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New loci and neuronal pathways 
for resilience to heat stress in cattle
Evans K. Cheruiyot1,2, Mekonnen Haile‑Mariam2*, Benjamin G. Cocks1,2, Iona M. MacLeod2, 
Ruidong Xiang2,3 & Jennie E. Pryce1,2

While understanding the genetic basis of heat tolerance is crucial in the context of global warming’s 
effect on humans, livestock, and wildlife, the specific genetic variants and biological features that 
confer thermotolerance in animals are still not well characterized. We used dairy cows as a model to 
study heat tolerance because they are lactating, and therefore often prone to thermal stress. The data 
comprised almost 0.5 million milk records (milk, fat, and proteins) of 29,107 Australian Holsteins, each 
having around 15 million imputed sequence variants. Dairy animals often reduce their milk production 
when temperature and humidity rise; thus, the phenotypes used to measure an individual’s heat 
tolerance were defined as the rate of milk production decline (slope traits) with a rising temperature–
humidity index. With these slope traits, we performed a genome-wide association study (GWAS) using 
different approaches, including conditional analyses, to correct for the relationship between heat 
tolerance and level of milk production. The results revealed multiple novel loci for heat tolerance, 
including 61 potential functional variants at sites highly conserved across 100 vertebrate species. 
Moreover, it was interesting that specific candidate variants and genes are related to the neuronal 
system (ITPR1, ITPR2, and GRIA4) and neuroactive ligand–receptor interaction functions for heat 
tolerance (NPFFR2, CALCR, and GHR), providing a novel insight that can help to develop genetic and 
management approaches to combat heat stress.

Heat stress from rising global temperatures is an issue of growing importance across tropical and temperate zones 
affecting humans, livestock, wildlife, and plants. A recent study1 indicates that many people are now exposed 
to harmful heat, and this has risen by more than twofold when compared to the pre-industrial climates (i.e., 
95 vs. 275 million people), with future projections showing that over 1 billion people will experience an even 
greater impact of heat within the next 50 years2. In livestock, the annual temperature–humidity values that rise 
above thresholds considered to be comfortable have been increasing in many regions including Australia, the 
USA, Canada, and parts of Europe3,4, making heat stress a multimillion-dollar issue in the livestock industry 
that compromises production (reduced growth, milk, eggs, etc.) and reproduction leading to economic losses5.

The thermoregulatory capacities of mammals and plants to cope with extreme heat have been studied for 
decades. Genetic variation of thermoregulation during heat stress exists within species, including cattle breeds, 
with the literature indicating that tropical breeds, such as Zebu (Bos indicus), have a better tolerance to tem-
perature and humidity than cattle from temperate zones (e.g., Holsteins), in part, due to the lower productivity 
of Zebu cattle6. Temperate breeds also show genetic variation in heat tolerance; for example, New Zealand Hol-
steins appear to exhibit higher reductions in milk yield in hotter climates than Jerseys or crossbreds7. While it 
is not fully understood why animals differ in their thermotolerance, it is hypothesised to be due to a myriad of 
biological mechanisms; including cellular, morphological (coat color, coat length, etc.), behavioural (e.g., feed 
and water intake, standing and lying time), as well as neuro-endocrine systems. See comprehensive review by8 
for more information. Notably, the molecular basis for differences in these adaptive responses within various 
mammalian species is still largely unknown.

Dairy cattle particularly Holsteins are excellent and convenient model for enhancing our knowledge on the 
molecular aspects of heat tolerance in mammals for two main reasons: (1) large phenotype datasets needed 
to study heat tolerance, as well as extensive genomic information, are available; (2) they have been genetically 
selected mainly for high milk production over many years, offering an opportunity to understand the genetic 
basis for coping with both environmental and elevated metabolic-heat stress associated with increased milk 
production.
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The development of methods to describe heat tolerance in cattle has been an active research area for many 
years. Measuring changes in core body temperature (e.g., rectal, vaginal, rumen temperature, etc.), thermal 
indices (e.g., temperature–humidity index (THI)) are some of the ways to assess thermal adaptations and perfor-
mance in animals. Ravagnolo et al.9 pioneered using daily milk yield and temperature–humidity data to measure 
variability in the rate of decline in milk yield associated with variability in response to heat stress. This method 
has been widely adopted due to the availability of large datasets from routine recording in dairy farms, e.g.,3. 
Heat tolerance in dairy cattle measured using rectal temperatures or the rate of milk yield decline is partly under 
genetic control, having a low (0.1) to moderate heritability (0.30)3,9, 10, which makes it amenable to selection. As 
such, considerable research has been undertaken to provide breeding solutions for heat stress, which is already 
a feature of dairy cattle breeding programmes in some parts of the world, e.g., Australia3. Identifying specific 
genetic variants that increase tolerance to heat may help to improve dairy breeding programmes in addition 
to improving our knowledge of the thermal biology in other mammals. However, except for mutations in the 
SLICK locus11, the identification of the specific genetic variants for heat tolerance in cattle and other species has, 
in most cases, remained elusive, in part due to many reasons, including the sample size used in past studies12–15.

Having a large sample size is particularly important for identifying rare causal variants with medium-sized 
effects and common variants with small effects. As sample size increases, the loci significantly associated with 
complex traits are expected to increase, as demonstrated for the human height16. Several selection signature work 
e.g.,17,18 and genome-wide association studies (GWAS) using Single nucleotide polymorphisms (SNPs) have been 
conducted over the last decade to identify candidate causal genes for various heat tolerance traits (rectal tem-
perature, heart rate, sweating rate, rate of milk yield decline, etc.) in dairy cattle12–15 and pigs19. However, these 
GWAS were underpowered, with the largest sample size to date of around 5000 animals12,13. These studies have 
also used standard industry SNP panels of random genome-wide markers, either 50 k or 600 k SNPs, leading to 
inconsistencies and poor replication of the results. Although these studies have identified multiple significant 
variants associated with heat stress in animals, none were established to be causal mutations.

Here, we performed a GWAS using milk production records of 29,107 Holstein cows, each having over 15 
million sequence variants that were imputed from various lower density SNP chips to whole-genome sequence 
using a reference dataset of sequences from the Run7 of 1000 Bull Genome Project20. The specific aims of the 
current study were to: (1) perform single-trait GWAS to identify genomic variants associated with sensitivity 
of milk traits (milk, protein, and fat) to heat stress; (2) combine single-trait GWAS results in a multi-trait meta-
analysis to boost the power and identify pleiotropic variants associated with all the milk traits; and (3) conduct 
post-GWAS pathway analysis using the list of candidate genes identified in single-trait GWAS and meta-analysis 
to elucidate biological mechanisms underlying heat tolerance.

Results
Descriptive statistics and genomic heritability of the study phenotypes.  The average yield and 
their corresponding standard deviation (in brackets) of milk (in liters), fat (kg), and proteins (kg) used in our 
study was 25.85 (8.19), 0.98 (0.30), and 0.85 (0.26), respectively. The heat tolerance proxy-phenotypes (i.e., slope 
traits) and intercepts (representing level of milk production) that were derived from the milk traits are in Table 1. 
The slope traits derived from the milk, fat, and protein yield using reaction norm models on a function of the 
temperature–humidity index (THI) were defined as follows: heat tolerance milk (HTMYslope), fat (HTFYs-
lope), and protein (HTPYslope) yield slope traits, respectively. On the other hand, the intercept solutions from 
the reaction norm models – representing the level of milk production were defined as milk (MYint), fat (FYint), 
and protein (PYint) yield intercept traits.  The values for slopes (no units) for HTMYslope, HTFYslope, and 
HTPYslope ranged between [− 36.80 to 27.17], [− 11.39 to 9.0] and [− 8.91 to 9.31], with values at 25% and 
75% quartiles of [− 0.98 and 0.90], [− 2.76 and 2.66], and [− 1.03 and 0.95], respectively. Note that the values 
for milk, fat, and protein yield have been scaled by a factor of 10, 100 and 100, respectively (see “Methods”). 
The genomic heritability estimates for the intercept traits were high [0.36 ± 0.01 (MYint), 0.30 ± 0.01 (FYint), 
0.24 ± 0.01 (PYint)] compared to slope traits [0.23 ± 0.01 (HTMYslope), 0.21 ± 0.01 (HTFYslope), 0.20 ± 0.01 
(HTPYslope)] (Table 1). The phenotypic correlations between the intercept and slope traits were high, with val-
ues of -0.71 (MYint versus HTMYslope), -0.77 (FYint versus HTFYslope), and -0.83 (PYint versus HTPYslope), 
suggesting that lower producing cows have a smaller reduction in their yield as the THI increases. The Pearson 
correlations of slope solutions from the reaction norm model were 0.90 (HTMYslope versus HTPYslope), 0.56 
(HTMYslope versus HTFYslope) and 0.62 (HTPYslope versus HTFYslope).

Table 1.   Additive genetic variance (AG) and genomic heritability ( h2 ) for milk intercept and heat tolerance 
slope traits estimated for 29,107 cows based on 50 k SNP panel. SE Standard errors. a Represtents the level of 
milk production of cows. b Heat tolerance proxy-phenotypes.

Trait

Milk intercept traitsa Heat tolerance milk slope traitsb

AG ± SE h
2 ± SE AG ± SE h

2 ± SE

Milk yield (liters) 381.0 (14.36) 0.36 (0.01) 4.80 (0.20) 0.23 (0.01)

Fat yield (kg) 38.78 (1.64) 0.30 (0.01) 0.56 (0.02) 0.21 (0.01)

Protein yield (kg) 18.60 (0.89) 0.24 (0.01) 0.47 (0.02) 0.20 (0.01)
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Single‑trait GWAS for intercept and slope traits.  The number of significant SNPs was generally higher 
for intercept than slope traits at the p value thresholds tested (Table 2). At a stringent p value of < 1E–05, the false 
discovery rate (FDR) varied between 0.02 and 0.03 for intercept and 0.02 and 0.05 for slope traits. The number of 
significant independent QTL (based on the number of 5 Mb non-overlapping windows across the chromosome 
with at least one significant SNP) ranged from 28 to 72 for intercept traits and from 21 to 37 for slope traits. At 
a relaxed cut-off threshold, where the FDR was < 0.10, the number of significant QTLs from single-trait GWAS 
ranged from 78 to 188 (intercept traits) and from 51 to 109 (slope traits).

The number of significant (p < 1E–05) QTLs (i.e., 5 Mb windows) varied across the three slope traits with 
greater overlap between HTMYslope and HTPYslope (13 QTLs; 20.6%) compared to HTMYslope and HTFYs-
lope (3 QTLs; 4.8%) (Supplementary Fig. S3). The overlaps were based on whether the lead SNPs (most sig-
nificant) within QTLs between traits were close (within 1 Mb). Surprisingly, none of the candidate QTLs over-
lapped between HTFYslope and HTPYslope. The effects of the lead SNPs within QTLs that overlapped between 
HTMYslope and HTPYslope were generally in the same direction.

Multi‑trait meta‑analysis of GWAS to detect variants with pleiotropic effects.  Meta-analysis of 
GWAS results could increase the power of detecting informative variants21, 22. Compared to single-trait GWAS, 
the number of significant independent QTLs (based on 5 Mb windows with at least one significant SNP) was 
much higher for a multi-trait meta-analysis (Fig. 1; Table 2). At FDR < 0.10, the number of significant independ-
ent QTLs from multi-trait meta-analysis was 347 and 293 for intercept and slope traits, respectively (Table 2). 
At p < 1E–05, the number of significant QTLs was 100 (meta-analysis of intercept traits) and 65 (meta-analysis 
of slope traits). Of the significant QTLs (p < 1E–05; N = 65) for meta-analysis of slope traits, 35% (N = 23) over-
lapped with the candidate QTLs for single-trait GWAS analysis based on whether the lead SNP (most signifi-
cant) within overlapping QTLs were close (within 1 Mb).

Lead SNPs detected using single‑trait GWAS and meta‑analysis of slope traits.  The lead SNPs 
were defined as the most significant SNPs within an independent QTL (i.e., the most significant SNP chosen 
within 5 Mb windows across the chromosome). Detailed annotation of all the lead SNPs for single slope traits 
and the meta-analysis (N = 118) detected at the most stringent p value cut-off (p < 1E–05) are in the Supplemen-
tary Table S2.

About half the lead SNPs (51%) for slopes were in relatively low LD (r2 < 0.5) with nearby (within 1 Mb region) 
lead SNPs for intercepts, indicating that they are not strongly associated with the level of milk production. Some 
lead SNPs mapped within or close to several candidate genes, which have been linked to environmental stress or 
heat tolerance in animals in previous studies, including REG3A23, NPFFR224, and CLSTN225. Several other lead 
SNPs mapped close to novel candidate genes that, to our knowledge, have not been described for thermotoler-
ance in previous studies.

However, the remaining lead SNPs (49%) for slopes were in medium to strong LD (r2 > 0.50) with nearby 
(within 1 Mb) lead SNPs identified for intercept traits (Supplementary Fig. S4), suggesting that they affect both 
traits, which was expected due to the strong genetic negative correlation between heat tolerance and milk pro-
duction, with estimates in this study of around -0.80. The most significant lead SNPs for heat tolerance (slope 
traits) that were strongly (LD; r2 > 0.8) associated with the level of milk production (intercept traits) mapped 
close to or are within genomic loci previously reported to have pleiotropic effects on bovine milk production 
traits, including the DGAT126,27, MGST128, and GHR gene29.

Conditional GWAS for slope traits on either the lead SNPs or the intercept traits.  We per-
formed two conditional GWAS for slope traits to confirm whether the top hits (lead SNPs) detected in the first-
round of GWAS for the slope traits were in fact discoveries of heat tolerance rather than indicators of milk yield 
(as the intercept and slope traits are genetically correlated). Of interest was the conditional GWAS analysis on 
chromosome 14, since the highly significant QTL around 0.5 Mb harbours the DGAT1 gene and the HSF1 (heat 
shock factor 1) gene, for which the latter has been linked to thermotolerance in Holstein cattle in different coun-

Table 2.   Number of SNPs identified at a p value of < 1E–05 (significant), and false discovery rate (FDR < 0.10) 
for QTL discovery cows (N = 29,107) based on 15 million imputed-whole genome sequence variants. MYint, 
Milk yield intercept; FYint, Fat yield intercept; PYint, protein yield intercept; HTMYslope, heat tolerance milk 
yield slope; HTFYslope, heat tolerance fat yield slope; HTPYslope, heat tolerance protein yield slope. a Multi-
trait meta-analysis of single-trait GWAS was performed for intercept and slope traits following21. Values in 
square brackets are the number of lead SNPs defined as the top significant SNP within 5 Mb non-overlapping 
windows across the chromosome. The FDR was calculated following the method described by21, where the p 
value in the brackets represents the cut-off threshold equivalent to FDR < 0.10 for each trait.

Single-trait GWAS for intercept traits Single-trait GWAS for slope traits Multi-trait meta-analysisa

MYint FYint PYint HTMYslope HTFYslope HTPYslope Meta intercept Meta slope

Significant 
(p < 1E–05) 9344 [72] 7844 [28] 4195 [49] 6061 [37] 8684 [21] 2998 [30] 51,568 [100] 40,220 [65]

FDR < 0.10 16,469 [188] 
(p = 1E–04)

11,469 [98] 
(p = 7E–05)

5285 [78] 
(p = 3E–05)

9172 [109] 
(p = 6E–05)

12,619 [98] 
(p = 8E–05)

3310 [51] 
(p = 2E–05)

108,934 [347] 
(p = 7E–04)

77,499 [293] 
(p = 5E–04)
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tries, including Australia13, and the USA14. Notably, the lead SNPs from the first-round of GWAS for HTMYs-
lope and HTFYslope (Chr14:581,569) and HTPYslope (Chr14:555,701) traits were upstream to SLC52A2 and a 
synonymous variant in the CPSF1 genes, respectively.

Figure 2 shows conditional GWAS results for chromosome 14 (around the region which showed the strong-
est signal in the first-round of GWAS for the slope traits—here, the conditional analyses were for slope traits on 
either the lead SNP or the intercept trait. In both approaches, we found that most of the SNPs were no longer 
significant after conditional analysis. This was the case for HTMYslope and HTPYslope slope traits, suggesting 
that these SNPs were possibly tagging the lead SNPs for slope traits. The lead SNP was in strong LD (r2 > 0.8) 
with several other variants around this QTL spanning over 10 genes (Fig. 2), including variants in the HSF1 
(heat shock factor 1) gene, which implies that any variant (s) around this region are possible causal mutations 
for heat tolerance. Nonetheless, the complex LD within this QTL region makes it difficult to pinpoint a putative 
causal variant (s) for heat tolerance.

Notably, even after fitting the lead SNP in a conditional GWAS analysis, there were still other somewhat sig-
nificant (p < 1E–05) SNPs remaining for the HTFYslope trait (though not very strong signals; Fig. 2), suggesting 
that they could be other QTLs for heat tolerance, which were not captured by the lead SNPs identified in the study.

Although the two conditional GWAS strategies (i.e., conditioning slopes on either lead SNP or intercept traits) 
were generally comparable regarding the strength of the GWAS signals (Fig. 2), we observed a significant (Stu-
dent’s t test; p < 0.001) difference in the distribution of the GWAS p values across slope traits. This is, in part, due 
to the difference in the two conditional GWAS approaches regarding the covariate fitted in the linear model. We 
also observed similar findings for the conditional GWAS analysis on chromosome 20 (Supplementary Fig. S5).

By conducting a conditional analysis of slope traits on the intercepts, we detected multiple additional QTL 
signals (lead SNPs) across the genome at p < 1E–05 (Supplementary Fig. S6). However, most of these lead SNPs 
were associated with a large FDR > 0.10—FDR for each SNP computed following Storey and Tibshirani30. Of the 
few candidate variants (all of which were detected from HTFYslope traits) with FDR < 0.10, the strongest GWAS 
signal was in BTA 14–1.7 Mb, of which the lead SNP (Chr14:1,726,184) mapped to the downstream region of 
JRK (Jrk helix-turn-helix protein). Notably, this gene was found to regulate behavioural rhythms in Drosophila 
flies, which is crucial for adaptive response to environmental changes such as temperature variations31.

When combining conditional GWAS results for slope traits (conditioning on the intercept traits) in the 
meta-analysis approach, we detected 40 lead SNPs (p < 1E–05), all of which associated with low FDR < 0.10 
(Supplementary Fig. S7 and Table S3). The mean LD between these 40 lead SNPs and the lead SNPs detected for 
intercept traits was very low (r2 < 0.20), confirming that the conditional analysis was successful in identifying 
additional candidate variants for heat tolerance (besides the QTL detected from the first-round of GWAS) that 
are not strongly associated with the level of milk production. The most significant lead SNP (Chr14:531,267; 
p = 9.04E–12) mapped to the upstream region of the SLC39A4 gene, a member of the solute carrier family, 
required for intestinal zinc uptake.

Figure 1.   Manhattan plot of p values obtained from combining single-trait GWAS results for milk yield slope 
traits.
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Candidate causal variants for heat tolerance across all analyses.  The candidate causal variants 
for heat tolerance were defined as the lead SNP (most significant SNP within 5 Mb QTL window) plus other 
significant SNPs in strong LD (r2 > 0.8) with the lead SNP, 500 kb up or downstream of the chromosome. We 
identified a total of 3010 candidate causal variants for heat tolerance (slope traits) across all the analyses: single-
trait GWAS; a meta-analysis of single-trait GWAS results; and meta-analysis of conditional GWAS results for 
slope traits, most of which were intergenic (N = 1545; 51%) followed by intronic (N = 947; 32%) and upstream 
(N = 277, 9%) variants (Fig. 3 and Table S1). At least 25 candidate SNPs were missense variants, most (N = 13) of 
which were in chromosome 14, including two variants (Chr14:615,597 and Chr14:616,087) mapping to HSF1 
(heat shock factor 1) gene.

The candidate causal variants for heat tolerance are highly enriched (p = 8.54E–25) in the upstream gene 
regions (Fig. 4), which agrees with GWAS for quantitative traits in humans32, suggesting that they perhaps play 

Figure 2.   QTL discovery on chromosome 14 at 0 to 1 Mb for heat tolerance milk (HTMYslope; A), fat 
(HTFYslope; B), and protein (HTPYslope; C) yield slope traits. The three panels represent the GWAS p values 
before conditional analysis (right panel), after conditioning slope traits on the lead SNP (highlighted in blue) 
defined as the most significant SNP (middle panel), and after conditioning slope traits on the intercept traits (left 
panel), respectively. The red horizontal dashed line is the GWAS cut-off of p < 1E–05. The strength of LD (r2) 
between the lead SNP (blue color) and all the other SNPs are color-coded accordingly.
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a functional role in regulating gene expression. As expected, most candidate variants have modifier SnpEff33 
predicted impact (Table S5). Two candidate causal mutations detected from the meta-analysis of slope traits have 
a high SnpEff predicted impact: (a) a stop-gain mutation (Chr5:31,184,185) causing a premature stop codon in the 
LALBA (lactalbumin alpha) gene and (b) a frameshift mutation (Chr29:41,139,622) in STX5 (syntaxin-5) gene. 
The two candidate mutations appear to have a stronger effect on milk production compared to heat tolerance. This 

Figure 3.   Proportion of candidate causal variants for heat tolerance within different functional classes identified 
from (a) single-trait GWAS, (b) meta-analysis, and (c) meta-analysis of conditional GWAS results for slope 
traits. Values in brackets are the proportions of all variants used in the study (~ 15 million SNPs). Functional 
classes without values in brackets were represented by a small (< 1%) proportion of SNPs in the study dataset.

Figure 4.   Enrichment of the candidate causal variants for heat tolerance across functional classes. The values 
in brackets are the number of variants within each class. The class “Other” includes variants with very small 
proportions of candidate variants (frameshift, stop-codon, splice variants, etc.).
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is evidenced by a smaller (p = 1.39E–19) p value for the stop-gain mutation (Chr5:31,184,185) observed in the 
meta-analysis of intercept traits compared to the meta-analysis of slope traits (p = 4.08–12). Similarly, the p value 
for the frameshift mutation (Chr29:41,139,622) in the STX5 gene was smaller (p = 2.06E–16) for the meta-analysis 
of intercept traits than the meta-analysis of slope traits (p = 5.06E–06). None of these two candidate stop-gain 
mutations were significant (p < 0.05) following conditional GWAS for slope traits on intercept traits (Table S5).

Using data from34, which documented over 300 k sequence variants in cattle at highly evolutionarily conserved 
genome regions across 100 vertebrates (conservation/PhastCon scores > 0.9; see “Methods”), we identified 61 
potential functional variants for heat tolerance at these conserved sites in our study (Table S4). However, the 
candidate causal mutations for heat tolerance are not enriched (p = 1.0) in the conserved regions of the genome.

Table 3 provides a short list of putative causal variants (upstream and missense) for heat tolerance that 
overlap at genomic sites highly conserved across vertebrates. Some of the candidate genes flanking these vari-
ants have been reported to be involved with cell survival under stress in animals, e.g., SCD35, KIAA132436, and 
TONSL14. The SCD (stearoyl-CoA desaturase) gene encode fatty acid metabolic enzyme and perhaps is required 
for metabolic homeostasis during heat stress in mammals. Other putative candidate genes for heat tolerance 
include KIFC2, VPS13B, and USP3. For example, Fang et al.37 demonstrated that the USP3 gene, a member of 
the ubiquitin-specific proteases (USPs) family, is required for eliminating misfolded proteins under heat stress 
conditions in Yeast.

Pathway enrichment analysis.  We generated a list of candidate genes mapping within or near lead SNPs 
detected at FDR < 0.10 for each trait for the pathway enrichment analyses. We found that the candidate gene-list 
for slope traits were highly enriched for the KEGG pathways related to the neuronal system (neuroactive ligand–
receptor interaction and glutamatergic synapse) and metabolism system (citrate cycle) (Fig. 5). Interestingly, 
the heat tolerance candidate gene-list (N =  ~ 400 genes) identified from various analyses (single-trait GWAS, 
meta-analysis, and conditional analysis) were consistently significantly enriched for a neuroactive ligand–recep-
tor interaction pathway comprising of 15 genes (CALCR, PTGER2, THRB, GRIK2, NPY2R, F2RL1, GRIN2A, 
NR3C1, CHRM3, GRM8, GRM7, GRID2, NPFFR2, MC4R, GHR). A total of 8 genes were enriched (p = 4.0E–
03) in the glutamatergic synapse pathway (GRIN2A, GRM7, GRM8, ITPR1, ITPR2, SLC17A6, GRIK2, GRIA4). 
The citrate cycle pathway was also enriched (p = 1.87E–03), comprising of 5 candidate genes for heat tolerance 
(ACLY, PDHA2, MDH1, SUCLG2, PCK1).

We also analysed a smaller set of genes (N =  ~ 230) with the strongest (p < 1E–05) evidence of association for 
heat tolerance, separately (that is, the gene-list underlying the candidate causal variants defined as the lead SNP 
(most significant) within an independent QTL plus other significant SNPs in strong LD (r2 > 0.80) with the lead 
SNP, 500 kb up or downstream), to see enriched biological pathways. Interestingly, we observed enrichment 
(p = 0.02) of the genes in the neuroactive ligand–receptor interaction pathway, which provides strong support 
that this neuronal pathway is relevant for heat tolerance comprising of 8 genes (GHR, NPFFR2, P2RY8, GRIN2A, 
CHRM1, THRB, CALCR, F2RL1).

When examining the candidate gene-list from single-trait GWAS analyses for slope traits separately, the 
neuroactive ligand–receptor interaction pathway was overrepresented for candidate gene-list for HTMYslope 
(p = 3.19E–04) and HTPYslope (p = 7.79E–03) traits (Fig. 6). On the other hand, gene-list for HTFYslope were 
enriched (p = 1.55E–02) for the axon guidance pathway comprising four genes (ABLIM2, ABLIM3, NTN1, 
ROBO1) and metabolic (p = 0.06) pathways.

To further test whether the neuronal pathways are real and not an artifact of our analyses for heat tolerance 
traits (slopes), we performed enrichment analyses for the significant candidate gene-list for intercepts traits (level 
of milk production traits). In the candidate gene-list for intercept traits, we found no evidence for enrichment 
(p < 0.05) in any neuronal pathways; thus, providing further favourable support that neuronal pathways are 
relevant for heat tolerance in mammals.

Figure 5.   Enriched Kyoto Encyclopedia of Gene and Genomes (KEGG) pathways obtained from candidate 
gene-list for slope traits detected at false discovery rate (FDR < 0.10). SS-slope genes–gene-list from single-trait 
GWAS; Meta-slope genes–gene-list from multi-trait meta-analysis of slope traits; All-slope genes–combined 
gene-list from single-trait and meta-analysis. Cells are color-coded according to the strength of the significance 
for each pathway. Values in brackets are the number of genes within each pathway.
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Discussion
In this study, we performed a GWAS using a large sample size of Australian dairy cows (N = 29,107) with milk 
production records and imputed sequence data (~ 15 million SNPs) to identify candidate causal variants and 
functional genes and pathways associated with heat tolerance. Australia’s dairy cattle are uniquely placed for 
studying heat tolerance in mammals for two main reasons: (1) they are subjected to a wide range of seasonal 
climatic variations across diverse dairying regions spanning one of the geographically largest countries in the 
world, and (2) Australia’s dairying is predominantly pasture-based with limited heat stress mitigation measures 
in contrast with those, for example, in North America, where extensive managerial strategies are used more to 
reduce thermal stress. Overall, we have identified novel candidate causal variants in the neuronal pathways that 
contribute significantly to heat tolerance in animals.

We leveraged two statistical approaches to identify genetic loci and pathways for heat tolerance: single-trait 
GWAS linear models and multi-trait meta-analysis. Single-trait GWAS is based on regressing phenotypes on each 
SNP one at a time. On the other hand, a meta-analysis that combines results of the single-trait GWAS allowed 

Table 3.   Upstream and missense candidate causal variants for heat tolerance (slope) traits at genomic sites 
that are highly conserved (conservation score > 0.9) across 100 vertebrate species*. *Conservation scores 
(PhastCon score) of variants at conserved genomic sites were computed by34 based on the LiftOver (https://​
genome.​ucsc.​edu/​cgi-​bin/​hgLif​tOver) human sites calculated across 100 vertebrate species; single-trait GWAS 
for heat tolerance milk (HTMYslope), fat (HTFYslope), and protein (HTPYslope) yield slope traits. a Meta-
analysis combining single-trait GWAS results for slope traits. b Meta-analysis combining single-trait conditional 
GWAS results for slope traits. c For each analysis that identified this variant as significant.

SNP Chr BP Annotation VEP_impact Gene HTMYslope HTFYslope HTPYslope
Meta-
analysisa

Conditional 
analysisb p valuec

rs209684414 3 34,215,670 Upstream MODIFIER KIAA1324 ✓ 5.98E–07

rs207668220 3 34,273,899 Upstream MODIFIER C3H1orf194 ✓ 6.5E–07

rs210324395 10 46,503,113 Upstream MODIFIER USP3 ✓ 8.66E–09

rs210468775 10 46,505,212 Upstream MODIFIER USP3 ✓ 1.89E–09

rs207681599 14 432,274 Upstream MODIFIER LRRC14 ✓ ✓ ✓ ✓ ✓
1.46E–52|1.13E–
63|1.13E–28|8.8E–
243|7.92E–08

rs136474298 14 471,951 Missense MODERATE KIFC2 ✓ ✓ ✓ ✓ ✓
6.11E–53|4.83E–
63|5.59E–29|2.5E–
242|7.77E–08

rs207886320 14 479,761 Upstream MODIFIER KIFC2 ✓ ✓ ✓ ✓ ✓
6.18E–52|4.17E–
64|4.55E–28|3.9E–
242|7.85E–08

rs137472016 14 494,621 Upstream MODIFIER TONSL ✓ ✓ ✓ ✓ ✓
6.28E–53|8.39E–
63|5.94E–29|9.1E–
242|7.87E–08

rs445616049 14 64,454,721 Missense MODERATE VPS13B ✓ ✓ 4.18E–08|1.75E–32

rs41946451 20 37,085,370 Missense MODERATE CPLANE1 ✓ 1.14E–07

rs41255693 26 21,272,422 Missense&splice MODERATE SCD ✓ ✓ 4.11E–07|1.85E–08

Figure 6.   Enriched Kyoto Encyclopedia of Gene and Genomes (KEGG) pathways obtained from our gene-list 
for single-trait GWAS analysis of slope traits. HTMYslope (heat tolerance milk yield slope); HTFYslope (heat 
tolerance fat yield slope); and HTPYslope (heat tolerance protein yield slope). Cells are color-coded according 
to the strength of the significance for each pathway. Values in brackets are the number of genes within each 
pathway.

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver


9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:16619  | https://doi.org/10.1038/s41598-021-95816-8

www.nature.com/scientificreports/

us to discern putative pleiotropic genetic variants for heat tolerance. Consequently, we identified multiple novel 
loci for heat tolerance, including 61 potential functional variants at genomic sites highly conserved across 100 
vertebrates (Table 3 and Table S4), which could be valuable for fine-mapping and genomic prediction. Studies 
in humans38 and cattle34 have demonstrated that the conserved genomic sites have strong enrichment of trait 
heritability. Moreover, the results revealed specific candidate causal variants and genes related to neuronal func-
tions for heat tolerance in animals, which we now discuss in more detail.

Heat stress responses are complex adaptations in animals involving many biological pathways, includ-
ing the nervous system, which connects the internal and external environment to maintain stable core body 
temperature39. Among the candidate gene-list that contribute significantly to heat tolerance in the study animals 
(Holstein cows), the neuroactive ligand–receptor interaction and glutamatergic synapse pathways (Fig. 5), as 
components of the nervous system, were highly enriched (p < 1E–03) biological features.

At least two candidate variants in the intronic region of ITPR2 (Chr5:83,330,185; p = 1.3E–05) and GRIA4 
(Chr15:2,461,074; p = 5.8E–05) genes in the glutamatergic synapse pathway could be potential targets for resil-
ience to environmental stress in animals. ITPR2 gene was associated with heat stress in the US Holsteins14 or 

Figure 7.   QTL discovery for heat tolerance milk (HTMYslope) and protein (HTPYslope) yield slope traits 
around the NPFFR2 gene in bovine chromosome 6.
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sweating rate in humans and mice40, while the GRIA4 gene has been linked to thermoregulation in the Siberian 
cattle41. Another candidate variant (Chr22:21,783,956) detected for heat tolerance milk (p = 3.87E–05) and protein 
(7.15E–05) yield slope traits mapped to the intronic region of ITPR1—a gene associated with environmental 
adaptation in the domestic yak42. These three lead SNPs for slope traits overlapped with those for intercept traits, 
with opposing effect direction, suggesting that selecting for these variants may negatively impact milk production.

Previous studies show that the neuroactive ligand–receptor interaction is involved in maintaining energy 
homeostasis during heat stress in ducks43. As protein production is the most valuable output from dairy farms, 
the focus of breeding programs has been traits associated with yield, with the average milk volume per cow/
year almost doubling within the past three decades in Australia44. The environmental heat stress, coupled with 
the elevated metabolic-induced thermogenesis, means that the genetic and cellular reprogramming of pathways 
such as the nervous system may be necessary to regulate a cascade of hormonal processes such as growth factors, 
insulin, serotonin, thyroid, prolactin, and mineralocorticoids associated with milk synthesis45. We identified 
15 genes (FDR < 0.10) associated with the neuroactive ligand–receptor interaction, which could be relevant 
for metabolic homeostasis in cattle during thermal stress, of which three candidate genes (GHR, NPFFR2, and 
CALCR) showed the strongest evidence (p < 1E–05).

Here we discuss the evidence for each of these three candidate genes:

(1)	 Zhang et al.24 demonstrated that the NPFFR2 (neuropeptide FF receptor-2) gene, which is mainly expressed 
by neurons in the brain, plays a crucial role in regulating diet-induced thermogenesis and bone homeostasis 
in mice. In this study, two lead SNPs (Chr6:87,070,486 and Chr6:87,249,592), detected from single-trait 
GWAS for HTMYslope and HTPYslope (p < 1E–05) mapped to the intergenic and intronic regions of 
NPFFR2 gene in BTA 6, respectively. Physiological studies suggest that NPFF family genes regulate feeding 
behaviour and energy expenditure in mammals reviewed in46. During heat events, dairy cattle typically 
reduce their dry matter intake by up to 30%, perhaps as part of an adaptive mechanism to depress meta-
bolic heat production47. Other studies, e.g.,48 show that inhibition of NPFF receptors induces hypothermia 
in mice. A recent review by Nguyen et al.49 indicates that NPFF and its receptors have many promising 
therapeutic applications including pain, cardiovascular, and feeding regulations in mammals. By examining 
the genomic region around the NPFFR2 gene (Fig. 7), it is more likely that the two lead SNPs within this 
QTL represent separate candidate causal mutations since they are not in strong LD. Interestingly, although 
the lead SNP (Chr6:87,070,486) for slope trait overlapped with the lead SNP detected for the milk yield 
intercept (MYint), we observed stronger evidence for the slope (HTMYslope; p = 3.05E–13) than the inter-
cept (MYint; p = 4.19E–10), suggesting that this SNP is a good candidate for heat tolerance. Besides, this 
lead SNP (Chr6:87,070,486) remained significant (p = 6.36E–06) following single-trait conditional GWAS 
analysis for HTMYslope trait (conditioning slopes on the intercept traits) as well as in the meta-analysis 
of single-trait conditional GWAS results for slope traits (p = 3.74E–06).

(2)	 Calcitonin receptors regulate daily body temperature rhythm in mammals and insects and are essential 
for maintaining homeostasis50. In this study, the lead SNP (Chr4:10,815,768) was intronic in the CALCR 
(calcitonin receptor) gene, perhaps indicating that it could be relevant for animals experiencing recurrent 
or chronic stress, such as in Australian seasonal summers. The strong GWAS signal around this QTL (Sup-
plementary Fig. S8) suggests that the CALCR gene likely harbours causal mutations affecting heat tolerance. 
Dairy cattle employ various adaptive behavioural strategies during heat stress such as reduced feed intake, 
increased volume, and frequency of water intake, increased standing time, shade seeking, and grazing at 
cooler day time. We think that CALCR is likely involved with some of these heat-stress adaptive behaviours 
in dairy cattle. Future studies are needed to confirm this, particularly by combining production traits with 
other relevant behavioural phenotypes such as panting scores from high-throughput recording devices, 
e.g., activity-based collars.

(3)	 The expression of the GHR (growth hormone receptor) gene is down-regulated during heat stress in live-
stock, including dairy cows51 and avian species43. The adaptive physiological significance of this down-
regulation is not well understood, and it is partly independent of the nutritional level of the animal51. In 
this study, the lead SNP (Chr20:32,103,408; p = 2.01E–08) identified only in one slope trait (HTMYslope) 
based on significant cut-off of p < 1E–05 mapped to intronic region of GHR gene (Supplementary Fig. S9). 
However, we found a stronger signal after combining the GWAS results for all the slope traits in a meta-
analysis with the lead SNP (Chr20:32,201,287; p = 1.7E–47) mapping to the intergenic (~ 22 kb) region of 
the GHR gene, which confirms the pleiotropic effect of this QTL22. Also, we observed no significant SNP 
(p < 1E–05) around this QTL following single-trait conditional analyses, but a somewhat strong signal 
emerged when we combined single-trait conditional GWAS results in the meta-analysis, for which the 
lead SNP (Chr20:32,226,298; p = 5.35E–07) mapped to the intergenic region (~ 47 kb) of GHR. This further 
supports a possible second QTL that is independent of the level of milk production and shows pleiotropy 
for the heat tolerance traits. Other published GWAS have also reported an association of the GHR gene 
with milk production in heat-stressed cows14 and respiratory rates in pigs during heat stress19. Several 
studies have also implicated the GHR polymorphisms to milk production in cattle, e.g., Chr20:31,888,449 
phenylalanine-to-tyrosine missense mutation29. This mutation was not in strong LD (r2 > 0.8) with the lead 
SNP detected for slope traits in our study. Taken together, polymorphisms around the GHR gene could be 
candidate targets for improving thermotolerance in livestock, although with possible antagonistic effect 
on milk production considering, for example, the opposing effect direction observed for the lead SNP 
(Chr20:32,103,408) within this QTL on the slope (HTMYslope) and intercept (MYint) traits.
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There is general agreement that heat stress decreases milk yield (milk, proteins, fat, etc.) in dairy cattle. 
However, the genetic and biological basis for this reduction is still unclear. Evidence suggests that the reduced 
feed intake in heat-stressed dairy cows partially explains (35–50%) reduced milk yield and composition47. The 
molecular control and pathways for individual milk traits during heat stress are scarce and inconclusive. In this 
study, the QTLs detected for the heat tolerance traits varied across the three milk traits (HTMYslope, HTFYslope, 
HTPYslope), suggesting that they are, in part, regulated by different genes in heat-stressed cows. The greater over-
lap of candidate genes observed for HTMYslope and HTPYslope traits was expected due to their relatively high 
correlation (0.90) compared to HTMYslope and HTFYslope (0.56) or HTPYslope and HTFYslope (0.62). These 
correlations appear to mirror the proportions of SNPs with the same or inconsistent effect direction observed 
for significant SNPs between slope traits. Considering that heat stress alters carbohydrate, lipid, and amino acid 
metabolism52, the large proportion of SNPs with inconsistent effect direction, particularly between HTPYslope 
and HTFYslope, suggest that these traits are somewhat differently regulated in heat-stressed dairy cows.

Several pair-fed studies suggest that pathways related to the mammary gland protein synthesis govern 
protein production under heat stress in dairy cows, in part, via reduced amino acid supply to the mammary 
gland, e.g.,53,54. We found that the candidate genes for HTMYslope and HTPYslope traits were overrepresented 
(p < 0.005) in the neuroactive ligand–receptor interaction pathway. This agrees with Pegolo et al.55 that genes 
associated with milk proteins are involved in neuronal signaling pathways in dairy cattle. However, it remains 
unclear how this pathway is regulated during heat stress conditions in dairy cows to impact protein production.

On the other hand, the molecular pathways for fat production under heat stress conditions have not been 
widely studied. Some studies e.g.,56 suggest that the reduced activation of PPAR (peroxisome proliferator-acti-
vated receptor) signaling pathways leads to decreased expression of genes associated with fat metabolism. Can-
didate genes for HTFYslope identified in this study are associated with the KEGG term “metabolic pathways” 
(Fig. 6). Five candidate genes (DMGDH, PDHA2, UGP2, MDH1, PRDX6, NDUFA13) within this pathway may 
be involved with alleviating oxidative stress in heat-stressed cows. In line with these findings, we found that the 
candidate genes for heat tolerance (Fig. 5) are overrepresented in the citrate cycle/TCA pathway, which is central 
to mitochondrion energetics, and might serve to reduce substrate oxidation and reactive oxygen species (ROS) 
production, thus preventing cellular damage during heat stress.

Notably, our pathway results are perhaps not directly comparable to most previous work in which the study 
cows were subjected to short-term acute heat stress under experimental conditions e.g.,56 whereas the current 
work mimics recurrent or chronic stress that dairy cows experience during summer seasons in Australia. The 
effects of heat stress in livestock depend on its duration and severity, with the most recent work in Arabian cam-
els somatic cells showing that acute heat stress elevates the expression of heat shock proteins and DNA repair 
enzymes while chronic heat leads to changes in cell integrity and reduction of total protein levels, metabolic 
enzymes, and cytoskeletal proteins57. Our candidate QTLs are particularly important since it provides novel 
insights into the molecular aspect of chronic stress considering that the study animals are predominantly reared 
under outdoor conditions with limited heat stress mitigations. Future studies are required to confirm if these 
QTLs are involved with recurrent chronic stress in other animal species.

We could not replicate most of the candidate genes with published GWAS results for heat tolerance in cattle, 
likely for several reasons. First, all comparable earlier studies were much smaller (< 5,000 animals) and therefore 
were under-powered, and the marker density used was typically 50 k or 600 k SNP array e.g.,13,14,58. As expected, 
we observed that our sequence variants showed markedly higher significance levels than the 50 k SNP array and 
increased the number of significant peaks across the genome (Supplementary Fig. S1). Second, the trait used to 
define heat tolerance in this study (i.e., the rate of milk yield decline under heat stress) differs from many other 
studies e.g.,12, which used measures of core body temperatures in their GWAS. Given that heat tolerance is a 
complex trait involving a wide array of adaptative responses (behavioural, physiological, cellular, etc.), different 
QTLs may be captured by different traits used in GWAS. Notably, although heat tolerance traits (slopes) used in 
earlier studies in Australia13,58 were comparable to those used in our study, we could not confirm most candidate 
genes (except HSF1 gene). This is likely due to the reduced power in earlier GWAS studies (they used smaller 
sample size and 50 k or 600 k SNP data). Third, differences in the patterns of LD among study populations 
used and imputation quality may have implications on GWAS, particularly in the detection of putative causal 
mutations59. Here we explored QTLs for heat tolerance in purebred Holstein cows, while some other studies, 
e.g.,15 have used crossbred cattle. Collectively, these factors likely impacted the replication of previous GWAS 
candidate genes for heat tolerance.

Although we detected multiple candidate causal variants for heat tolerance in this study, it appears that larger 
sample size (we used N = 29,107) would be beneficial considering the polygenic architecture of this trait. Larger 
sample size is required to detect causal variants with very small effects and the effects of rare causal variants16. For 
example, many of the lead SNPs (most significant) for heat tolerance were tagged by none or very few significant 
SNPs (Table S1), which may be false-positive variants passing the GWAS cut-off (p < 1E–05).

With the increasing availability of high-throughput data from automatic sensor devices such as activity-based 
collars or tags, it is now feasible to obtain large-scale data for thousands of animals; if genotyped, it would allow 
a comprehensive genetic evaluation of heat tolerance from a wide array of phenotypes e.g., mid-infrared (MIR) 
predicted traits from milk recording data60. Furthermore, we used conditional analyses of slope traits in a bid to 
separate production and heat tolerance genes. It may be useful to consider alternative heat tolerance traits in the 
future GWAS (besides milk decays) that are independent of production, such as those derived from milk yield 
based on the principal components (PC)61 or eigen-functions62. Overall our results support the highly polygenic 
nature of heat tolerance characterised by multiple small-effect variants, suggesting that this trait is more amenable 
to genomic selection tools such as those currently implemented in the Australian dairy industry3, 63 rather than 
approaches that exploit few QTLs with large effects. The significant variants detected in this study will be tested 
in a follow-up study to assess their benefits in the genomic prediction of heat tolerance in dairy cattle.
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In conclusion, we performed GWAS for heat tolerance using large sample size and genotype dataset for 
dairy cattle. The increased sample size and high-resolution SNP data in our study compared to previous reports 
allowed us unprecedented power and precision of the GWAS to pinpoint multiple putative causal mutations, 
including 61 potential functional variants at genomic sites highly conserved across 100 vertebrate species. Also, 
results indicate that different genes and pathways, in part, regulate different milk production traits (milk, fat, 
and proteins) in heat-stressed dairy cows with a substantial overlap of genes for heat tolerance milk and protein 
yield. Overall, the results revealed the importance of variation in genes related to the neuronal functions for heat 
tolerance in mammals, which is of interest for future research towards understanding and managing heat stress 
for warm climates and particularly in view of the anticipated rising global temperatures.

Materials and methods
Animals and phenotypes.  No live animals were used in this study. Phenotypes used for GWAS were 
part of our previous study64 obtained from DataGene (DataGene Ltd., Melbourne, Australia; https://​datag​ene.​
com.​au/)—the organisation responsible for genetic evaluation of dairy animals in Australia. The phenotypes 
were test-day milk, fat, and protein yield for Holstein dairy cows collected from dairy herds that were matched 
with climate data (daily temperature and humidity) obtained from weather stations across Australia’s dairying 
regions. The distribution of dairy herds and weather stations; and the calculation of environmental covariate 
(i.e., temperature–humidity index (THI)) used here were described in our earlier studies3,64.

Calculation of heat tolerance phenotypes for cows.  The dataset used to calculate heat tolerance phe-
notypes for cows was similar to that used by64, comprising a total of 424,846 test-day milk records for first, sec-
ond and third lactations from 312 herds and 15,906 herd-test days (HTD) collected over 15 years (2003–2017). 
A summary of the final dataset is given in Table 1. The rate of decline (slope) in milk, fat, and protein yield due 
to heat stress events was estimated using a reaction norm models64. In these models, data on milk, fat, or protein 
yield were adjusted for the fixed effects, including herd test day, year season of calving, parity, Legendre poly-
nomials (order 3) on the cow age on the day of test, and the Legendre polynomials (order 8) on the interaction 
between parity and DIM. Random effects fitted in the model included a random regression on a linear orthogo-
nal polynomial of THI, where the intercept represents the level of mean milk yield and the linear component 
represents the change in milk yield (slope) due to heat stress for each cow and a residual term. In the model, 
the threshold of THI was set to 60 following65. The analyses to derive trait deviation (TD) which represents a 
phenotype adjusted for all fixed effects (i.e., the mean/intercept and slope for each cow) were conducted using 
ASReml v4.266. To facilitate convergence, milk, fat and protein yield traits were scaled by a factor of 10, 100, and 
100, respectively. The description of heat tolerance traits (i.e., slopes) used in this study are comparable to those 
used in previous GWAS in Australia13,58.

We refer to milk intercept traits as [MYint (i.e., milk yield intercept), FYint (i.e., fat yield intercept), and PYint 
(i.e., protein yield intercept)] and the slopes traits as [HTMYslope (i.e., heat tolerance milk yield slope), HTFYs-
lope (i.e., heat tolerance fat yield slope), and HTPYslope (i.e., heat tolerance protein yield slope)], respectively.

Genotypes.  Two genotype datasets were analysed for 29,107 Holstein cows with the above phenotypes: 
50 k SNP chip and 15,098,486 imputed whole-genome sequence variants (WGS). Most of the cows were orig-
inally genotyped with a custom low-density 10  k SNP panel or a standard medium density 50  k SNP array 
(BovineSNP50k BeadChip: Illumina Inc). The low-density genotypes were imputed to the 50 k array using a 
reference set of approximately 14,000 animals with real 50 k genotypes, with approximately 7,000 SNPs of the 
low-density SNP panel overlapping the 50 k SNP array. The 50 k genotypes were then imputed to the high-
density Bovine SNP array (HD: BovineHD BeadChip, Illumina Inc) using a reference set of 2,700 animals with 
real HD genotypes. All SNP BeadChip genotypes were first converted to the ARS-UDC1.2 reference genome 
(https://​www.​ncbi.​nlm.​nih.​gov/​assem​bly/​GCF_​00226​3795.​1/)67 positions from reference genome UMD3.1 and 
imputed using Fimpute368. The WGS was imputed from the HD genotypes using a reference set of 3,090 Bos 
taurus sequences in the Run7 of the 1000 Bull Genome Project (http://​1000b​ullge​nomes.​com/)20 aligned to the 
ARS-UCD1.2 reference genome. Only bi-allelic sequence variants with a minor allele count (≥ 4) and GATK69 
quality tranche 99.0 or better were retained for imputation. Pre-imputation, we also removed sequence variants 
from the imputation reference that had a higher than expected proportion of heterozygous calls (> 0.5) if these 
variants fell in a 500 kb window enriched for variants showing excessive heterozygosity (as a proxy to indicate 
regions where WGS mapping/alignment may be poor). A total of 31,994,954 sequence variants remained for 
imputation. Minimac370 was used for WGS imputation, having first pre-phased both the HD genotypes and 
the WGS reference using Eagle v271. For the analysis, we retained only the variants with Minimac3 imputation 
accuracy, R2 > 0.4 and MAF > 0.005 (N = 15,098,486 sequence variants).

Single‑trait GWAS and multi‑trait meta‑analysis.  A genome-wide association analysis (GWAS) 
using a mixed linear model was used to test associations between individual SNP and cows’ slope [HTMYslope, 
HTPYslope and HTFYslope] and intercept [MYint, FYint, PYint] traits using GCTA software72. Because phe-
notypes were TD already adjusted for nongenetic effects, for each autosomal SNP i with minor allele frequency 
(MAF) > 0.005, the fitted model per trait was,

where y was the vector of TD (intercept or slope traits) for cows (n = 29,107), β was the allele substitution effect 
of SNP i, x was the vector of genotype dosages (0, 1, or 2) for SNP i, g was the vector of polygenic effect 

y = mean+ xβ+ g+ ε,

https://datagene.com.au/
https://datagene.com.au/
https://www.ncbi.nlm.nih.gov/assembly/GCF_002263795.1/)
http://1000bullgenomes.com/)
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with g ∼ N(0, GRMσ 2
g ) and ε was a vector of the residual effect with e ∼ N(0, Iσ 2

e ), where I was an n × n identity 
matrix. The variance of y was var

(

y
)

= GRMσ
2

g
+ Iσ 2

e where GRM is the genomic relationship matrix between 
cows, and σ2

g and σ2
e were the genetic and residual variances. For animal j and k relationship was calculated using 

GCTA​72 as follows:

where Ajk are the off-diagonal elements of GRM for animal j and k; N = total number of SNPs from 50 k SNP 
array data (MAF > 0.005; 45,504 SNPs); xij and xik are the number of copies for reference allele for the ith SNP; 
and pi is the allele frequency for ith SNP.

Genomic heritability was calculated for each trait using variance component estimates from –reml option of 
GCTA for 50 k SNP array (45,504 SNPs) data of cows (N = 29,107): h2 = σ 2

g /(σ
2
g + σ 2

e ).
To increase the power of GWAS and identify pleiotropic variants, we next combined single-trait GWAS 

results obtained above in a multi-trait meta-analysis following21. The multi-trait chi-squared ( χ2 ) statistics for 
ith SNP was calculated separately for intercept [MYint, FYint, PYint] and slope [HTMYslope, HTFYslope, and 
HTPYslope] traits as follows:

where ti is the vector of 3 × 1 vector of signed t-values (i.e., b/se) of ith SNP for either intercept or slope traits; and 
V−1 is the inverse of 3 × 3 correlation matrix of the signed t-values calculated based on all pairs for the intercept 
or slope traits. The significance of χ2 value for ith SNP was calculated based on chi-squared distribution with 3 
degrees of freedom—that is number of traits for either intercept or slope traits.

Conditional GWAS analysis.  Next, we performed two conditional GWAS strategies of slope traits using 
GCTA software72 to test somewhat different hypotheses:

Conditional analysis of slope traits on lead SNP (i.e., most significant SNP within a chromosome from first-
round GWAS)—aimed at identifying additional or secondary putative causal variants beside those detected 
from first-round GWAS. We performed a conditional analysis strategy on two chromosomes (BTA 14 and 
BTA 20), which showed the strongest GWAS signal for slope traits in the first-round GWAS (Supplementary 
Figs. S1 and S2) and are known to harbour QTLs with major effects on milk production (i.e., BTA14 ~ DGAT1 
and BTA20 ~ GHR gene).
Conditional analysis of slope traits on intercept traits—aimed at identifying QTLs for heat tolerance that are 
independent, or not also strongly associated with the level of milk production. We fitted the intercept traits of 
MYint, FYint, and PYint, as a covariate in the linear model when analysing the HTMYslope, HTFYslope, or 
HTPYslope, respectively. To increase the power of GWAS, we then combined conditional GWAS results for 
the three slope traits [HTMYslope, HTFYslope, and HTPYslope] in a multi-trait meta-analysis following21 
as described earlier.

Identifying candidate causal variants.  We used the following criteria to select candidate variants 
(p < 1.0E–05) from the three analytical approaches (single-trait GWAS, meta-analysis, conditional analysis).

1.	 For each trait, select all SNPs with p  < 1E–05 (FDR < 0.10).
2.	 Split each chromosome (N = 1…29) into 5 Mb non-overlapping windows from the start to the distal end of 

the chromosome.
3.	 Within the ith 5 Mb window, select the most significant SNP (i.e., the SNP with the smallest p value below 

the threshold of p  < 1E–05) defined as the ‘lead SNP’. We chose this arbitrary 5 Mb window size to obtain a 
small set of significant lead SNPs representing independent QTL (that is, not in linkage disequilibrium) for 
further detailed examination.

4.	 Calculate the LD between each lead SNP and all the other SNPs within 500 kb up and downstream of the 
lead SNP using Plink v1.973.

5.	 For each lead SNP, extract all the significant SNPs (p < 1E–05) in strong LD (r2 > 0.80) with the lead SNP 
within 500 kb up or down downstream – to account for the fact that the lead SNP (most significant) is not 
necessarily the causal variant.

Annotation of sequence variants and enrichment analysis.  Annotation of all variants (~ 15 mil-
lion SNPs) was performed using SnpEff33 tool. Using the annotation, we grouped the candidate causal vari-
ants for heat tolerance (slopes) into 9 classes (intergenic, intronic, missense, upstream, downstream, 3_prime_
UTR, synonymous, 5_prime_UTR, and Other) and performed enrichment analysis using phyper in R v3.6174. 
The class “Other” comprised variants including 5_prime_UTR_premature/_start_codon_gain, frameshift, 
missense&splice, splice&intron, stop_gained, etc. Supplementary Table S1 provides the number of candidate 
causal variants for heat tolerance within the 9 classes.

Candidate variants at conserved genomic sites.  We identified candidate causal variants for heat toler-
ance at highly conserved genomic sites using data from34. Briefly, these authors documented over 300 k sequence 
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variants at conserved sites in cattle based on the LiftOver (https://​genome.​ucsc.​edu/​cgi-​bin/​hgLif​tOver) human 
sites with conservation scores (PhastCon score) > 0.9 calculated across 100 vertebrate species (see https://​www.​
pnas.​org/​conte​nt/​pnas/​suppl/​2019/​09/​07/​19041​59116.​DCSup​pleme​ntal/​pnas.​19041​59116.​sapp.​pdf for more 
details).

Pathway enrichment analysis.  We generated candidate gene-list mapping near or underlying lead SNPs 
(most significant SNPs within 5 Mb QTL windows) identified at FDR < 0.10 cut-off threshold from both single-
trait and multi-trait analyses of intercept or slope traits. For intergenic lead SNPs, we selected the closest gene on 
either side of the SNP. We chose this cut-off (FDR < 0.10) instead of a more stringent p < 1E–05 to include genes 
associated with smaller effects while guarding against false positives. We then performed the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) enrichment analysis using DAVID75.

We also performed enrichment test separately for the gene-list associated with potential major effects on 
heat tolerance identified across all analyses (i.e., gene-list with the strongest (p < 1E–05) evidence of association 
defined as the candidate causal variants (i.e., lead SNP + other significant SNPs in strong LD (r2 > 0.80) with 
the lead SNP within 500 kb up or downstream passing the cut-off p value of 1 < 1E–05). For all the analyses, we 
considered functional pathways with Fisher’s p < 0.05 as significantly enriched.

Data availability
Positions and annotations for all the lead SNPs (most significant SNPs) with p < 1E–5 are in Tables S1–S3. Data-
Gene (DataGene Ltd., Melbourne, Australia; https://​datag​ene.​com.​au/) are the custodians of the raw phenotype 
and genotype data of Australian farm animals. Research related requests for access to the data may be accom-
modated on a case-by-case basis.
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