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Abstract: It is still a challenging task to automatically measure plants. A novel method for automatic
plant measurement based on a hand-held three-dimensional (3D) laser scanner is proposed. The
objective of this method is to automatically select typical leaf samples and estimate their morpho-
logical traits from different occluded live plants. The method mainly includes data acquisition and
processing. Data acquisition is to obtain the high-precision 3D mesh model of the plant that is
reconstructed in real-time during data scanning by a hand-held 3D laser scanner (ZGScan 717, made
in Zhongguan Automation Technology, Wuhan, China). Data processing mainly includes typical
leaf sample extraction and morphological trait estimation based on a multi-level region growing
segmentation method using two leaf shape models. Four scale-related traits and six correspond-
ing scale-invariant traits can be automatically estimated. Experiments on four groups of different
canopy-occluded plants are conducted. Experiment results show that for plants with different canopy
occlusions, 94.02% of typical leaf samples can be scanned well and 87.61% of typical leaf samples
can be automatically extracted. The automatically estimated morphological traits are correlated with
the manually measured values EF (the modeling efficiency) above 0.8919 for scale-related traits and
EF above 0.7434 for scale-invariant traits). It takes an average of 196.37 seconds (186.08 seconds for
data scanning, 5.95 seconds for 3D plant model output, and 4.36 seconds for data processing) for a
plant measurement. The robustness and low time cost of the proposed method for different canopy-
occluded plants show potential applications for real-time plant measurement and high-throughput
plant phenotype.

Keywords: plant measurement; morphological traits; 3D plant model; segmentation

1. Introduction

Leaf morphological traits are indices describing plant shape and architecture. They
can be used in many fields of agriculture research, such as plant growth and health
condition monitoring [1], plant modeling [2], agricultural simulation [3], farm management
decision-making design [4], high-throughput plant phenotype analysis [5], and genome-
wide association study [6]. The sample leaves are mainly selected based on experience in
traditional leaf trait measurement, which is time-consuming and cumbersome. In some
agricultural research, such as high-throughput phenotype, a large number of samples
are needed [7]. The automatic sample selection has become necessary. Nevertheless,
various sensors, such as the color digital cameras, range cameras, hyperspectral cameras,
multispectral cameras, thermal imagers, infrared radiometers, fluorescence sensors, light
detection and ranging (LIDAR) sensors, global positioning system (GPS) receivers, and
laser sensors have been used for plant measurement [8]. Those sensors can generate a
large amount of data. Traditional leaf trait measurement that mainly relies on manual
measurement methods based on contact tools is not suitable for such a large capacity of data
processing. Automatic morphological trait estimation should be carried out and automatic
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data batch processing is urgently needed. Moreover, the leaf morphological structures of
different species are different, which makes the calculation of leaf morphological traits
vary. Therefore, it is significant to study automatic measurement of morphological traits of
typical leaf samples.

Image technology has been widely used in plant measurement. An et al. [9] developed
an imaging system and proposed a series of image processing algorithms to construct
two-dimensional (2D) mosaicked orthophotos. Morphological traits such as leaf length
and rosette area were measured by these 2D top-view images. Fanourakis et al. [10] used a
phenotypic platform light curtain array (LC) to evaluate leaf area and maximum height
from side-view profile images. Pereyrairujo et al. [11] introduced a low-cost platform for
high-throughput measurement of plant growth. This imaging approach estimated mor-
phological traits based on 2D images. The top-view and side-view images were required
to ensure measurement accuracy when measuring leaf morphological traits such as area,
perimeter, length, and width. If the image was shot at random angles, the measurement
results would deviate greatly from the true values.

Since the aforementioned works based on 2D imaging technology not only require
images with special shooting angles but also lose part of the 3D information, 3D technology
that can accurately measure the 3D structure of plants is rising rapidly. Biskup et al. [12]
used an area-based binocular stereo imaging system to build a 3D plant model and measure
leaf inclination angles. Gibbs et al. [13] adopted the structure-from-motion (SFM) technique
to build a 3D plant model. This method required a large number of images and cost
a lot of time to reconstruct the 3D model. Kjaer et al. [14] employed a 3D NIR-laser
scanner to track daily changes in the growth stages of different plants in challenging
environments. The scanner was fixed and the 3D model of the plant was incomplete.
Xia et al. [15] used a Kinect RGB-D camera to measure individual plant leaves. Mean shift
clustering was employed to segment individual leaves from the background. However,
no morphological traits were estimated. Drapikowski [16] employed a structured-light
DAVID to estimate the morphological traits of Xerophytic plants. The morphological traits
such as length, width, and area were automatically estimated based on rough plant models.
Martínezguanter et al. [17] used a LiDAR sensor to detect plant spacing. A large number of
3D models of plants were reconstructed. The point cloud data obtained by Kinect, David,
and LiDAR were usually rough, so it was difficult to reconstruct high-precision 3D plant
models. These methods usually obtained 3D points first, and then the 3D plant model was
reconstructed to measure morphological traits. However, these models were usually very
rough and lacked detailed geometry information, which would affect the measurement
accuracy. Thus, it is significant to obtain high-precision 3D models of plants.

Furthermore, most contemporary studies of leaf trait measurement are mostly lim-
ited to the plants without canopy occlusion at the early growth stage, and all leaves are
counted [18,19]. Plants with heavy occlusion are rarely explored in individual leaf trait
measurement research. More leaves mean heavier occlusion problems, which makes ade-
quate data acquisition difficult and automated data analysis challenging. However, canopy
occlusion is common in reality. Therefore, it is practically significant to measure individual
leaf morphological traits of plants with different canopy occlusions. Additionally, most
contemporary research of leaf measurement involves all leaves on the plants. In research
such as leaf classification and plant species identification, typical leaf samples do not
include the curved new-born leaves, damaged leaves, or rotten leaves [20,21]. Therefore,
it is worthwhile to study the automatic selection of typical leaf samples. Nevertheless,
the morphological structures of leaves are different. Specifically, leaves of plants, such as
corn [22–24], rice [25], and wheat [26], are long and banding. Leaves of plants, such as
Epipremnum aureum [27], Anthurium Andraeanum [28], and leafy vegetables [29], are
broad and elliptical. The calculation algorithms of their morphological traits, especially
length and width, are different. Additionally, leaf morphological traits in the aforemen-
tioned research are usually leaf area, length, and width. Those traits are scale-related. More
scale-invariant traits should be explored.
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Thus, research of new methods that employs 3D technology for automatic plant mea-
surement is of great interest. The automatic data acquisition and processing methods that
can perform high-throughput phenotyping functions with adequate precision requirements
are useful in modern agriculture. The objective of this study is to solve three problems,
namely, the acquisition of the high-precision 3D plant model, automatic selection of typical
leaf samples, and automatic estimation of leaf morphological traits. In this paper, we
propose a novel method to automatically select typical leaf samples and estimate their
morphological traits from different canopy-occluded plants based on a hand-held 3D laser
scanner. The method mainly includes two parts: (1) data acquisition with a hand-held
3D laser scanner to obtain the 3D mesh model of the plant, and (2) the multi-level region
growing segmentation using two leaf shape models to automatically select typical leaf
samples and estimate their morphological traits. Particularly, the 3D plant model can
be reconstructed in real-time during data scanning. When segmenting individual leaves
of different plants at different scales, the two main segmentation parameters, smooth
and curvature, are adaptive. Two shape models, one using the scale-related traits and
the other employing the scale-invariant traits, are dynamically established based on the
segmentation results at different scales using the principal component analysis method.
Four scale-related morphological traits and six corresponding scale-invariant traits are
automatically estimated. Epipremnum aureum, one of the most common plants with broad
and elliptical leaf structure, is adopted as the experiment subject. The proposed method
will be tested on four groups of Epipremnum aureum with different canopy occlusions.
The accuracies of the data scanning, segmentation, and trait estimation will be analyzed.

2. Materials and Methods
2.1. Data Acquisition and Processing Environment

The data acquisition was performed using a ZGScan 717 (parameters listed in Table 1)
hand-held 3D laser scanner in Wuhan, China. The time was November 2020. The data
acquisition was conducted indoors. There were four groups of Epipremnum aureum with
different canopy occlusions. Each group contained three plants. Plants in each group had
similar canopy occlusion. The occlusion increased from the first group to the fourth group.
Specifically, the plants of the first, second, third, and fourth groups had no, a little, medium,
and heavy canopy occlusion. The plants in each group were scanned individually.

Table 1. Parameters of ZGScan 717.

Types Parameters Types Parameters

Weight 1.0 kg Accuracy 0.03 mm
Volume 310 × 147 × 80 mm Field depth 550 mm

Scanning area 275 × 250 mm Transfer method USB 3.0
Speed 480,000 times/s Work temperatures −20–40 ◦C
Light 7 laser crosses (+1) Work humidity 10–90%

Light security II Outputs Point clouds/3D
mesh

The plant was on the table and scanned by ZGScan 717 (Figure 1a). With two CCDs and
one laser, ZGScan 717 recorded data on a contour section of an object surface by projecting
seven pairs of cross scanning laser beams and one deep hole scanning laser beam. To
reconstruct the 3D model of the plant, the position and orientation of the detection handle
were detected by the embedded motion-tracking technology. It quickly scanned the object
(480,000 times/second) and generated high-precision point clouds. The maximum accuracy
could reach 0.03 mm. ZGScan 717 was held close to the plant during data scanning with
no closer than 80 mm and no distant than 2000 mm to ensure a high-resolution scanning
result. The scanning path was random. The 3D model was reconstructed in real-time
when data scanning. Particularly, the reconstructed 3D model was viewed on a laptop in
real-time when data scanning, which helped to check the integrity of the data acquisition.
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Specifically, complex parts of the plant should be scanned more carefully. Particularly, the
software integrated with ZGScan 717 could output both 3D point clouds and 3D mesh.
Here, the 3D mesh was chosen as the scanning output (Figure 1b). Figure 1 shows the data
acquisition process. As shown in Figure 1b,c, the output 3D mesh model of the plant is
high-precision with detailed geometric structure.Sensors 2021, 21, x FOR PEER REVIEW 4 of 22 
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Figure 1. Data acquisition process. (a) ZGScan 717; (b) The generated 3D mesh model of the plant; (c) The 3D mesh model
of a leaf.

The data processing algorithms were implemented on a 2.50 GHZ desktop with
8.0 Gb RAM. The code was compiled using C++ with Point Cloud Library (PCL) v1.8.0,
Computational Geometry Algorithms Library (CGAL), and Visualization Toolkit (VTK)
v7.0. All algorithms were integrated. The entire process of data processing was conducted
by algorithms without manual works.

2.2. Typical Leaf Sample Extraction and Morphological Trait Estimation

Individual leaves should be segmented to measure leaf morphological traits. A multi-
level region growing segmentation method based on the leaf shape model is proposed. The
region growing method divides the point clouds into different clusters mainly based on
smooth and curvature characters [30]. Points with similar smooth and curvature values are
segmented into a group. Different smooth and curvature thresholds can lead to different
results. Segmentation at a large scale based on the region growing method will lead to
a rough segmentation result, and if the segmentation scale is too small, it may be over-
segmented. When the input data varies, the most appropriate scale should be different.
However, the segmentation scale and its parameters are usually set by experience in
most contemporary research. The goal of our proposed segmentation method is to find a
suitable adaptive segmentation scale for different input data. Considering that leaves in
the same species have similar morphological structures, the shape model is employed in
segmentation. The proposed segmentation method mainly includes six steps, as shown
in Figure 4.

Step 1: Non-plant removal. The main purpose of non-plant removal is to remove the
plant from the background. Here, the RANSAC [31] plane detection method is adopted to
remove the table, as shown in Figure 2b. Then we filter out the triangles with a distance
range of ε (ε = 100 mm) from the table, as shown in Figure 2c. Those data are usually
the table, flower pot, and the soil. At last, plant data are extracted from the background
(Figure 2d). Particularly, some data of the flower pot and the soil may be missing in some
experiments, as they are not our target and are not scanned properly during the scanning
process, as shown in Figure 2.
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Figure 2. The removal of non-plant. (a) An example of the generated 3D mesh model of the plant; (b) the detection of the
table; (c) the filtering of non-plant; (d) the plant after the non-plant removal.

Step 2: Region growing segmentation. Smooth and curvature are two decisive param-
eters for region growing segmentation. The most important step is to find the appropriate
values of smooth and curvature. The average of the smooth and curvature, ς and ρ, are
calculated first. The number of points Np for fitting a local surface and calculating curvature
is usually 30. The values of smoothness and curvature thresholds εa and εb in the initial
segmentation scale are εa = 1.5 ς and εb = 1.5 ρ.

Step 3: Estimation of morphological traits. Assume all the segmentation results are
leaves. All morphological traits of each segmentation result are calculated. Typical shape-
based leaf morphological traits include scale-related and scale-invariant traits. Generally,
leaf area, perimeter, length, and width are scale-related morphological traits, and their
ratios are scale-invariant morphological traits, as listed in Table 2.

Table 2. Morphological traits. Sym.: symbols of the traits. Var.: variables.

Scale-Related Traits Sym. Var. Scale-Invariant Traits Sym. Var.

Area s X01 Area perimeter ratio s/c X11
Perimeter c X02 Area length ratio s/l X12

Length l X03 Area width ratio s/w X13
Width w X04 Perimeter length ratio c/l X14

Perimeter width ratio c/w X15
Aspect ratio l/w X16

Leaf area (s) is an important scale-related trait. As shown in Figure 3, the leaf area
can be represented by a triangular mesh (green mesh). Leaf perimeter (c) is the boundary
of the mesh (blue line in Figure 3). The length of the boundary is the leaf perimeter. Leaf
length (l) is usually measured along the midline of the leaf. The shape of the leaf is broad
and elliptical; thus, the longest shortest geodesic path along the first principal component
direction (purple line in Figure 3) is the target leaf length (red line in Figure 4). Leaf width
(w) (yellow line in Figure 3) is usually defined as the widest length of the leaf perpendicular
to the leaf length.
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mesh of a leaf.
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Figure 4. The multi-level region growing segmentation method based on the shape model.

Step 4: Establishment of the shape model. Two shape models are established to
describe the leaf parametrically. One is used for size description and the other is employed
for architecture description. The formulas for these two shape models are as follows:

F(X) = a1
X01 − X01

X01
+ a2

X02 − X02

X02
+ a3

X03 − X03

X03
+ a4

X04 − X04

X04
(1)

G(X) = b1X11 + b2X12 + b3X13 + b4X14 + b5X15 + b6X16 (2)

where a1–a4 and b1–b6 are variance contribution rates of the principal component analysis
of the scale-related traits and scale-invariant traits, respectively. X01~X04 and X11~X16 are
traits in Table 2.

Step 5: Detection of the shape model. A series of clusters are obtained after the
initial segmentation. Some leaves can be successfully segmented, while some attached
and overlapped leaves may be segmented incorrectly. Therefore, correct results should be
stored, and incorrect clusters should be further segmented. If a segmented result satisfies:

H(X) =

{
0.25 ∗ F(X) < F(X) < 1.25 ∗ F(X)

0.25 ∗ G(X) < G(X) < 1.25 ∗ G(X)
(3)

The segmented result is a typical leaf sample, and its mesh and morphological traits
are stored. If not, repeat step 2 with a smaller segmentation scale (smaller values of εa and
εb). εa and εb are reduced by 5% in each cycle. Repeat this process until all segmentation
results meet the shape model detection or one of εa and εb is reduced to 0.0001.
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Step 6: Final shape model detection and the outputs. When the segmentation is done,
detect all the stored segmentation results with the final shape model that is based on all the
stored segmentation results. If a segmentation result satisfies the final shape model, the 3D
leaf model and their morphological traits are output.

The multi-scale segmentation method proposed in this paper is an iterative process.
Rough segmentation results C_level1 are usually obtained through the initial segmentation
(εa = 1.5ς and εb = 1.5ρ), as shown in Figure 5a. The first shape model H(X) _level1 is built
based on all clusters in C_level1. Then all clusters in C_level1 are detected by H(X) _level1.
Clusters in C_level1 that satisfy the H(X) _level1, defined as M_H(X)_level1, are stored, as shown
in Figure 5d. Clusters that do not satisfy the H(X) _level1, defined as M_R_level1, go through
the second segmentation at a smaller scale (εa = 1.45ς and εb = 1.45ρ), as shown in Figure 5b.
Then a new shape model H(X) _level2 is built based on M_H(X)_level1 and the second seg-
mentation results C_level2. Clusters in M_H(X)_level1 and C_level2 that satisfy the H(X) _level2,
defined as M_H(X)_level2, update M_H(X)_level1, as shown in Figure 5e. Clusters in C_level2
that do not satisfy the H(X) _level2, define as M_R_level2, go through further segmentation,
as shown in Figure 5c. The segmentation continues until all segmentation results meet
the shape model detection or one of εa and εb is reduced to 0.0001. M_H(X)_leveln is defined
as the clusters that satisfy the last shape model H(X) _leveln after the final segmentation.
When the segmentation is done, a final shape model H(X) is built based on clusters in
M_H(X)_leveln. All clusters in M_H(X)_leveln are detected by H(X). Then clusters (M_H(X)) that
satisfy the H(X) are the typical leaf samples, as shown in Figure 5f. As more and more
typical leaves are segmented correctly, the established shape model becomes more and
more accurate, which in turn improves the automatic segmentation accuracy of typical
leaves. A segmentation result may be considered as the typical leaf sample after the initial
segmentation based on the initial shape model, while it will be removed in further shape
model detection, as shown in the red box in Figure 5.Sensors 2021, 21, x FOR PEER REVIEW 8 of 22 
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Figure 5. Schematic diagram of the multi-level region growing segmentation. (a) Initial segmentation results (εa = 1.5ς and
εb = 1.5ρ); (b) the data for the second segmentation; (c) the data for the third segmentation; (d) the automatically selected
leaves after the initial segmentation based on the initial shape models; (e) the automatically selected leaves after the second
segmentation (εa = 1.45ς and εb = 1.45ρ) based on the second shape models; (f) the automatically selected typical leaf
samples after the final segmentation based on the final shape models. The red boxes mark a cluster considered as a typical
leaf sample during the multi-level segmentation process but removed at last.

2.3. Accuracy Analysis

The accuracies of the data scanning, segmentation, and trait estimation are tested. The
comparison between automatically and manually selected typical leaf samples is conducted
to illustrate the accuracy of the segmentation. R_scan is the data scanning accuracy. R_seg1 is
the segmentation accuracy between automatically segmented typical leaf samples and well-
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scanned typical leaf samples. R_seg2 is the segmentation accuracy between automatically
segmented typical leaf samples and manually selected typical leaf samples. R_scan, R_seg1,
and R_seg2 can be calculated as follows:

R_scan =
N2

N1
× 100%, R_seg1 =

N3

N2
× 100%, and R_seg2 =

N3

N1
× 100% (4)

where N1, N2, and N3 are the numbers of manually selected, well scanned, and automati-
cally selected typical leaf samples.

Correlation analyses between the automatically estimated and manually measured
traits are performed to verify the accuracy of trait estimation. A dimensionless statistic
that directly relates model predictions to observed data is the modeling efficiency (EF) [32].
EF is a statistic based on the coefficient of determination. The calculated EF is an overall
indication of goodness of fit. If a model has a negative value of EF, the model cannot be
recommended. If EF has preferable values close to one, it indicates a “near-perfect” model.
EF is defined as:

EF = 1−
n

∑
i=1

(yi − xi)
2/

n

∑
i=1

(yi − y)2 (5)

where xi is the independent variable, yi is the dependent variable, and n is the number of
samples. In this paper, xi is the automatically estimated morphological trait and yi is the
manually measured morphological trait.

Additionally, the root-mean-square error (RMSE) and the mean absolute percentage
error (MAPE) of the automatic measurement traits compared to the manually measured
traits are adopted to illustrate the accuracy of trait estimation. The formulas for RMSE and
MAPE are as follows:

RMSE =

√
1
n

n

∑
i=1

(xmi − xai)
2 (6)

MAPE =
1
n

n

∑
i=1

|xmi − xai|
xmi

× 100% (7)

where xmi is the manual measurement traits and xai is the automatically estimated traits.

3. Results
3.1. Results of Data Scanning and Segmentation

The data scanning results and automatic segmentation results of typical leaf samples
are shown in Table 3. The number of leaves N0 in the first and second group is 3–8 and
10–11. The number of typical leaf samples N1 in the first and second group is 3–6 and
8–11. The difference between N0 and N1 indicates that there are some new-born leaves
or damaged leaves that are not suitable for morphological trait estimation. The scanning
accuracy (R_scan) and segmentation accuracies (R_seg1 and R_seg2) reach 100%. This indicates
the data scanning accuracy with the hand-held scanner ZGScan 717 is competitive and the
automatic segmentation method proposed in this paper is effective for plants with no or
a little occlusion. For plants in the third group, N0 ranges from 26 to 34, and N1 varies
from 24 to 31. This indicates there are new-born or damaged leaves. The values of R_scan
(96.77–95.83%), R_seg1 (95.83–93.33%), and R_seg2 (92.00–90.32%) exhibit that the proposed
segmentation method is practical for the plants with medium occlusion, although some
data are missing. In the fourth group, N0 varies from 45 to 53, and N1 ranges from 36
to 37, which indicates there are a large number of new-born or damaged leaves. R_scan
ranges from 94.59% to 86.11%. R_seg1 varies from 91.43% to 87.10%. R_seg2 is reduced from
86.43% to 75.00%. The values of R_scan, R_seg1, and R_seg2 indicate that occlusion affects
data scanning and segmentation accuracy a lot for the occluded plants.
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Table 3. Accuracy of data scanning and individual leaf segmentation of typical leaf samples. NO. is the number of plants. N0

is the number of leaves on the plant. N1, N2, and N3 are the numbers of manually selected, well scanned, and automatically
selected typical leaf samples. R1, R2, and R3 are the average value of R_scan, R_seg1, and R_seg2 for each group.

Groups NO. N0 N1 N2 N3 R_scan R_seg1 R_seg2 R1 R2 R3

1
(No occlusion)

1 3 3 3 3 100.00% 100.00% 100.00%
100.00% 100.00% 100.00%2 6 6 6 6 100.00% 100.00% 100.00%

3 8 6 6 6 100.00% 100.00% 100.00%

2
(A little occlusion)

4 10 8 8 8 100.00% 100.00% 100.00%
100.00% 100.00% 100.00%5 10 10 10 10 100.00% 100.00% 100.00%

6 11 11 11 11 100.00% 100.00% 100.00%

3
(Medium occlusion)

7 26 24 23 22 95.83% 95.65% 91.67%
96.20% 94.94% 91.33%8 32 25 24 23 96.00% 95.83% 92.00%

9 34 31 30 28 96.77% 93.33% 90.32%

4
(Heavy occlusion)

10 45 37 35 32 94.59% 91.43% 86.49%
89.96% 88.80% 79.95%11 50 37 33 29 89.19% 87.88% 78.38%

12 53 36 31 27 86.11% 87.10% 75.00%
all 1–12 288 234 220 205 94.02% 93.18% 87.61% - - -

In general, for plants from the first group to the fourth group, the average data
scanning accuracy R1 is 100–89.96% and segmentation accuracy R2 and R3 are 100–88.8%
and 100–79.95%. R1, R2, and R3 decrease with the increase of canopy occlusion. The
difference between R2 and R3 shows that the main factor that affects the segmentation
results is the incomplete scanning data, which indicates the occlusion is the main factor that
affects the segmentation accuracy. Generally, for all plants with different canopy occlusions,
R_scan, R_seg1, and R_seg2 are 94.02%, 93.18%, and 87.61%, respectively.

Figure 6 shows the segmentation results of typical leaf samples of different canopy-
occluded plants. Figure 6a–c show that the proposed method can successfully segment
typical leaf samples from plants with no occlusion, a little occlusion, and medium occlusion.
Small new-born leaves that are not suitable for morphological trait measurement, such as
the leaves in the red boxes in Figure 6, are automatically removed. Figure 6d illustrates
that most of the typical leaf samples can be successfully extracted from heavily occluded
plants. Leaves with incomplete scanning data (the leaves in the yellow boxes in Figure 6)
are automatically removed. The number of typical leaves that are not successfully extracted
increases as the number of lost scanning data increases.

Table 3 and Figure 6 both show that the scanning and segmentation accuracy decreases
with the increase of canopy occlusion. The increase of leaves and the aggravation of
occlusion make the structure of the plant more complex, which increases the difficulty
of data scanning and individual leaf segmentation. Specifically, on the one hand, the
complex structure of the occluded plants directly affects the segmentation results; on the
other hand, occlusion will affect the integrity of the scanning data and indirectly affect the
segmentation accuracy.
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Figure 6. The automatic segmentation results of typical leaf samples of different canopy-occluded plants. (a) No canopy
occlusion (group 1); (b) a little canopy occlusion (group 2); (c) medium canopy occlusion (group 3); (d) heavy canopy
occlusion (group 4). The red boxes mark the new-born leaves, and the yellow boxes mark the leaves with incomplete
scanning data.

3.2. Results of Morphological Trait Estimation
3.2.1. Results of Scale-related Morphological Traits

Scale-related traits contain leaf area, perimeter, length, and width in this paper. The
comparison between the automatically estimated and the manually measured scale-related
traits are performed.
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Figure 7 illustrates the regression analysis between automatic and manual measure-
ments of scale-related traits of plants with no occlusion (plants in group 1). The average
values of leaf area, perimeter, length, and width are 2017.50 mm2, 180.65 mm, 65.03 mm,
and 41.13 mm, respectively. Regression analyses show strong correlations (EF = 0.9997,
EF = 0.9861, EF = 0.9132, and EF = 0.9156 for the area, perimeter, length, and width, re-
spectively). Nevertheless, the RMSE values of the area, perimeter, length, and width are
13.59 mm2, 4.73 mm, 4.09 mm, and 2.78 mm, respectively. The MAPE values of area,
perimeter, length, and width are 0.60%, 2.16%, 5.29%, and 5.79%, respectively. Regression
analyses, RMSE, and MAPE results show that the deviation between automatic estimation
and manual measurement is very small.
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Figure 7. Regression analyses between automatic and manual measurements of scale-related traits of plants with no
occlusion (plants in group 1).

Figure 8 shows regression analyses between automatic and manual measurements of
scale-related traits of plants with a little occlusion (plants in group 2). As shown in Figure 8,
the average leaf area, perimeter, length, and width are 2260.46 mm2, 189.2 mm, 68.3 mm,
and 43.34 mm, respectively. The automatically calculated values are highly correlated with
the manually measured values based on the proposed method (EF = 0.9997, EF = 0.9838,
EF = 0.9076, and EF = 0.9080 for the area, perimeter, length, and width, respectively).
Additionally, the RMSE values of the area, perimeter, length, and width are 16.97 mm2,
5.36 mm, 5.14 mm, and 2.88 mm, respectively. The MAPE values of the area, perimeter,
length, and width are 0.66%, 2.34%, 6.58%, and 5.96%, respectively. The regression analyses
and the results of RMSE and MAPE exhibit little deviation of automatic measurement
values from manual measurement values for plants with a little occlusion.
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Figure 8. Regression analyses between automatic and manual measurements of scale-related traits of plants with a little
occlusion (plants in group 2).

Figure 9 displays regression analyses between automatic and manual measurements
of scale-related traits of plants with medium occlusion (plants in group 3). The leaf area,
perimeter, length, and width have average values of 2270.66 mm2, 190.35 mm, 69.33 mm,
and 44.71 mm, respectively. EF for the area, perimeter, length, and width, are 0.9993, 0.9784,
0.8787, and 0.8857, respectively. This indicates the automatically calculated values are
highly correlated with the manually measured values. Furthermore, the RMSE values of
the area, perimeter, length, and width are 26.13 mm2, 6.45 mm, 5.73 mm, and 3.32 mm,
respectively, and the MAPE values of the area, perimeter, length, and width are 0.68%,
2.66%, 6.74%, and 6.03%, respectively. The regression analyses and the results of RMSE
and MAPE exhibit a small deviation of automatic measurement values from manual
measurement values for plants with medium occlusion.

Figure 10 exhibits regression analyses between automatic and manual measurements
of scale-related traits of plants with heavy occlusion (plants in group 4). Meanwhile, values
of RMSE and MAPE are exhibited. The average leaf area, perimeter, length, and width
have values of 3845.10 mm2, 252.48 mm, 89.75 mm, and 59.06 mm, respectively. EF for
area, perimeter, length, and width, are 0.9981, 0.9600, 0.7536, and 0.7502, respectively.
This illustrates the automatic measurement values have strong explicit correlations with
the manual measurement values. Moreover, the RMSE values of the area, perimeter,
length, and width are 48.13 mm2, 8.21 mm, 7.37 mm, and 4.41 mm, respectively, and the
MAPE values of the area, perimeter, length, and width are 0.77%, 2.87%, 7.03%, and 6.85%,
respectively. The regression analyses and the results of RMSE and MAPE indicate a small
deviation of automatic measurement values from manual measurement values for plants
with heavy occlusion.
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Figure 9. Regression analyses between automatic and manual measurements of scale-related traits of plants with medium
occlusion (plants in group 3).
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Figure 10. Regression analyses between automatic and manual measurements of scale-related traits of plants with heavy
occlusion (plants in group 4).
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Figure 11 exhibits regression analyses between automatic and manual measurements
of scale-related traits of plants with different occlusion (plants in all groups). The average
values of leaf area, perimeter, length, and width have values of 2946.10 mm2, 216.92 mm,
77.88 mm, and 50.59 mm, respectively. The automatically calculated values are highly
correlated with the manually measured values based on the proposed method (EF = 0.9992,
EF = 0.9827, EF = 0. 8919, and EF = 0.9039 for the area, perimeter, length, and width,
respectively). Additionally, the RMSE values of the area, perimeter, length, and width
are 14.12 mm2, 4.11 mm, 3.42 mm, and 1.98 mm, respectively. The MAPE values of the
area, perimeter, length, and width are 0.72%, 2.69%, 6.83%, and 7.16%, respectively. All
the regression analyses and the results of RMSE and MAPE comparing manual measure-
ment traits versus automatic measurement traits for plants with different occlusions show
that the accuracy of the proposed morphological trait estimation method is competitive
and effective.
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Figure 11. Regression analyses between automatic and manual measurements of scale-related traits of plants with different
occlusions (plants in all groups).

3.2.2. Results of Scale-invariant Morphological Traits

Six scale-invariant traits are estimated. The average scale-invariant traits X11, X12, X13,
X14, X15, and X16 are 12.93, 36.14, 55.56, 2.79, 4.30, and 1.55, respectively. Table 4 shows the
values of EF of regression analyses between the automatic and manual measurement of
scale-invariant traits of plants with different occlusions. For plants from the first group
to the fourth group, EF for the scale-invariant traits X11, X12, X13, X14, X15, and X16 have
values of 0.9883–0.9579, 0.9202–0.8461, 0.9386–0.8276, 0.8728–0.7775, 0.8312–0.6891, and
0.8268–0.6895, respectively.
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Table 4. The values of EF of regression analyses between the automatic and manual measurement of
scale-invariant traits for plants with different occlusions.

Groups X11 X12 X13 X14 X15 X16

1 0.9857 0.9202 0.9102 0.8728 0.8312 0.8268
2 0.9883 0.9130 0.9386 0.8513 0.8147 0.7594
3 0.9692 0.8507 0.9017 0.8472 0.7449 0.7322
4 0.9579 0.8461 0.8276 0.7775 0.6891 0.6895

All 0.9811 0.8908 0.9162 0.8509 0.7838 0.7434

The measurement accuracy of scale-invariant traits of plants with different occlusions
is listed in Table 5. For plants from the first group to the fourth group, the results of
RMSE have values of 0.27–0.44, 1.83–3.19, 2.83–4.47, 0.17–0.23, 0.23–0.34, and 0.07–0.14 for
traits X11, X12, X13, X14, X15, and X16, respectively. The results of MAPE have values of
1.95–2.65%, 5.30–7.08%, 5.76–6.78%, 4.83–7.07%, 4.56–7.04%, and 3.38–6.19% for traits X11,
X12, X13, X14, X15, and X16, respectively. The results of RMSE and MAPE increase with the
increase of occlusion degree, which indicates that the measurement accuracy decreases
with the increase of occlusion degree. The differences of RMSE and MAPE increase overall
from the first group to the fourth group.

Table 5. The measurement accuracy of scale-invariant traits for plants with different occlusions.

Groups RMSE MAPE (%)

X11 X12 X13 X14 X15 X16 X11 X12 X13 X14 X15 X16

1 0.27 1.83 2.83 0.17 0.27 0.07 1.95 5.30 5.88 4.83 5.66 3.38
2 0.28 2.20 2.95 0.18 0.23 0.10 2.02 6.77 5.76 5.37 4.56 4.54
3 0.38 2.39 3.44 0.23 0.34 0.14 2.65 7.08 6.21 7.07 7.04 6.19
4 0.44 3.19 4.47 0.21 0.31 0.13 2.64 7.06 6.78 6.59 6.21 5.87

All 0.23 1.46 2.09 0.14 0.20 0.08 2.50 6.89 6.34 6.44 6.21 5.52

For all plants, the automatically calculated values are correlated with the manually
measured values based on the proposed method (EF = 0.9811, EF = 0.8908, EF = 0.9162,
EF = 0.8509, EF = 0.7838, and EF = 0.7434 for traits X11, X12, X13, X14, X15, and X16, respec-
tively). In addition, the RMSE values of traits X11, X12, X13, X14, X15, and X16 are 0.23, 1.46,
2.09, 0.14, 0.20, and 0.08, respectively, and the MAPE values of the corresponding traits are
2.50%, 6.89%, 6.34%, 6.44%, 6.21%, and 5.52%, respectively.

3.3. Time Cost

Table 6 lists the time cost of the experiments. For all the experiments, the data scanning
time ranges from 120 to 250 seconds. The output time of a 3D model of a plant is between
5.68 and 6.24 seconds. The data processing time including segmentation and trait estimation
varies from 4.02 to 5.13 seconds. Data scanning occupies most of the time. In general, the
average measurement time of one plant is 196.37 seconds (186.08 seconds for data scanning,
5.95 seconds for 3D model output, and 4.36 seconds for automatic selection of typical leaf
samples and morphological trait estimation).
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Table 6. Time cost (second). T_scan: time of data scanning. T_mesh: time of 3D model output. T_p:
time of data processing.

Plants Points T_scan T_mesh T_p Plants Points T_scan T_mesh T_p

1 203,343 120 5.68 4.02 7 434,177 185 6.08 4.25
2 279,350 130 5.71 4.02 8 400,144 191 6.00 4.27
3 304,232 140 5.81 4.02 9 420,915 199 6.05 4.29
4 364,758 160 5.89 4.08 10 449,642 265 6.12 5.13
5 364,299 170 5.88 4.09 11 456,619 247 6.13 5.04
6 359,396 176 5.81 4.09 12 493,968 250 6.24 5.06

4. Discussion
4.1. Measurements on Different Canopy-Occluded Plants

In this paper, a novel method based on a handheld laser scanner to automatically
measure the morphological traits of typical leaf samples of different canopy-occluded live
plants was proposed. Plants with different canopy occlusions were tested. The experimen-
tal results show that the measurement accuracy of the proposed method for automatically
estimating morphological traits of leaves is competitive. It should be noted that the mea-
surement accuracy is different when measuring plants with different canopy occlusions.

The presented results of scanning (Table 3) show that the scanning accuracy is de-
creased with the increase of canopy occlusion of plants. The plants with no and a little
canopy occlusion can be well scanned (both with scanning accuracy 100%), and the plants
with medium and heavy canopy occlusion can lose some data (with scanning accuracy
96.20% and 89.96%, respectively). This is because plants with heavier canopy occlusion
have more attached and overlapped leaves, which makes data scanning more difficult.
This problem is common in data acquisition based on non-penetration devices [27,28,33].

The presented results of segmentation (Table 3 and Figure 6) show that the segmen-
tation accuracy is decreased with the increase of canopy occlusion of plants. R2 varies
from 100% to 88.8% R3 has values from 100% to 79.95%. There are two reasons. On one
hand, the increase of canopy occlusion makes the lack of scanning data increase, which
decreases the segmentation accuracy indirectly. On the other hand, the increase of canopy
occlusion makes the complexity of plant geometric structure increase, which increases the
difficulty of the segmentation algorithm directly. This is the reason that the experiment
subjects in most contemporary research ([18,19,23]) are plants with several leaves at the
early growth stage when measuring leaf morphological traits. Additionally, the difference
between R2 and R3 shows that the main factor that affects the segmentation results is the
incomplete scanning data, which indicates the occlusion is the main factor that affects the
segmentation accuracy.

The presented results of morphological trait estimation (Figures 7–10 and Tables 4 and 5)
show that the trait estimation accuracy is decreased with the increase of canopy occlusion
of the plants. There are two main reasons. On one hand, the occlusion decreases the
segmentation accuracy, which influences the trait estimation indirectly. On the other
hand, the occlusion leads to less growth space, which influences the geometrical shape
of leaves and directly affects the trait calculation algorithms. Regarding the regression
analyses between automatic and manual measurements of morphological traits, the values
of EF are decreased with the increase of plant canopy occlusion. Specifically, the values
of EF for the area, perimeter, length, width, X11, X12, X13, X14, X15, and X16 vary from
0.9997, 0.9861, 0.9132, 0.9156, 0.9883, 0.9202, 0.9386, 0.8728, 0.8312, and 0.8268 to 0.9981,
0.9600, 0.7536, 0.7502, 0.9579, 0.8461, 0.8276, 0.7775, 0.6891, and 0.6895, respectively. The
morphological trait measurement of plants with no canopy occlusion has high values
of EF, and the plants with heavy canopy occlusion have low values. This illustrates the
measurement accuracy of plants with no canopy occlusion is higher than that of plants with
heavy occlusion. The values of EF in regression analyses are all positive, which illustrates
the automatically calculated values are correlated with the manually measured values.
Figures 7–10 also illustrate the automatic measurements are underestimated compared to
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manual measurements. This is because it is easy to lose some data in data scanning and
leaf segmentation. Regarding the RMSE and MAPE between the automatic and manual
measurements of morphological traits, the values of RMSE and MAPE are increased
with the increase of plant canopy occlusion. Specifically, the values of RMSE of the area,
perimeter, length, width, X11, X12, X13, X14, X15, and X16 vary from 13.59 mm2, 4.73 mm,
4.09 mm, and 2.78 mm, 0.27, 1.83, 2.83, 0.17, 0.23, and 0.07 to 48.13 mm2, 8.21 mm, 7.37 mm,
4.41 mm, 0.44, 3.19, 4.47, 0.21, 0.34, and 0.14, respectively. The values of MAPE of the
area, perimeter, length, width, X11, X12, X13, X14, X15, and X16 vary from 0.60%, 2.16%,
5.29%, 5.79%, 1.95%, 5.30%, 5.76%, 4.83%, 4.56%, and 3.38% to 0.77%, 2.87%, 7.03%, 6.85%,
2.65%, 7.08%, 6.78%, 7.07%, 7.04%, and 6.19%, respectively. It can be found out that the
morphological trait measurement of plants with no canopy occlusion has low values of
RMSE and MAPE and the plants with heavy canopy occlusion have high values. The
values of RMSE exhibit that the automatic trait estimation accuracy can reach the military
level. The values of MAPE of the area and perimeter are smaller than those of length
and width in the same canopy occlusion condition. This is because calculation algorithms
of length and width are based on the 3D mesh of the leaf. The values of MAPE of the
scale-related traits are lower than those of scale-invariant traits. This is because that the
scale-invariant traits are derived from the scale-related traits.

It should be noted that varied results between the automatically and manually mea-
sured morphological traits are usually found when leaves are attached or overlapped. The
deviation becomes larger when there are more connected and overlapped parts. This is
because the attached or overlapped leaves make segmentation difficult. What is worse, the
leaves with a large area of connected and overlapped parts would fail to be segmented.

The presented time cost (Table 6) shows that the time cost increases with the increase
of the canopy occlusion. It can be found out that the main time cost is in the data scanning.
Plants with more complicated canopy occlusion require more time for data acquisition. The
data processing is really fast and the difference in the time cost of different canopy-occluded
plants can be ignored. The low time cost indicates the proposed method is competitive and
has the potential for real-time plant measurement.

It can be found out although the measurement accuracies from plants with no canopy
occlusion to heavy occlusion are reduced slightly, the overall accuracies of scanning,
segmentation, and morphological trait estimation are competitive (Figure 11). The time
cost of the proposed method for different canopy-occluded plants is low. The competitive
measurement accuracy and low time cost of the proposed method show great potential for
real-time plant measurement and high-throughput plant phenotype.

4.2. Comparison of Related Methods

In this paper, a multi-level region growing segmentation using two leaf shape models
was proposed to perform individual leaf segmentation and morphological trait estima-
tion. The segmentation comparison of two widely used segmentation methods and our
segmentation method is presented in Figure 12. Method A is the Euclidean Clustering
method in papers [24,29] and B is the Facet Region Growing method in paper [27]. It can
be found out that the Euclidean Clustering method performs well in plants with no and
a little canopy occlusion. Some attached leaves are failed to be segmented based on the
Euclidean Clustering method when the plants have medium canopy occlusion. Large
numbers of leaves are failed to be segmented based on the Euclidean Clustering method
when the plants have heavy canopy occlusion. It should be noted that the segmented leaves
with the Euclidean Clustering method are usually with stems (the leaves in the yellow
boxes in Figure 12), which will affect the leaf measurement accuracy in the morphological
trait calculation process. Regarding the Facet Region Growing method, it performs well
for plants with no, a little, and medium canopy occlusion. However, some attached and
overlapped leaves (the leaves in the red boxes in Figure 12) fail to be segmented using
Facet Region Growing method when plants are heavily occluded. It can be seen that the
number of leaves that could not be segmented by the Facet Region Growing method is
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more than ours. It should be noted that the segmentation results using both the Euclidean
Clustering method and Facet Region Growing method includes leaves with incomplete
scanning data and newborn leaves, which will affect the morphological trait estimation
accuracy. It should be noted that the typical leaf samples that are suitable for morphological
trait estimation can be automatically selected using our proposed method, while the other
two segmentation cannot.
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Figure 12. Segmentation results of two segmentation methods and our proposed method. Method A is the Euclidean
Clustering method in papers [24,29] and B is the Facet Region Growing method in paper [27]. Plants in (a), (b), (c), and
(d) are plants with no, a little, medium, and heavy canopy occlusion. The yellow boxes mark some segmented results of
leaves with stems using the Euclidean Clustering method. The red boxes mark some segmented results of attached and
overlapped leaves using the Facet Region Growing method.

The measurement accuracies of morphological traits using the Euclidean Cluster-
ing method, Facet Region Growing method, and our proposed method are listed in
Tables 7 and 8. The values of EF of automatically measured and the manually measured
traits using the Euclidean Clustering method, the Facet Region Growing method, and our
proposed are increased. The values of RMSE and MAPE using the Euclidean Clustering
method, the Facet Region Growing method, and our proposed are decreased. It can be
found out that the measurement accuracies using the Facet Region Growing method are
higher than those employing the Euclidean Clustering method. The proposed method has
higher measurement accuracies compared to the Facet Region Growing method and the
Euclidean Clustering method.
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Table 7. Measurement accuracies of the scale-related morphological traits using the Euclidean
Clustering method, Facet Region Growing method, and our method.

Methods Area Perimeter Length Width

Method A EF 0.8430 0.8299 0.7872 0.7501
RMSE 54.98 mm2 18.56 mm 11.44 mm 9.66 mm
MAPE 5.44% 9.44% 16.03% 18.57%

Method B EF 0.9354 0.9103 0.8546 0.8212
RMSE 23.98 mm2 12.13 mm 7.12 mm 5.47 mm
MAPE 2.13% 6.12% 9.12% 11.57%

Our work EF 0.9992 0.9827 0.8919 0.9039
RMSE 14.12 mm2 4.11 mm 3.42 mm 1.98 mm
MAPE 0.72% 2.69% 6.83% 7.16%

Table 8. Measurement accuracies of the scale-related morphological traits using the Euclidean
Clustering method, Facet Region Growing method, and our method.

Methods X11 X12 X13 X14 X15 X16

Method A EF 0.8286 0.7812 0.7513 0.7001 0.6108 0.5603
RMSE 0.78 5.67 7.63 0.45 0.49 0.17
MAPE 5.17% 14.39% 12.68% 12.99% 12.68% 10.34%

Method B EF 0.9102 0.8512 0.8417 0.8103 0.7029 0.6819
RMSE 0.46 3.57 4.09 0.25 0.30 0.10
MAPE 3.59% 10.47% 9.46% 9.79% 9.56% 7.89%

Our work EF 0.9811 0.8908 0.9162 0.8509 0.7838 0.7434
RMSE 0.23 1.46 2.09 0.14 0.20 0.08
MAPE 2.50% 6.89% 6.34% 6.44% 6.21% 5.52%

4.3. Advantages, Limitations, Improvements, and Future Works

In this paper, a novel method for automatic measurement of the morphological traits
of typical leaf samples of different canopy-occluded live plants using a handheld laser
scanner is proposed. Our method has four advantages. First of all, the 3D mesh model
of the plant obtained by ZGScan 717 has higher precision and richer details compared to
those reconstructed by the SFM method [24], time-of-flight (ToF) method [22], binocular
stereo vision method [27], LIDAR method [34], and FastSCAN hand-held scanner [35].
The 3D mesh model is reconstructed in real-time during data scanning and can be output
directly, thus saving data processing time for 3D reconstruction in most contemporary
research. Second, typical leaf samples can be automatically selected, and the accuracies of
segmentation and trait estimation are competitive compared to related works [27,29,33]. A
multi-level region growing segmentation method using two leaf shape models is proposed.
The two main segmentation parameters, smooth and curvature, are adaptive to different
input data at different segmentation scales. The two shape models, one using scale-related
traits and the other using scale-invariant traits, are dynamically established based on the
different segmentation results at different scales. The proposed segmentation method
performs better compared with the Euclidean Clustering method in papers [24,29] and
the Facet Region Growing method in paper [27]. Third, the time cost of our proposed
method, especially the data processing time, is really low. Finally, compared with most
of the literature [18,19], which only focuses on the research of non-occluded plants at
the early growth stage, the method proposed in this paper can be applied to different
canopy-occluded plants.

It should be noted that the segmentation method and trait estimation algorithm are
based on the 3D mesh models. It has little to do with the acquisition method of the 3D
model. Hence, the proposed method in this paper is universal no matter what instrument
is used for obtaining 3D mesh models of plants.

However, there are still some limitations in our research. For the process of data
scanning, it is necessary to stick the mark points on and around the plant leaves in advance.
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It should be noted that the proposed method is suitable for plants with a similar leaf
shape to Epipremnum aureum, such as eucalyptus, cinnamon, and gardenia. Specifically,
the leaves should be broad and elliptical. Leaves with long and banding shapes, such as
rice, corn, and wheat, may not be suitable. This is because their leaves are usually soft
and curved, which makes the length and width calculation algorithms differ from the
elliptical ones.

Thus, the improvement and future work will focus on two problems, namely trait
estimation algorithm improvement and segmentation improvement.

5. Conclusions

This paper presents a novel method based on a hand-held 3D laser scanner to automat-
ically extract typical leaf samples and estimate their morphological traits from live plants
with different canopy occlusions. First, the 3D mesh model of the plant that is reconstructed
in real-time during data scanning by a hand-held 3D laser scanner (ZGScan 717) is obtained
directly. The plant model has high precision (maximum accuracy of 0.03 mm) and rich
details of plant architecture. Then a multi-level region growing segmentation method
using two leaf shape models is conducted to automatically extract typical leaf samples and
estimate their morphological traits. Particularly, the two main segmentation parameters,
smooth and curvature, are adaptive to different plants at different segmentation scales, and
the shape model dynamically updates based on the different segmentation results at differ-
ent scales using the principal component analysis method. Four scale-related traits and six
corresponding scale-invariant traits are automatically estimated. Four groups of different
canopy-occluded plants are tested. Experiments show that for plants with different canopy
occlusions, 94.02% of typical leaf samples can be scanned well and 87.61% of typical leaf
samples can be automatically extracted. The automatically measured morphological traits
are correlated with the manually measured values (EF = 0.9992, EF = 0.9827, EF = 0. 8919,
EF = 0.9039, EF = 0.9811, EF = 0.8908, EF = 0.9162, EF = 0.8509, EF = 0.7838, and EF = 0.7434
for the area, perimeter, length, width, area perimeter ratio, area length ratio, area width
ratio, perimeter length ratio, perimeter width ratio, and aspect ratio, respectively). In addi-
tion, the RMSE values of those 10 morphological traits are 14.12 mm2, 4.11 mm, 3.42 mm,
1.98 mm, 0.23, 1.46, 2.09, 0.14, 0.20, and 0.08, respectively, and the corresponding MAPE
values are 0.72%, 2.69%, 6.83%, 7.16%, 2.50%, 6.89%, 6.34%, 6.44%, 6.21%, and 5.52%,
respectively. The average time of one plant measurement is 196.37 seconds (186.08 seconds
for data scanning, 5.95 seconds for 3D model output, and 4.36 seconds for data processing).

The successful application of the proposed method on four different canopy-occluded
plants shows the robustness of the proposed method in plant measurement. Therefore,
it can be concluded that our method can automatically select typical leaf samples of live
plants with different canopy occlusions and output 10 leaf morphological traits with high
measurement accuracy and low time cost. The proposed method demonstrates the ability
of rapid batch processing of data, which is potential for real-time plant measurement and
high-throughput plant phenotype.

Since occlusion is the main factor affecting measurement accuracy, we are interested
in exploring more effective segmentation methods, such as adding color information to
improve the segmentation accuracy. We also plan to integrate the proposed method into a
hand-held scanner system to achieve real-time plant measurement.
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