39. White LJ, Waris M, Cane PA, Nokes DJ, Medley GF. The transmission dynamics of
groups A and B human respiratory syncytial virus (hRSV) in England & Wales and
Finland: seasonality and cross-protection. Epidemiol Infect. 2005;133: 279–289.

40. Mlinaric-Galinovic G, Tabain I, Kukovec T, Vojnovic G, Bozikov J, Bogovic-Cepin J, et al.
Analysis of biennial outbreak pattern of respiratory syncytial virus according to subtype
(A and B) in the Zagreb region. Pediatr Int. 2012;54: 331–335.

41. Mufson MA, Belshe RB, Örvell C, Norrby E. Respiratory Syncytial Virus Epidemics:
Variable Dominance of Subgroups A and B Strains Among Children, 1981–1986. J
Infect Dis. 1988;157: 143–148.

42. The influenza A(H1N1) 2009 pandemic in Sweden, 2009–2010. [cited 1 May 2024].
Available:
https://www.folkhalsomyndigheten.se/publikationer-och-material/publikationsarkiv/t/the-i
nfluenza-ah1n12009-pandemic-in-sweden-2009-2010/

19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.09.24310749doi: medRxiv preprint 

http://paperpile.com/b/36JZOj/N9ry
http://paperpile.com/b/36JZOj/N9ry
http://paperpile.com/b/36JZOj/N9ry
http://dx.doi.org/10.1101/2021.10.11.463877
http://paperpile.com/b/36JZOj/Qouu
http://paperpile.com/b/36JZOj/Qouu
http://paperpile.com/b/36JZOj/ZKtO
http://paperpile.com/b/36JZOj/ZKtO
http://paperpile.com/b/36JZOj/ZKtO
http://paperpile.com/b/36JZOj/4sqX
http://paperpile.com/b/36JZOj/4sqX
http://paperpile.com/b/36JZOj/lQKv
http://paperpile.com/b/36JZOj/lQKv
http://paperpile.com/b/36JZOj/lQKv
http://paperpile.com/b/36JZOj/MUtV
http://paperpile.com/b/36JZOj/MUtV
http://paperpile.com/b/36JZOj/MUtV
http://paperpile.com/b/36JZOj/wsdL
http://paperpile.com/b/36JZOj/wsdL
http://paperpile.com/b/36JZOj/wsdL
http://paperpile.com/b/36JZOj/rLo0
http://paperpile.com/b/36JZOj/rLo0
http://paperpile.com/b/36JZOj/asSC
http://paperpile.com/b/36JZOj/asSC
http://paperpile.com/b/36JZOj/asSC
http://paperpile.com/b/36JZOj/zpH0
http://paperpile.com/b/36JZOj/zpH0
http://paperpile.com/b/36JZOj/C0sp
http://paperpile.com/b/36JZOj/C0sp
http://paperpile.com/b/36JZOj/C0sp
http://paperpile.com/b/36JZOj/OAXU
http://paperpile.com/b/36JZOj/OAXU
http://paperpile.com/b/36JZOj/OAXU
http://paperpile.com/b/36JZOj/2bOA
http://paperpile.com/b/36JZOj/2bOA
http://paperpile.com/b/36JZOj/2bOA
http://paperpile.com/b/36JZOj/BASA
http://paperpile.com/b/36JZOj/BASA
http://paperpile.com/b/36JZOj/BASA
http://paperpile.com/b/36JZOj/krVP
http://paperpile.com/b/36JZOj/krVP
https://www.folkhalsomyndigheten.se/publikationer-och-material/publikationsarkiv/t/the-influenza-ah1n12009-pandemic-in-sweden-2009-2010/
https://www.folkhalsomyndigheten.se/publikationer-och-material/publikationsarkiv/t/the-influenza-ah1n12009-pandemic-in-sweden-2009-2010/
https://doi.org/10.1101/2024.08.09.24310749
http://creativecommons.org/licenses/by-nc-nd/4.0/


43. Baker RE, Park SW, Yang W, Vecchi GA, Metcalf CJE, Grenfell BT. The impact of
COVID-19 nonpharmaceutical interventions on the future dynamics of endemic
infections. Proceedings of the National Academy of Sciences. 2020;117: 30547–30553.

44. Viboud C, Bjørnstad ON, Smith DL, Simonsen L, Miller MA, Grenfell BT. Synchrony,
waves, and spatial hierarchies in the spread of influenza. Science. 2006;312: 447–451.

45. Grenfell BT, Bjørnstad ON, Kappey J. Travelling waves and spatial hierarchies in
measles epidemics. Nature. 2001;414: 716–723.

20

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.09.24310749doi: medRxiv preprint 

http://paperpile.com/b/36JZOj/PbXC
http://paperpile.com/b/36JZOj/PbXC
http://paperpile.com/b/36JZOj/PbXC
http://paperpile.com/b/36JZOj/U0Kz
http://paperpile.com/b/36JZOj/U0Kz
http://paperpile.com/b/36JZOj/x3Bj
http://paperpile.com/b/36JZOj/x3Bj
https://doi.org/10.1101/2024.08.09.24310749
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Materials

Supplements Figure 1 Measurements of RSV activity in northern Stockholm. (A) The mean
timing (measured by the center of gravity, in week) of RSV epidemics. The vertical dashed line
denotes the influenza pandemic 2009. (B) The intensity of RSV activity (measured by the peak value
of RSV hospitalizations in each season). Colors indicate even-numbered (red) or odd-numbered
(cyan) years.
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Supplements Figure 2 Time series data. (A) Annual Birth rates from 1998 to 2018 in northern
Stockholm. (B)Weekly temperature (normalized) data. (C)Weekly admissions for influenza from 1998
to 2016. Note that we only used the data from pandemic seasons (highlighted in the shaded area) for
model fitting.

Supplements Figure 3 Time series data. Correlations between (A) the center of gravity (in weeks)
and (B) RSV intensity measured by the peak value of RSV hospitalizations in each season of
observed and model predicted RSV epidemics from the model only considering birth rates.
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Correlations between (C) the center of gravity (in weeks) and (D) RSV intensity measured by the peak
value of RSV hospitalizations in each season of observed and model predicted RSV epidemics from
the model considering birth rates and climate data.

Supplements Figure 4 Model fit to age-stratified RSV admissions with viral interference effects
and climatic factors. (A) The number of observed weekly RSV admissions are shown in blue; the
median model prediction, given by the median estimates of viral interference parameters, is shown in
black. The pandemic H1N1 influenza virus was introduced to the model only in the 2009/10 season,
and the pink dashed line indicates July 2009. The marginal distribution for (B) the effect of viral
interference parameter ( , in a log10-scale), and (C) the duration of viral interference parameter ( ).ξ η
The median estimates are indicated by red dashed lines ( and ).log

10
(ξ) = –1. 82 η =  7. 18

Correlations between (D) the center of gravity (in weeks) and (E) the intensity of observed and
predicted seasonal RSV epidemics from the best-fit model with the viral interference effect.

Supplements Figure 5 Model predictions of RSV epidemics following the influenza pandemic.
(A) Predicted time series of recovered susceptible populations ( ) in the absence (black curve), or in𝑆2
the presence (red curve) of viral interference effects. The predicted time series of the temporarily
immune population is shown in blue ( ). (B) Predicted time series of reinfected populations ( ) in𝑅2 𝐼2
the absence (black curve), or in the presence (red curve) of viral interference effects.
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Supplements Figure 6 Model predictions of RSV epidemics following the influenza pandemic.
(A) Predicted time series of recovered susceptible populations ( ) in the absence (black curve), or in𝑆3
the presence (red curve) of viral interference effects. The predicted time series of the temporarily
immune population ( ) is shown in blue. (B) Predicted time series of reinfected populations ( ) in𝑅3 𝐼3
the absence (black curve), or in the presence (red curve) of viral interference effects.

Supplements Figure 7 Model predictions of RSV epidemics following the influenza pandemic.
(A) Predicted time series of recovered susceptible populations ( ) in the absence (black curve), or in𝑆4
the presence (red curve) of viral interference effects. The predicted time series of the temporarily
immune population ( ) is shown in blue. (B) Predicted time series of reinfected populations ( ) in𝑅4 𝐼4
the absence (black curve), or in the presence (red curve) of viral interference effects.
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Supplements Table 1 Transmission dynamic model parameters from Pitzer et al. [20].
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Parameter Description Parameter value

1/ω Duration of maternal
immunity

16 weeks

, ,1/γ
1

1/γ
2

1/γ
3

Duration of infectiousness 10 days, 7 days, 5 days

, ,σ
1

σ
2

σ
3

Relative risk of infection 0.76, 0.6, 0.4

,ρ
1

ρ
2

Relative infectiousness 0.75, 0.51

, , , ,𝑑
𝑝,0

𝑑
𝑝,0.5

𝑑
𝑝,1

𝑑
𝑝,2

𝑑
𝑠,𝑎

Proportion of infections
leading to LRT infection

(First infection < 6 months,
6-11 months old, 1-2 years
old, >2 years old, second

infection)

0.5, 0.3, 0.2, 0.1, 0.75*𝑑
𝑝,𝑎
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Supplements Table 2 Estimated model parameters without viral interference effects and
climatic data.

Supplements Table 3 Estimated model parameters including climatic data, without viral
interference effects.

26

Parameter Description Parameter value

β
0 

Baseline transmission rate 8.52

α Seasonal amplitude 0.27

ϕ Seasonal offset 3.24

𝑓 Reporting fraction 0.45

Parameter Description Parameter value

β
0 

Baseline transmission rate 9.14

α Seasonal amplitude 0.26

α
𝑇𝑒𝑚𝑝

Seasonal amplitude for
temperatures

0.09

α
𝑅𝑒𝑙𝐻𝑢𝑚

Seasonal amplitude for
relative humidity

0.05

ϕ Seasonal offset 3.30

𝑓 Reporting fraction 0.28
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Supplements Text 1
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Figure S1 Model fit to demographic data.
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