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A nanofluidic knot factory based on compression of
single DNA in nanochannels
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Knots form when polymers self-entangle, a process enhanced by compaction with important

implications in biological and artificial systems involving chain confinement. In particular, new

experimental tools are needed to assess the impact of multiple variables influencing knotting

probability. Here, we introduce a nanofluidic knot factory for efficient knot formation and

detection. Knots are produced during hydrodynamic compression of single DNA molecules

against barriers in a nanochannel; subsequent extension of the chain enables direct

assessment of the number of independently evolving knots. Knotting probability increases

with chain compression as well as with waiting time in the compressed state. Using a free

energy derived from scaling arguments, we develop a knot-formation model that can quantify

the effect of interactions and the breakdown of Poisson statistics at high compression. Our

model suggests that highly compressed knotted states are stabilized by a decreased free

energy as knotted contour contributes a lower self-exclusion derived free energy.
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Knots naturally exist in DNA, proteins, umbilical cords, and
catheters1,2. Knots can form when an initially linear chain
passes its loose free ends through one or multiple loops on

the same chain, giving rise to a knot if the polymer is subse-
quently cyclized. For example, random cyclization of linear DNA
in bulk3 forms knotted chains with low probability; or knots can
be directly tied via optical tweezers4. Chain compaction, induced
via either spatial confinement, compression, or molecular
crowding5, tends to enhance the tendency for chains to self-
entangle, and thus enhances knotting probability. Knot formation
on DNA is a particular challenge in biology, due to high degree of
compaction experienced by packaged genomes, and is conse-
quently tightly regulated by enzymes like topoisomerases and
recombinases that remove knots by breaking and rejoining of
either single or double strands2. An extreme example is the high
level of compaction experienced by viral genomes6, resulting in a
correspondingly high knotting probability for DNA extracted
following capsid rupture6. Knots on genomic DNA in nanofluidic
systems interfere with mapping by preventing complete
linearization of contour stored in the knot, giving rise to an
artifact resembling a deletion7.

Consequently, there has been intense theoretical focus on knot
production mechanisms2 and physics of confined knots8–11. Yet,
while single-molecule techniques for knot sensing are advancing
rapidly12, and single-knot diffusion and size dynamics have been
explored4,13, systematic experimental studies probing conditions
enhancing knot formation in microscopic systems are limited.
Knotting in DNA extracted from the P4 phage system has been

extensively studied, but an in vivo system has inherent
disadvantages, including a fixed parameter space and difficulty of
determining whether knotting occurs inside the capsid or
following rupture. There have been reports of knot formation in
nanochannels;14 coil collapse in an AC field has been used to
induce knotted and self-entangled states of a single chain15, but
these experiments did not systematically quantify knot formation
as a function of compaction. Understanding of knot-formation in
microscopic chains is framed2,15 by a classic experiment involving
tumbling of a macroscopic string inside a rotating box16. In this
experiment, knots were formed when successive tumbles drove
parallel concentrically coiled strands near the chain ends to cross.
At low agitation times, knot formation was observed to be
kinetically limited; at longer agitation times, the knotting
probability saturated at a value that approached unity for longer,
highly flexible strings2. An intriguing question is whether
experiments probing knot formation in microscopic chains might
reveal a similar kinetically limited regime at low times and a
saturating knotting probability at long-times.

Here, we introduce a knot factory on chip using low Reynolds
number flow to compress single DNA molecules against slit-
barriers in nanochannels (Fig. 1a–f). The chain is initially
extended (Fig. 1d). After compression (Fig. 1e), the flow is
released and the DNA molecules relax (Fig. 1f); knots are present
along the relaxed DNA, visualized as sharply localized regions of
high intensity on the extended molecule (Fig. 1g–j). The knot-
factory enables efficient knot formation and detection in an
in vitro system where all parameters are well controlled, guiding
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Fig. 1 Device concept and experimental set-up. a The nanofluidic device is mounted on a chuck containing inputs for application of pneumatic pressure to
transport DNA molecules in micro and nanochannels and enable hydrodynamic compression against slit-barriers. b A magnified view of the chip center.
The device is composed of two 1-μm deep loading channels spanned by a nanochannel array with blunt-ended barriers in the channel centers. A 30-nm
deep slit, etched over the array, allows for solvent to escape while preventing the passage of large DNA molecules. Inset: an SEM image of the
nanochannels with barrier (the scale bar is 3-μm). c A magnified cross-sectional view of a nanochannel at the device center showing the slit-barrier. The
black arrow depicts the flow direction through the slit. d–f A 3D cartoon showing the process of knot-formation detailing d DNA confinement, e
compression against the barrier via hydrodynamic flow induced by applying a pressure-drop across the nanochannels and f relaxation of a knotted chain.
The red arrows in e depict the flow velocity profile during compression. g–j Examples of kymographs for knot-formation events with increasing
compression degree. Intensity along the nanochannel (vertical axis, scale bar10 μm) is plotted vs. time (horizontal axis, scale bar 10 s). Each molecule is
compressed, held at a minimum extension for a waiting time tw, and then relaxed. Normalized chain concentration profiles corresponding to the
kymographs are illustrated on the right. g No knot is formed; h one knot is formed; i two knots and j three knots are formed. The yellow arrows depict the
knot locations. The second bright spot in h does not maintain its size and unravels in the chain mid-section shortly after pressure release so we do not
count it as a knot20. k Normalized chain concentration profile C(X), averaged over waiting time at compressed state; red circles are experiment; black line is
a fit to a linear ramp concentration profile (Eq. 1) convolved with a Gaussian point-spread function (Supplementary Note 3D). The blue-dashed line shows
an estimate of the real, i.e., prior to convolution, concentration profile estimated from the fit
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development of models to quantify conditions favoring knot
production. In particular, we can measure knot-formation
probability as a function of compression and probe knot forma-
tion kinetics by relaxing the chain after a well-defined waiting
period in the compressed state. By measuring knot position along
the chain a short time after pressure release, we can gain insight
into the knot spatial distributions. Finally, we can access
conditions where more than one knot is formed, enabling
investigation of the formation of composite knot states. Our
results suggest that strong interaction between prime knots exist
in composite knot states, leading to a breakdown of independent
Poisson knot-formation statistics observed for extended chains at
equilibrium in the absence of compression17. To rationalize our
findings, we argue that the compressed chain is in a steady state
with zero segmental current, equivalent to a state of inhomoge-
neous equilibrium, so that a generalized free energy can be
developed to quantify the probability of knot-formation. This
approach complements existing theories for knot-production by
clarifying knotting free energy landscapes for compressed chains
and explains our observations if topological barriers for forming
knots are sufficiently small relative to thermal or flow-driven
agitation for the chain to sample knotted states over measurement
time-scales.

Results
Assessment of knotted states. The knotting state can be assessed
by counting the number of knots present. Figure 1g–j gives
example kymographs for individual compression–relaxation
events at different degrees of compression. For very high com-
pression we observe that more than one knot can be formed
(Fig. 1i, j). Knots can be distinguished from other topological
events such as folds18 or trivial knots (including entangled seg-
ments and complex unknots, like slip-knots19, that do not possess
true knot topology) as knots formed on semiflexible chains
quickly adopt a characteristic compact and time invariant struc-
ture and are only removed when they diffuse to the chain
ends8,20–22. In contrast, trivial knots or unknots, such as folds or
entangled regions, are expected to gradually unravel in mid-chain
or at the chain edges under the influence of entropic forces
driving contour to less confined regions18. Thus, in contrast to
other topological events, knots are objects that once formed on

the polymer: (1) are persistent, localized and bright features; (2)
do not exhibit large-scale size fluctuations after reaching their
final state; and (3) can unravel only at the molecule ends.

DNA concentration profile during compression. The nanoscale
dimensions of our channels give rise to ultra-low Reynolds
number hydrodynamics (Re ~10−8) that necessitate rigorously
laminar and steady streamlines in the presence of a constant
pressure drop23. Note that formation of nano-vortices at the slit-
barrier requires a Reynolds number exceeding Re= 0.05524. In
contrast to15, we do not apply an external electric field. We
estimate that any streaming potential difference23 across the
nanochannel resulting from our flow is <1 mV, affecting the DNA
velocity by <1% (see Supplementary Note 3A).

We find the laminar flow leads to physics analogous to that of
our optical piston experiments25,26, where an optically trapped
bead is used as a sliding gasket to compress single double-
stranded DNA molecule with fixed velocity V (see Supplementary
Note 3B for extended discussion). Like the sliding-gasket
experiments, during the first phase of compression, a “shock-
wave” of segmental concentration builds up at the molecule edge
abutting the barrier26 (Fig. 1g–j). In this phase, the position of the
molecule edge opposite the barrier (the free edge) is uncon-
strained and has constant speed V, a measure of the buffer flow
speed in the channel (see Supplementary Figure 2 and
Supplementary Note 3C for measurement of V). The second
phase begins when the shock-wave reaches the free edge. In this
second phase, the laminar flow forces the chain immobile against
the slit barrier with forces due to the osmotic pressure gradient
everywhere balancing hydrodynamic forces so that the net
polymer current is zero (i.e., zero net movement of Kuhn
segments). This zero current steady-state is equivalent to a state
of inhomogeneous or force-constrained equilibrium27. In this
state, the compressed molecule, spanning the range from x= 0 to
x= r, adopts a ramped concentration profile (Figs. 1k and 2c).
Sliding gasket theory suggests the ramp is linear; in terms of the
normalized variables C≡ c(x)/co, X≡ x/ro and Rc= r/ro the ramp
has the form26

CðXÞ ¼ Cb � αX; ð1Þ

C = C / Co
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Fig. 2 Relation between the parameters defined in concentration profile. a The nanochannel confined chain in no-flow equilibrium has a uniform
concentration profile C(X)= 1. Inset: schematic of no-flow equilibrium chain with extension ro. b Local extension R(X)≡ 1/C(X) for chain in no-flow
equilibrium. c When a flow V is applied, in the long-time limit the chain reaches a steady-state with a concentration profile that ramps linearly towards the
barrier: C(X)= Cb − αX. Inset: schematic of chain in flow-constrained equilibrium with extension r. d Local extension RðXÞ � 1=CðXÞ for chain in flow-
constrained equilibrium. Note that for a uniform profile Rb= Rc. e Profile slope α, f barrier concentration Cb, and g chain extension Rc vs. V with fits to
scaling relations predicted by piston theory (e α � V, f Cb �

ffiffiffiffi
V

p
and g Rc � 1=

ffiffiffiffi
V

p
). h Combining data in e and f yields α vs. Rb, described well by the

scaling α � 1=R2b . The insets in g and h give the results on a log–log-scale
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with X ranging from zero to Rc. ro and co are respectively the
molecule equilibrium extension and concentration in the absence
of flow, determined via a standard fitting model based on the
convolution of a box with a Gaussian point-spread function28 (see
Supplementary Note 3D, note ro= 14.3 ± 0.3 μm for our
channels). r represents the molecule extension at compressed
state, held for a waiting time tw (Fig. 1e, see Supplementary
Note 3E for the exact definition of waiting time). The quantity
Cb≡ C(0) is the (maximal) concentration at the slit barrier and α
is the ramp slope (Fig. 2c). Equation 1, once convolved with a
Gaussian point-spread function (see Supplementary Note 3D),
describes experiment well (Fig. 1k). The parameters α, Cb and Rc
are extracted from the experimental profiles via fitting to the
convolved linear ramp (Fig. 1k) and plotted as a function of V
(Fig. 2e–g). The plots show that the V-dependence is indeed
consistent with gasket theory, which predicts the scalings
Cb �

ffiffiffiffi
V

p
, α � V and Rc � 1=

ffiffiffiffi
V

p
25,26 (see Supplementary

Note 3B for a review of the derivation of these scalings).
In addition, we choose to introduce a local extension R(X)≡ 1/

C(X) (Fig. 2b, d). The local extension measures how locally
compressed (R < 1) the chain is relative to the no-flow
equilibrium where C= R= 1 everywhere along the chain. In
particular, we use the local extension at the slit barrier, or barrier
extension, defined by Rb≡ 1/Cb (Fig. 2d), to parameterize the
compression profile in lieu of V or Rc. The barrier extension has
useful properties; like Rc it becomes strictly smaller with
increasing compression, is proportional to, but less than Rc (Rb/
Rc= 0.62 ± 0.05, see Supplementary Note 3B) and directly
characterizes chain properties at the slit barrier where knots are
found with highest probability. Figure 2h combines the data in
Fig. 2e, f and gives α as a function of Rb; these data are well
described by the gasket scaling α � 1=R2

b.

Knotting probability measurement. The time-dependent
knotting probability can be described by introducing constant
transition rates kij from a state with i knots to a state with j knots
(Fig. 3a), resulting in a set of coupled rate equations. Figure 3b
gives knotting probability for single and multiple knot states
as a function of waiting time. The rate equations are solved
(see Supplementary Note 4) for the time-dependent probabilities
and fitted to the experimental results. The knotting probability
rises with tw and then asymptotes to a constant value at long-
times (t > 17 s), suggesting a gradual equilibration of the knotting
state. This equilibration time-scale compares on order of
magnitude to the extensional relaxation time of confined T4 DNA
in channels of our size in no-flow equilibrium (~10 s, obtained
from scaling values for the λ-DNA relaxation time in29 to T4).
Comparable transition rates for the no-knot to one-knot
transition and the one-knot to two-knot transition suggest that
the presence of an existing knot does not alter the energy barriers
involved in forming the second knot (k01= 0.21 ± 0.02 s−1 and
k12= 0.19 ± 0.13 s−1).

Figure 4a gives measurements of knotting probability as a
function of Rb. The equilibrium knotting probability increases as
Rb decreases. In particular, the one-knot states increase in
frequency until reaching a peak at around Rb ≈ 0.12. The two-
knot formation probability rises and becomes equal to the one-
knot formation probability at Rb ≈ 0.09. We also observe a very
small number of three-knot events (two in total).

Micheletti and Orlandini17 suggest that formation of composite
knots in nanochannel-confined DNA should arise from inde-
pendent knotting events along the chain, leading to a description
via Poisson statistics. In particular, for a chain in no-flow
equilibrium such as studied by Micheletti and Orlandini, the
Poisson model suggests that the probability of forming a

composite knot based on m number of prime knots of the same
topology is governed by

Pm ¼ nm
e�n

m!
ð2Þ

with n ¼ L
L0

where L is the DNA contour length and L0 a
characteristic length scale depending on the channel width D.
While the concentration profile is uniform for a chain in no-flow
equilibrium, concentration uniformity is not required for Poisson
statistics to hold; Poisson statistics requires only that the prime
knots form independently. In an inhomogeneous Poisson
process30, the knot formation probability can vary along the
chain, leading to a distribution identical to Eq. 2 but with n
expressed as an integral of the varying knot formation probability
along the chain. For both the uniform and non-uniform cases, we
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Fig. 3 Knot formation kinetics. a The probability for finding no knots (top),
forming 1 knot (middle), and 2 knots (bottom) are related through the
transition rates kij from a state with i knots to a state with j knots. The
transition rates define a set of coupled rate equations (see Supplementary
Note 4). b The probability of knot formation as a function of waiting time at
average barrier extension Rb≈ 0.13 with fits to the kinetic model. The black
squares give experimental measurements for total probability of forming an
event with any number of knots. The red circles and blue diamonds give
respectively measurements of one-knot and two-knot event probabilities.
The continuous lines represent the fits to the time-dependent knotting
probabilities predicted by the rate equations. Each data point is determined
from the average result of ~10–15 events. The vertical error bars on
probability have been calculated using a Wilson-score interval with a one-
sigma confidence interval47 (See Supplementary Note 13); the horizontal
error bars show the error on the mean for tw
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can eliminate n and express Eq. 2 purely in terms of the no-
knotting (m= 0) probability P0:

Pm ¼ � log P0ð ÞmP0
m!

: ð3Þ

Figure 5 shows Eq. 3 plotted for m= 1, 2, and 3 against the
experimental data. Values of P0 on the horizontal axis are
calculated from the observed total knotting probability P0= 1
−Ptotal for different values of Rb. Higher values of P0 in Fig. 5
correspond to lower compression. The Poisson model describes
the data well when the molecules are only slightly compressed
and P0 is close to unity. However, for high compression (P0 < 0.2)
the Poisson model breaks down. The breakdown in Poisson
statistics can be explained in two ways: (1) at high compression,
constituent prime knots might interact so that their formation is
no longer independent; (2) at high-compression knots of complex
topology are formed with higher probability, so that a single
Poisson distribution does not reflect the overall knotting
probability. We believe that knot interactions at high compres-
sion are the likely explanation, due to the absence of composite

knots states featuring many prime knots. This point can be made
clear by quantifying the free energy of the knotting states.

Knot-formation is no longer kinetically limited at long-times
where knot-formation probability asymptotes (Fig. 3b). In
addition, the compressed chain is in a state of inhomogeneous
equilibrium. Fluctuations of the chain can be analyzed via a
generalized free energy change that is equivalent to the minimum
work required to drive the system out of the inhomogeneous
equilibrium state27,31,32. This generalized free energy change
includes the change in equilibrium free energy plus work
performed by external forces27, work which in our case arises
from the viscous force exerted by hydrodynamic flow on the
knots.

We can use our knotting probability measurements to make
estimates of the free energy changes associated with knot
formation. Let Ftot(m, Rb) be the total free energy change for
forming a state with m knots on a profile with barrier extension
Rb (in units of kBT): Ftot(m, Rb)=−log Z(m, Rb) with Z(m, Rb)
the corresponding partition sum. The probability of forming m
knots is then

Pðm;RbÞ ¼ Zðm;RbÞ=
Xnk
i¼0

Zði;RbÞ ð4Þ

Note that Z(0, Rb)= 1 as there is no free energy change for
forming zero knots; nk is the maximum number of knots observed
to occur (we find that nk= 3). Using Eq. 4, we can directly extract
knot formation free energies from experiment using Ftot(m, Rb)=
−log Z(m, Rb)=−log(P(m, Rb)/P(0, Rb)). In addition, we
introduce an interaction free energy for two knots F int

2;tot. The
interaction free energy gives the increased free energy of the two
knot state over the free energy of the two knot state satisfying pure
Poisson statistics. For example, if the two knots obey Poisson
statistics, their partition sum ZP(2, Rb)= Z(1, Rb)2/2!, leading to
F int
2;totðRbÞ � Ftotð2;RbÞ � 2Ftotð1;RbÞ � logð2Þ.
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scale). The black squares give experimental measurements for total
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knot event probabilities. The magenta stars in the inset give probability
measurements for three-knot events. The continuous lines indicate fits to
the free energy model. b Free energy of single knot states Ftot(1, Rb) (red,
circles) and two-knot interaction free energy Fint2;totðRbÞ (blue, circles)
deduced assuming the profile is in a state of inhomogeneous equilibrium,
with theoretical overlay using same fitting parameters for a. Each data point
is determined from the average result of ~10–15 events. The vertical error
bars on probability have been calculated using a Wilson-score interval with
a one-sigma confidence interval47 (See Supplementary Note 13); the
horizontal error bars represent the error on the mean for Rb measurements
for the corresponding events. For the blue open circle in b as no 0-knot
states are observed, we estimate Fint2;tot by finding the difference
Ftot(2, Rb)−Ftot(1, Rb) from experiment and extrapolating model predictions
(red curve) to estimate the extra factor of Ftot(1, Rb)
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on probability have been calculated using a Wilson-score interval with a
one-sigma confidence interval47 (See Supplementary Note 13); the
horizontal error bars represent the error on the mean for Rb measurements
for the corresponding events. The solid lines indicate predictions of pure
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predictions of the free energy model, with the red, blue, and magenta
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which shows the same theory curves on a log–log scale vs. 1−P0, shows
that the free energy model asymptotes to the Poisson description when the
compression becomes very low and the profile approaches no-flow
equilibrium
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Figure 4b gives the extracted free energies for forming a one
knot state and knot interaction free energies as a function of Rb.
The single-knot free energy becomes increasingly negative for
small Rb. The interaction free energies are remarkably high (on
order of several kBT), suppressing multiple knot states. Knot–knot
interactions, for example, could arise through the excluded
volume of one knot restricting the configuration space of the
other knots (knot–knot excluded volume); this effect would scale
as kBTg3k=rD1D2 (with gk knot gyration radius). Yet, we expect the
volume of a single knot to be very small relative to the volume
occupied by the chain: with gk � 100 nm8 we find
g3k=rD1D2 � 10�2. The interactions must therefore have a more
subtle origin.

Knot spatial distribution. Insight into the nature of the inter-
actions can be gained by measuring the knot spatial distribution,
which can be accessed a short-time following pressure release.
Figure 6 shows the histogrammed position of knots for one-knot
(Fig. 6a) and two-knot events (Fig. 6b), normalized to the chain
extension rrelax, 2 s after pressure release. For the two-knot events,
the position of the knot closest to the slit-barrier (lower-knot) and
the knot farthest from the slit-barrier (upper knot) are separately
histogrammed. In addition, we show the cumulative histograms
for the single (Fig. 6c) and two knot case (Fig. 6d). As the
cumulative histograms are insensitive to binning, we perform all
quantitative analysis on the cumulative histograms.

The single-knot distribution (Fig. 6a, c) is non-uniform and
well described by an exponential probability density function
(Fig. 6c), suggesting that knots are found preferentially in
concentrated regions of the chain. While we do not expect the
probability distributions after release to quantitatively mirror the
distributions for a compressed chain (there could be considerable
complexity in how the evolving chain profile during relaxation
affects the knot distribution), we can say that the distribution
observed after pressure release represents a lower-limit on the
degree of spatial non-uniformity present in the knot distribution
prior to release (the relaxation process will smooth out an initially

non-uniform distribution but it will not introduce non-
uniformity).

The two-knot spatial distributions have structure indicative of
knot-interactions. Note that the upper knot distribution is shifted
to larger X relative to the lower knot distribution (as indicated by
the arrow on the X-axis in Fig. 6d). If the two knots do not
interact (i.e., so that they are statistically independent) and both
satisfy a distribution peaked near the barrier (as observed for
single knots) we would expect that both of the knots would be
found with high probability near the barrier. Instead, there is gap
in positions where only one knot is found. This gap could arise,
for example, if the two knots interact like hard spheres over their
gyration radius and satisfy a no-passing constraint, introducing a
range in positions near the barrier where the second knot is
physically excluded (see inset to Fig. 6b). Knot passing might be
prohibited due to the large physical size of the knots, on order of
the channel diameter8,10, prohibiting knot crossing mechanisms
that require knot expansion33. (Refer to Supplementary Note 5
for detailed discussion on knot interactions).

Free energy model to quantify knot formation. Our results
suggest that knot-interactions are present at high compression,
causing a pronounced deviation in observed knotting probability
from Poisson statistics. The interactions may arise from a hard-
core repulsion mechanism preventing knot crossing in the
channel. Yet, it is unclear how the hard-core repulsion translates
into a higher free energy cost for formation of multiple knots and
leads to a breakdown in Poisson statistics. Here we develop one
possible model to quantify the effect of a no-crossing constraint
on the knot free energies, elucidate the role of compression in
increasing knot-formation probability and explain the breakdown
in Poisson statistics at high compression. Qualitatively, our model
suggests that knot free energy is lowered during chain compres-
sion by an excluded-volume mechanism: knots tightly localize the
contour they contain, avoiding the free energy cost that would be
introduced by releasing the stored contour to interact with the
rest of the compressed, concentrated chain. Moreover, our model
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suggests that the free energy of a knot should vary with position
along the compressed profile, with the free energy lowest at the
barrier-edge. If a no-crossing constraint exists, multiple prime
knots cannot all occupy the position of minimum free energy, but
instead will stack single-file, leading to an increased free energy of
a composite knot state relative to the free energy of the inde-
pendently formed prime knots.

Dai et al.8 argue three types of free energy contribute to knot-
formation: the energy of forming a knot on the chain in bulk
fb(Lk), where Lk denotes the contour length of the knot; the
energy of confining the knot between the channel walls fwk(Lk, R)
(wall knot) and the energy saved, as contour stored in the knot no
longer contributes the confinement free energy fwuk(Lk, R) (wall
unknot) associated with an unknotted section of polymer of
contour Lk. In addition, the flow exerts a constant drag force ζkV,
leading to a free energy contribution fh≡ ζkVX/kBT (in units of
kBT with ζk a knot friction factor). The total free energy change
f1(Lk, Rb, X) upon forming one knot of contour Lk in the
nanochannel at position X on a profile with barrier extension Rb
is then

f1 ¼ Abfb þ Awkfwk � fwuk þ Ahfh ð5Þ

(See Supplementary Note 6 for explicit functional form). This
equation makes explicit three dimensionless scaling constants Ab,

Awk, and Ah to be determined via least squares fitting. We expect
trefoil knots to dominate11. Our model suggests that knot
stabilization is driven by a large negative single-knot free energy
at the slit barrier f1, which varies linearly with position (Fig. 7b):

f1ðLk;Rb;XÞ ¼ f1ðLk;Rb; 0Þ þ βðLk;RbÞX ð6Þ

(see Supplementary Note 7 for detailed derivation of
equation 6 and explicit form of β and f1(Lk, Rb,0)).
If fwuk is large enough to ensure the free energy at the barrier
f1(Lk, Rb,0) < 0, knots of size Lk will exist with a spatial
distribution P1ðXÞ � expð�f1ðLk;Rb;XÞÞ leading to an
exponential accumulation near the barrier, consistent with the
observed single knot distribution (Figs. 6a, c and 7d,
Supplementary Note 8).

The barrier (x= 0), where the free energy is minimized, is the
most probable location for a single knot to form, but knots can
form at all x. Let the partition function z1(Lk, Rb) count the
number of ways a single knot of size Lk can form on a profile
characterized by Rb. The number of statistically independent sites
at which a knot can form is estimated by nmax= r/2gk, each site i
weighted by a Boltzmann factor exp(−f1(Lk, Rb, i2gk/ro)), leading
to a partition function that can be summed geometrically (see
Supplementary Note 9). Similarly, the partition function of a state
containing multiple (m) prime knots zm(Lk1⋯Lkm, Rb) is
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calculated such that the linear ordering of the knots along the
profile is preserved. At high compression, these partition
functions contain only one state, a ground state configuration
consisting of knots stacked single file, with no gaps, directly
abutting the barrier (see Fig. 7c, g for one-knot and two-knot
ground states, respectively). In this high compression limit
Poisson statistics does not hold as only one state is accessible and
strong interactions imply knots do not form independently. For
low compression, knots can be excited away from the barrier.
Interactions are weak as the knots are well separated and many
states are accessible, leading to an emergence of Poisson statistics
(see Supplementary Note 10).

Lastly, we must integrate over all knot sizes, forming a partition
function:

Zðm;RbÞ ¼ ð2PÞ�m
Z

zmðLk1 � � � Lkm;RbÞdLk1 � � � dLkm ð7Þ

In practice, we obtain Z(i, Rb) from direct numerical
integration. Equations 4, 5, and 7 then enable determination of
knotting probabilities as functions of Rb. Simultaneous least-
square fitting of model predictions to the experimental one and
two-knot formation probabilities (Fig. 4a) yields Ab= 1.43 ± 0.05,
Awk= 0.98 ± 0.12 and Ah= 1.12 ± 0.07, on order of unity
suggesting that the approach is self-consistent. Equivalently, we
can fix Awk= 1 and Ah= 1 and perform a one-parameter fit of
the parameter Ab, which yields equivalent results (see Supple-
mentary Note 11). Our theory captures the increasing knot
formation probability with increasing compression, the non-
monotonic behavior of the single knot formation probability
(Fig. 4a) and the energy scales of knot interactions and single
knot stabilization (Fig. 4b). Our model also predicts the very
small number of observed three-knot events (Fig. 4a (inset)), a
consequence of the large interactions. Finally, our model
quantitatively captures the transition from Poisson statistics at
weak compression to the non-Poisson regime at high compres-
sion (Fig. 5). The Ab value required to get agreement with
experiment is slightly higher than unity, possibly arising from
physical effects, such as knot compression, that lead to higher
knot free energy and are not included in the model.

Discussion
In conclusion, we show that hydrodynamic compression induces
DNA knotting in nanochannels with high probability. This is
remarkable as it demonstrates that moderate confinement, two
orders of magnitude weaker than that found in capsids, can also
induce knot formation, suggesting a knot formation mechanism
qualitatively different from what has been proposed in refs. 34,35

for capsids, where nematic ordering in strong spherical confine-
ment can form toroidal knots with high probability. We show
that the free energy scales for knotting under compression in the
long-time limit can be estimated by extending known free energy
scales for confined knots in a no-flow equilibrium. In addition, we
find that knot-interactions likely exist, arising from a hard-core
repulsion between knots preventing knot crossing and lead to
single-file ordering of knots. Our model suggests knot interac-
tions suppress multi-knot states and lead to a pronounced
deviation from Poisson statistics expected for knot formation in a
no-flow equilibrium limit.

In a recent study, Tang et al.15 introduced a technique for
inducing knots on DNA molecules via application of an AC
electric field. From a practical point-of-view, our approach has
the advantage that it is inherently parallel; many molecules can be
simultaneously compressed in an array of nanochannels and their
relaxed, nanochannel-extended states analyzed. From a physical

point of view, the approach of Tang et al. occurs in a much more
complex, strongly non-equilibrium environment, with both sol-
vent and DNA exhibiting complex dynamics resulting from the
hydrodynamic instabilities induced by the DEP force. In parti-
cular, in the DEP approach the DNA tumbling dynamics leads to
finite segmental current throughout the coil. In addition, the
DNA is driven into a globule state, which is less well understood
due to the complexity of the DEP-induced attractive interactions
that drive the compression. In our system, based on geometric
confinement and pressure-driven low Reynolds number flow, the
DNA adopts a highly reproducible concentration profile that
corresponds rigorously to an inhomogeneous equilibrium state
with zero segmental current. The simplicity of the underlying
DNA conformation in our system may facilitate modeling of knot
generation processes. The transverse confinement in our system
provides an additional parameter that can be used to tune knot-
formation, with lower channel diameter in the extended de
Gennes regime predicted to produce knots with greater prob-
ability at an equivalent degree of compression (see supplementary
Note 12). In addition, the channel diameter likely sets an upper
limit on knot size for channels below about 500 nm. Our
approach may thus lead to composite knot states formed from
smaller stacked prime knots distributed towards one molecule
edge. In contrast, we speculate the approach of Tang et al. may
lead to easier production of larger, topologically complex knots in
the molecule center13.

A complete understanding of knot formation in our system
would require understanding the physics behind the lowered
topological barriers leading to favorable kinetics at experimentally
accessible time-scales. We do find that knotting probability rises
with waiting time in the compressed state, with a kinetically
limited regime at low waiting times. This appears to confirm the
picture suggested by Meluzzi et al.2 regarding the dependence of
knotting probability on effective agitation time. In our micro-
scopic experiment, for example, thermal fluctuations could supply
the necessary agitation, or thermal fluctuations could be assisted
by additional hydrodynamic effects. In their DEP-based com-
pression experiments Tang et al.[15] hypothesize that a tumbling-
like agitation is created by electric-field induced hydrodynamic
instabilities.

In particular, lowering the topological barriers for knot-
formation requires a mechanism for knot-ends to invade the
main coil so that the chain ends can be threaded through internal
loops in the chain11. In our experiment, one possibility is that the
chain ends are forced in during the transient compression (shock-
wave) process, although this does not explain the long observed
waiting time. The second possibility is that subtleties of the
steady-state hydrodynamic flow, perhaps curving streamlines
near the slit barrier, might play a role in helping drive the chain
ends into the coil. We feel, however, that this mechanism would
need to be more subtle than the flow-induced tumbling described
in ref. 15, as we expect the flow in our nanofluidic channels to be
steady and laminar, leading to a static packing of DNA against the
barrier rather than continuous recirculation or agitation. We do
not apply an electric field, and we expect effects of electro-
hydrodynamic coupling to be very weak, so there is no clear
candidate for a physical effect that could create the recirculatory
flow necessary to drive DNA tumbling. The third possibility is
that thermal fluctuations alone are sufficient to drive the chain
ends into the coil. At high compression linear ordering of blobs
breaks down and the free energy barriers preventing long-range
chain looping disappear36. Brownian dynamics simulations of our
system37 would help clarify which mechanism is correct. Yet,
whatever physics drives the favorable kinetics, once we deduce
that the kinetics are favorable by observing time-dependent
saturation of knotting, our free energy approach is valuable as it
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enables extraction of long-time knotting probabilities in a sys-
tematic way from knowledge of equilibrium behavior.

Our approach, like those explored in references14,15, cannot
form knots of known topology (in contrast to tweezers based
approaches4,22). Directly tying knots with tweezers, however, is
extremely challenging and low-throughput22 and non-trivial to
apply in confined systems. Lastly, while many experimental13–
15,22,38 and theoretical8,20,21,39–42 studies agree that knots on
chains are localized as tight knots, others43–45 believe that knots
can form which are not tightly localized and can spontaneously
expand along chains. In our knot detection criteria, knots are
persistent, localized and bright features representing metastable
tight knots. While we do not observe diffuse knot configurations
at no-flow equilibrium for long waiting times after chain
relaxation, there might be some diffuse knotted configurations
that we have missed in our knot numeration because they might
unravel at short times during the relaxation process, especially if
they are close to the molecule edges. Future Brownian dynamics
simulations might elucidate the evolution of knots during mole-
cule relaxation from the compressed state and estimate how many
knots might be lost during this process.

In the future the knot factory could be further exploited to
study the effect of channel width, ionic strength, DNA contour
length and to generate knots for further dynamic studies. In
particular, we expect the physics of knot formation to be very
different in the transition (D < 100 nm) and Odijk confinement
regimes (D < 50 nm) due to the qualitatively distinct underlying
chain conformation in these regimes28. While we predict knotting
probability increases with decreased channel width throughout
the extended de Gennes regime, the situation for smaller channel
width is unclear and a fascinating question for further theoretical
and experimental study.

Methods
Device fabrication and experimental set-up. The nanochannels are fabricated on
fused silica substrates (HOYA) by electron beam lithography as described in ref. 28.
The slit barriers are formed by patterning the nanochannels with blunt ends in the
array center (Fig. 1b). A 30-nm deep slit (measured using surface profilometry) is
subsequently etched over the nanochannel array, transforming the blunt ends into
barriers that will permit buffer flow but trap the DNA. In addition, adjoining the
nanochannel array, the device contains two U-shaped microchannels (1 μm deep,
50 μm wide): these microchannels convey molecules from sand-blasted loading
holes to the nanochannels. The 1 × 1 cm2 chips are then bonded directly to fused
silica coverslips (Valley Design; Fig. 1b). The cover slip seals the channels while the
slit introduces an opening at the barrier end of the nanochannels, which allows
flow to pass, but traps DNA molecules (Fig. 1c). Upon imaging the chip cross
section using SEM, the nanochannels have horizontal dimension D1= 325 nm and
vertical dimension D2= 415 nm (Supplementary Note 2 gives more detail on
dimension acquisition). The loading buffer consists of 10 mM Tris titrated with
HCl to pH 8.0. In addition, 2% β -mercaptoethanol (BME) is added to suppress
photobleaching and photonicking. The DNA constructs used consist of T4 bac-
teriophage DNA (Nippon Gene, 166 kbp), stained with YOYO-1 (Life Technolo-
gies) at an intercalation ratio of 10:1, resulting in a contour length of about 63.7
μm46. The wet-chip is mounted on a chuck via o-ring seals with inlets for applying
pneumatic pressure (Fig. 1a). The chuck-chip assembly is then mounted on an
inverted microscope (Nikon Eclipse Ti-E) with a 100X N.A. 1.5 oil immersion
objective. Imaging is performed via an EMCCD camera (ixon, Andor) with exci-
tation illumination provided by a metal-halide lamp (Xcite). T4 DNA are driven
into nanochannel arrays from loading microchannels via a burst of pneumatic
pressure (Fig. 1b). Low ionic strength conditions (10 mM Tris, pH 8.0) are used to
ensure negligible knotting probability in bulk by ensuring a high DNA effective
width (Supplementary Note 2)3. The molecules are then driven to the array center,
compressed against the slit-barriers to a well-defined extension r and held for the
waiting time tw. After each compression event, molecules are driven out of the
nanochannels, new molecules are introduced in order to avoid possible effects of
entanglement15 that might lead to hysteresis.

Code availability. The Matlab code used for image analysis in this study is
available from the corresponding author upon reasonable request.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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