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Breast cancer has been reported to account for the maximum cases among all female cancers till date. In
order to gain a deeper insight into the complexities of the disease, we analyze the breast cancer network and
its normal counterpart at the proteomic level. While the short range correlations in the eigenvalues
exhibiting universality provide an evidence towards the importance of random connections in the
underlying networks, the long range correlations along with the localization properties reveal insightful
structural patterns involving functionally important proteins. The analysis provides a benchmark for
designing drugs which can target a subgraph instead of individual proteins.

O
ne of the major goals of the post-genomic era is to understand the role of proteomics and genomics in
human health and diseases1. The world health organization has estimated that about 11 percent of the
total cancers accounts for breast cancer and a drop of about one-third of the cancer deaths could be

attained if detected and treated early2. Molecular studies and healthcare research has shown that the detection of
more and more genes after BRCA1 and BRCA2 implicative in breast cancer has rendered research, diagnosis and
treatment strategies more ambiguous as the dangers being posed by those genes are yet uncertain3. Complexity as
well as variations at every stage of the cancer render designing drug targets very difficult4,5. The ample availability
of data in functional genomic and proteomic information and the development of high-throughput data-collec-
tion techniques has resulted from basic gene-based traditional molecular biology to a systems approach of
network biology6,7. In this approach, biological processes are considered as complex networks of interactions
between numerous components of the cell rather than as independent interactions involving only a few mole-
cules8–10. Previous attempts to understand various diseases under network biology approach reveals that various
types of cancers are interlinked to each other through some pathways which are altered in different diseases11.
Further analysis of the centrosome dysfunction under the network theory framework demonstrates importance
of hub proteins as well as those connected with them12,13. This paper, in order to achieve a deeper understanding of
the complexity of breast cancer, its interacting patterns, role and importance of interaction patterns for the
disease, analyzes protein protein interaction (PPI) network using a novel mathematical tool random matrix
theory (RMT). This technique is known to develop fifty years back to explain interactions of complex nucleons14,
has recently exhibited its remarkable success in understanding complex systems arising from diverse fields
ranging from quantum chaos to galaxy15. While structural parameters namely degree, clustering coefficient
(CC), degree clustering correlation and diameter demonstrate similarities in both the normal and disease net-
works, the structural patterns such as cliques combined with proteins revealed through the spectral analysis
indicate changes in both the networks, which might be important behind transformation of a cell from the normal
to the disease state. The present work not only straightens the importance of structural patterns in the disease,
further demonstrating the success of the network framework, but also for the first time analyzes a disease using the
RMT techniques. This combined framework helps in detecting proteins, beyond their structural significance in
the underlying network, which are crucial for the disease. A detailed analysis of the top contributing nodes
(TCNs) in the localized eigenvectors reveal their importance in the occurrence of the disease state.

Results and discussion
Structural properties of cancer networks. The structural parameters of the largest connected cluster of the
network using dataset described in the materials and methods section, are summarized in the Table 1.

The degree distribution r(k) of both the networks follow the power law (Figure 1) indicating the presence of
very high degree nodes. These nodes are known to keep the network robust against random external perturba-
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tions, as well as have been found to be functionally important in
many pathways16. The degree and CC of the normal and the disease
networks are negatively correlated (Figure 1), as found in the case of
other biological systems17. As mentioned in the Table 1, the average
CC of both the networks is high as exhibited by most of the biological
systems investigated under network theory framework indicating
presence of functional modules10. What follows that the disease
and normal networks exhibit overall similar statistics for widely
investigated structural properties but the crucial differences between
them which are of potential importance, are revealed through
the analysis of cliques structures and spectra. As reflected in
Table 1, the disease network bears less number of nodes with CC
5 1 than the normal one. The value of CC for a node being one
reflects the formation of complete subgraph or clique comprising of
that node. The higher value of average CC implicates the presence of
high number of clique structure in a network18. Further, cliques are
known as building blocks of a network for making the underlying
system more robust19 and stable20. Additionally nodes forming cli-
ques structure are known to be preserved during evolution21. What
follows that the disease network having less cliques of order three as
well as less number of nodes with CC being one as compared to the
normal one indicate that there is a demolition of building blocks in
the disease state, which may be leading to a more unstable underlying

system, and might be one of the reasons behind occurrence of the
disease.

The importance of clique structures would become more clear
after we explain spectral properties and local patterns of top contrib-
uting nodes (TCNs) appearing in the spectral analysis performed
under the powerful framework of RMT. This analysis not only
reveals functionally important proteins but also helps in uncovering
importance of structural pattern in the disease network. In the fol-
lowing, we provide the results pertaining to the global spectral prop-
erties, eigenvalue fluctuations and properties of nodes appearing in
the localized eigenvectors. These are the most frequently used tech-
niques in RMT for analysis of spectral properties in order to achieve a
comprehensive understanding of the underlying complex system.

Universality and the deviation from the same. The eigenvalue
statistics reflects typical triangular shape with the tail of the
distribution (Figure 2) relating with the exponent of the power law
of degree distribution as observed for many other biological and real
world networks22,23. Both the disease and normal networks have
about 30% eigenstates with zero eigenvalues. This high degeneracy
at zero is not surprising as many of the biological networks have been
shown to yield very high degeneracy at zero22.

Further, as depicted in Figure 3, both the disease and normal net-
works follow GOE statistics of random matrix theory at the consec-
utive eigenvalues captured through the distribution of their ratio (Eq.
4), which reflects that both the networks have a minimal amount of
randomness22. Randomness in a network might be arising due to
some nonsense mutations24 occurring in the underlying system.
We remark that in dynamical systems, randomness may be related
with the unpredictable nature of time evolution (for example: chaotic
systems)25, whereas for networks, randomness is referred to as ran-
dom connections between nodes26, which for biological systems
might have evinced in the course of evolution randomly and not
because of any particular functional importance of that connection.
For instance, emergence of the modular structure in networks, which
are known to be motivated by their specific functional role in the
evolution27 might be linked with random connections perhaps result-
ing from mutations24. Further, randomness in the interactions has
been known to be important for functioning of the underlying sys-
tem. For instance, information processing in the brain is considered
to arise because of many random long-range connections among
different modules28 making the underlying system robust19.
(Supplementary material contains details about RMT technique).
The universal Gaussian orthogonal ensemble (GOE) statistics dis-
played by the disease network on one hand, indicates the robustness
of the cell even in the disease state, which may be considered crucial
for maintenance and housekeeping processes of cancerous cell and
on other hand establishes that the breast cell can be modeled using
GOE of RMT and we can apply all the techniques developed under

Table 1 | Network parameters for both the normal and disease net-
works. The total number of proteins N collected using various
databases (described in the Method section), number of proteins
in the largest connected cluster NLCC and connections NCLCC, the
average degree Ækæ, average clustering coefficient ÆCCæ, the num-
ber of nodes having CC 5 1 in the whole network (NCC) and the
average IPR of both the networks

Network N NLCC NCLCC Ækæ D ÆCCæ NCC ÆIPRæ

Normal 2464 2441 15118 12 11 0.28 153 0.004
Disease 2096 2046 14150 14 10 0.29 107 0.005

Figure 1 | Degree distribution and degree-CC correlations for the normal
and disease networks. Left panel of the normal network show that the

degree distribution follows power law and the degree clustering coefficient

correlation shows are negatively correlated. The right panel gives us the

same results for the disease networks.

Figure 2 | Eigenvalue distribution of both normal and disease networks.
The plots depict triangular distribution for both the networks with a high

degeneracy at zero.
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the well established framework of the RMT to understand the breast
cancer.

After the short range correlations, which is analyzed through
probability of ratio of consecutive level, the second most insightful
step in the RMT is the analysis of long range correlations in eigen-
value using spectral rigidity test, which is generally done using D3

statistics given by Eq. 5. This test reveals that both the networks
follow RMT prediction of GOE statistics till a particular value of L
(Eq.6) and deviates thereafter. Interestingly, the value of L for the
disease network is less as compared to the normal one (Figure 4),
suggesting that the normal network is more random than the disease
network26 or the disease network is more ordered than the normal
one. This interpretation combined with the observation that the
disease state has a less number of connections (pathways expressed)
than that of the normal one, implicates that there are some interac-
tions getting hampered or silenced during the course of mutation
leading to the disease11. What follows that, these hampered pathways
should be corresponding to or treated as random pathways and as
randomness is one of the essential ingredient for the robustness of a
cell26, lack of sufficient randomness might be leading to the disease.

While universal part following RMT prediction reflects the
importance of random connections in the biological networks, we
will witness in the following that the non-universal part of the spectra
deviating from RMT provides direct clue about the set of nodes
(proteins) relevant for the occurrence of the disease state. This is
achieved by analyzing localization properties of eigenstates which
provides a quantitative picture of non universal part of the spectra.

Important proteins through eigenvector localization. Based on the
IPR values calculated using Eq.7, the eigenstates can be divided into
two components, one which follows RMT predictions of Porter-
Thomas distribution29, and another one which deviates from this
universality and show localization (Figure 5). The average IPR
calculated using Eq.8 comes out to be more for the disease network
than for the normal one, which is in the direct relation with the

behavior of D3 statistics demonstrating that the normal network is
more random than the disease network. The part of the unfolded
spectra following universality corresponds to random interactions in
the underlying system30, whereas non-universal part can be exploited
to get the system dependent information. The non universal part
annotating the importance of the localized eigenvectors reveals
important proteins as explained below. The disease network yields
34 TCNs corresponding to the top 5 most localized eigenvectors
extracted by taking the threshold as 1/IPR31, of which 18 appears
to be unique in the disease and 14 are common to both the disease
and the normal networks. In the following section, we discuss briefly
the functions of these proteins selected through the localization
property of eigenvectors (Table 2).

Functional properties of disease proteins. The most important
outcome of the functional analysis of proteins corresponding to
the TCNs is that all of them are involved in important pathways
leading to breast cancer. The first localized eigenvector has five
contributing nodes, of which MTHFD1L is responsible for
synthesis of purines in mitochondria but its expression is up-
regulated in breast cancer leading to proliferation, invasiveness and
anti-apoptotic activity32. The protein corresponding to the next TCN
is ALDH1L1 which in the normal cell controls the cell mobility, but
in the disease state is silenced thereby making way for uncontrolled
proliferation of cells33. The next two proteins CACNB1 and
CACNB2 help in calcium transport in the normal state but are
down-regulated in the breast cancer cell, thereby affecting the
calcium metabolism which causes poor signaling of messages in
the cell34. Mutation in the last TCN KCNB2, results in
concomitant cell proliferation35.

The second localized eigenvector consists of six TCNs, among
which KCNB2 and CACNB2 have been discussed above. The third
protein KCNH4 in a normal cell is responsible for the potassium
transport but undergoes splicing and is silenced in the disease state,
thereby hampering early event in apoptosis leading to prolonged
survival of cells36. The next protein TEX1, under normal condition,
plays a major role in transcription regulation, but in the breast cancer
cells, is over expressed which causes down-regulation of transcrip-
tion37. The next TCN, KIAA1, is a binding protein to RNA but in
cancer state undergoes mutation and refrains from its function of
binding to RNA resulting in hampering of proper translation in
cancer38. The next protein THOC1 is a part of TREX complex which
is responsible for regulating transcription in a normal cell but in
breast cancer cell, it delays transcriptional expression leading to
irregular central dogma which makes the cell unorganized37.

There are seven TCNs in third most localized eigenvector. The
first two proteins, KLK5 and KLK10, are from Kellikein gene family
which are generally involved in serine-type peptidase activities. In

Figure 3 | Spacing distribution. The ratio of eigenvalues spacing follow

GOE statistics for both the networks. The bars represent data points and

solid line represents Eq.4 with parameters of GOE statistics.

Figure 4 | Long-range Correlations (D3 statistics) for the normal and the
disease network. Circles denote data points for the normal and the disease

networks whereas the solid line is the D3 statistics for the GOE.

Figure 5 | Eigenvector Localization both normal and disease network.
They clearly reflect three regions (i) degenerate part in the middle, (ii) a

large non-degenerate part which follow GOE statistics of RMT and non-

degenerate part at both the end and near to the zero eigenvalues which

deviate from RMT.
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the breast cancer they are down-regulated leading to the suppression
of tumorigenesis39. The next protein CNTN4 is implicated in nervous
system development. As of now its exact function in breast cancer is
not known, but its first interacting neighbor is BRCA1 which is
potent candidate in breast cancer cells40. Similarly, the next contrib-
uting node, ASTN2, under normal condition controls neural migra-
tion but in the breast cancer is found to have undergone
chromosomal rearrangement with PTPRG which is an important
gene for the recognition of the cancerous state in the cell41. The next
protein, BRMS1L, is found to reduce expression of mRNA in breast
cancer42. Another protein, ARID4B, functions in diverse cellular
processes including proliferation, differentiation, apoptosis, onco-
genesis, and cell fate determination. In the disease state, it is found
to cause irregular cell formation and proliferation43. KCNQ5 is
another TCN which is a family member of KCN which affects the
cell proliferation of the breast cell35.

The fourth localized eigenvector has eight TCNs of which KCND3
elevates the influx of potassium ions in breast cancer cells44. The
others appear in the three most localized eigenvector and have been
already discussed. Among the top contribution nodes of the fifth
localized eigenvector, except THOC6, FCRL3 and FCRL5, all other
have been discussed above in different localized vector. These three
proteins have been found in both normal and breast cell. THOC6, in
normal cell accounts for negative regulation of apoptosis, whereas in
the breast cancer cell have been found to be silenced37. Next two
proteins FCRL3 and FCRL5 appear as a part of FCRL complex which
under normal circumstances act as an adapter of protein as well as
development in immunity. In breast cancer, they have been found to
be over expressed in immune cells namely WBC, thereby making it
more robust against treatments45.

What follows that all the proteins corresponding to the TCNs,
except few, in the five most localized eigenvectors have a major
contribution in promoting breast cancer. Moreover, fourteen com-
mon proteins are important for the normal and the disease both but
leading to a very different behavior of cell in the two states. Whereas
for normal cell, these common proteins are involved in major func-
tioning of the cell (Supplementary), in the disease cell they all are
found to be abnormally expressed or mutated leading to the disease
state.

Preserved structures in localized nodes. The TCNs, in addition to
the functional importance pertaining to the occurrence of the disease
state revealed, exhibits interesting structural properties. This is more
remarkable in the light that all of these TCNs lie in the low degree
regime in the networks. Moreover, their betweenness centrality also
are zero further ruling out any trivial structural significance of these
nodes. But importance of these nodes based on the analysis of their
interactions reveals the existence of preserved local structural
patterns. Most strikingly, all of them follow phenomenon of gene
duplication46, as depicted in the Figure 6, which shows TCNs being
involved in the pair formation in which first node in each pair has
exactly the same neighbors as of the second node. Most remarkably,
there are 20 duplicates (proteins having the same number of
neighbors and having more than one connection) in the whole

network of which 18 are found in the TCNs of the most localized
eigenvectors.

Further insight to this local structure is surfaced when we analyze
the interaction patterns of these proteins in the normal breast net-
work. What comes out from the analysis of the local interaction
patterns of TCNs in the normal to those of disease is that there is
either addition(s) of new interaction in the disease state in order to
build clique of order three, or preservation of clique structure from
normal to the disease or removal of interactions while in the normal
keeping the clique intact. For example, TEX1 and THOC6, retain the
same clique structures in both the networks (Figure 6). There are
other proteins, for example BRMS1L and ARID4B which shed off
some connections from the normal network (Figure 6(right)) while
keeping clique structure intact in the disease state (Figure 6(left)).
Further, nodes KLK5 and KCND3 form new connection in the dis-
ease state yielding the clique structures (Figure 6(left)). The fact that
in spite of less connections of the proteins in the disease state as
compared to the normal as well as reduction of cliques of order three
from the normal to the disease, cliques in TCNs are preserved. This
may be one of the reason of the poor performance of drugs targeting
these proteins, as cliques are known to be the building blocks of a
system making the underlying system robust against external per-
turbations. While the less number of nodes with CC 5 1 as well as less
number of clique of order three in the overall disease network from
the normal one implicate that there is a destruction of building block,
the conservation or addition of cliques of order three in TCNs (whose
function importance for the occurrence of disease has already been
emphasized) reflects that mutation in the disease cell makes the
proteins to form a stable structure.

Conclusions
We construct and investigate the breast cancer network under the
RMT framework. The analysis reveals that the TCNs of the most
localized eigenvectors, despite of lying at low degree regime and
having zero betweenness centrality, exhibit structural significance.
All of them form pairs possessing common neighbors. Most remark-
ably, in the disease network there are 20 duplicate proteins with
connections more than one, and out of which 18 appear in the
localized eigenvector. This interesting revelation turns out to be more
intriguing in the light of the functional analysis of proteins corres-
ponding to the TCNs which clearly confirms their functional import-
ance for the occurrence of the disease state.

Furthermore, clique structure and duplication of genes, which
have been emphasized important for robustness as well as the evolu-
tion of a system, are found to be crucial for the disease state. Most
striking revelation is that while there is an overall reduction in cliques
in the disease network from the normal one reflecting reduction in
the building blocks for the disease state, conservation or formation of
cliques involving important disease proteins reflects that robustness
of the overall system is decreased in the disease but the interactions of
the important proteins involved in promoting the disease are pre-
served and might be one of the reasons behind making those path-
ways involved with the important proteins highly resistant to various
treatments.

Table 2 | Eigenvector localization properties. Top most localized eigenvectors (Ek) for the disease dataset, their top contributing proteins
and network parameters namely degree and clustering coefficient. The betweenness centrality of all the TCNs in the disease network is
zero

Ek TCN k CC

714 MTHFD1L, ALDH1L1, CACNB1, CACNB2, KCNB2 2, 2, 3, 3, 5 1, 1, 0.66, 0.66, 1
704 KCNB2, KCNH4, TEX1, CACNB2, KIAA1, THOC1 5, 5, 6, 3, 3, 3 1, 1, 1, 1, 1, 1
712 KLK5, KLK10, CNTN4, ASTN2, BRMS1L, ARID4B, KCNQ5 3, 3, 2, 2, 3, 3, 5 1, 1, 1, 1, 1, 1, 1
710 THOC1, BRMS1L, KCND3, KCNB2, KCNQ5, ARID4B, TEX1, KCNH4 6, 3, 5, 5, 5, 6, 5 3 1, 1, 1, 1, 1, 1, 1, 1
705 KCND3, FCRL3, FCRL5, TEX1, THOC6, KCNH4, KCNQ5, MTFHD1L 5, 2, 2, 6, 6, 5, 5, 2 1, 1, 1, 1, 1, 1, 1, 1
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The D3 statistics demonstrates less randomness in the disease state
than the normal one, which might be arising due to the removal of
random connections in the disease state, and not because of a prob-
able enhancement in the modular structure as number of nodes
having CC 5 1 is indeed less in case of the disease state than the
normal one. This in-turn depicts that randomness leads to the
robustness of the system where, normal breast network is found to
be more robust than the disease state.

Detection of important proteins involved in breast cancer using
RMT platform provides a time efficient and cost effective approach
for those diseases which lack in-depth information about important
genes. Revelation of clique structure, being formed or preserved by
these proteins, provides a further bench mark for designing drugs
which can target a sub-graph instead of the individual protein. This
analysis presented here can be extended further to study other dis-
eases like other types of cancers, diabetes, hypertension etc to predict

various structural and functional aspect of biology47, which in addi-
tion may help to compose novel drug targets and to introduce the
concept of single medicine for multiple diseases48.

Methods
Data assimilation and network construction. According to the network theory,
there are two basic components of network namely nodes and edges. Here we study
the PPI network where nodes are the proteins and edges denote the interactions. After
diligent and enormous efforts, we collect the protein interaction data from various
literature and bioinformatic sources. To keep the authenticity of the data we only take
the proteins into account which are reviewed and cited. We use various different
bioinformatic databases namely Gen bank from NCBI and UNIPROT49,50,
constituting data available from other resources like European Bioinformatic
Institute, the Swiss Institute of Bioinformatics, and the Protein Information Resource.
To add more information we also take the most widely studied normal and breast
cancer cell lines whose protein expression data is known. There are numerous cell
lines available but a very few have been exploited for their maximum proteomic
insight. Here, we are use the data of HMEC cell line for normal51,52 and MFC-7 for the
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breast cancer network53. The collection and discussion to select the datasets and
authenticating this data for RMT analysis is an extensive job and we generate this data
after thorough literature search and validation in about 400 hrs of rigorous study.
After collecting the proteins for both the datasets, their interacting partners are
downloaded from STRING database54. The dataset contains 2464 nodes and 15131
connections for normal network followed by 2096 nodes and 14183 links for the
breast cancer network. The networks turned to have one big cluster and several small
clusters. We then investigate the structural properties of the network.

Structural measures. Several statistical measures are proposed to understand specific
features of the network55. First we define the interaction matrix or the adjacency
matrix of the network as follows:

Aij~
1 if i*j

0 otherwise

�
ð1Þ

The most basic structural parameter of a network is the degree of a node (ki), which is
defined as the number of neighbors of the node has (ki 5 Sj Aij). Degree distribution
r(k), revealing the fraction of vertices with the degree k, is known as the fingerprint of
the network. Another important parameter is the clustering coefficient (CC) of the
network. Clustering is defined as the ratio of the number of connections a particular
node is having by the possible number of connections the particular node can have.
These are also known as cliques. Clustering coefficient of a network can be written as

CC~
1
n

Xn

i~1

Ci ð2Þ

They are complete sub graphs in the network which are known to be the conserved
part of the network21. The average clustering coefficient of the network characterizes
the overall tendency of nodes to form cluster or groups55. Further, the betweenness
centrality of a node i is defined as the fraction of shortest paths between node pairs
that pass through the said node of interest56

xi~
X

st

ni
st

gst
, ð3Þ

where ni
st is the number of paths from s to t that passes through i and gst is the total

number of paths from s to t in the network. Another parameter is the diameter of the
network which measures the longest of the shortest path between the two nodes.

Spectral techniques. The random matrix analysis of the eigenvalue spectra considers
(1) global properties such as spectral distribution of eigenvalues r(l), and (2) local
properties such as eigenvalue fluctuations around r(l). We denote the eigenvalues of
a network by li 5 1, …, N and l1 . l2 . l3 . … . lN. The nearest neighbor spacing
distribution (NNSD) has been known to be one of the most powerful technique in
RMT and we analyze them by calculating the distribution of ratio of the consecutive
eigenvalues which is represented as57

PW rð Þ~ 1
Zb

rzr2ð Þb

1zrzr2ð Þ 1z3=2bð Þ ð4Þ

The benefit of analyzing ratio of nearest spacings over much used NNSD58 is that this
method does not require unfolding of the eigenvalues. Further, the NNSD accounts
only for the short range correlations in the eigenvalues. We probe for the long range
correlations in eigenvalues using D3(L) statistics which measures the least-square
deviation of the spectral staircase function representing average integrated eigenvalue
density N �l

� �
from the best fitted straight line for a finite interval of length L of the

spectrum. In order to get the universal properties of eigenvalues through h D3

statistics, it is customary in RMT to unfold eigenvalues by a transformation
�li~�N lið Þ, where �N is the average integrated eigenvalue density. Since we do not have
any analytical form for N, we numerically unfold the spectrum by polynomial curve
fitting. After unfolding, average spacings are unity, independent of the system, which
in the absence of any analytical form of polynomial fitting of the eigenvalues works
with the approximate numerical fitting58 and is given by

D3 L; xð Þ~ 1
L

mina,b

ðxzL

x
N �l
� �

{a�l{b
� �2

d�l ð5Þ

where a and b are regression coefficients obtained after least square fit58. Average over
several choices of x gives the spectral rigidity, the D3(L). In case of GOE statistics, the
D3(L) depends logarithmically on L, i.e.

D3 Lð Þ* 1
p2

ln L ð6Þ

Further, we use the inverse participation ratio (IPR) to analyze localization properties
of the eigenvectors59. For Ek

l denoting lth component of kth eigenvector Ek, the IPR of
an eigenvector can be defined as

Ik~

PN
l~1 Ek

l

� �4

PN
l~1 Ek

l

� �2
� �2 ð7Þ

which shows two limiting values : (i) a vector with identical components Ek
l :1

. ffiffiffiffi
N
p

has Ik 5 1/N, whereas (ii) a vector, with one component Ek
1~1 and the remainders

zero, has Ik 5 1. Thus, the IPR quantifies the reciprocal of the number of eigenvector
components that contribute significantly. We further calculate the average IPR in
order to measure an overall localization of the network calculated as60,

IPRh i~
PN

l~1 Ik
� �

N
ð8Þ

Note that IPR defined as above separates out the TCNs by keeping the threshold as
1/IPR.

1. Venter, J. C. et al. The Sequence of the Human Genome. Science 16, 1304–1351
(2001).

2. Ferlay, J., Parkin, D. M. & Fouchera, E. S. Estimates of cancer incidence and
mortality in Europe in 2008. EJC 46, 765–781 (2010).

3. Kiberstis, P. & Roberts, L. A Race Still Unfinished. Science 343, 1451–1470 (2014).
4. Hanahan, D. & Weinberg, R. A. The Hallmarks of Cancer. Cell 100, 57–70 (2000).
5. Petricoin, E. F. et al. Mapping Molecular Networks Using Proteomics: A Vision

for Patient-Tailored Combination Therapy. J. Clin. Oncol. 23, 3614–3621 (2005).
6. Barabasi, A.-L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based

approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).
7. Hartwell, L. H. et al. From molecular to modular cell biology. Nature 402, 47–52

(1999).
8. Kitano, H. Systems Biology: A Brief Overview. Science 295, 1662–1664 (2002).
9. Zhu, X., Gerstein, M. & Snyder, M. Getting connected: analysis and principles of

biological networks. Genes & Dev. 21, 1010–1024 (2007).
10. Barabasi, A. L. & Otavi, Z. N. Network biology: understanding the cells functional

organization. Nat. Rev. Genet. 5, 101–113 (2004).
11. Goh, K-II. et al. The human disease network. PNAS 104, 8685–8690 (2008).
12. Pujana, M. A. et al. Network modeling links breast cancer susceptibility and

centrosome dysfunction. Nature Genet. 39, 1338–1349 (2007).
13. Chuang, H. Y. et al. Network-based classification of breast cancer metastasis. Mol.

Syst. Biol. 3, 140 (2007).
14. Wigner, E. P. Characteristic vectors of bordered matrices with infinite dimentions.

Ann. Math. 62, 548–564 (1955).
15. Papenbrock, T. & Weidenmüller, H. A. Random matrices and chaos in nuclear

spectra. Rev. Mod. Phys. 79, 997–1013 (2007).
16. Chung, F., Linyuan, L. & Van, V. Spectra of random graphs with given expected

degrees. PNAS 100, 6313–6318 (2003).
17. Friedel, C. C. & Zimmer, R. Influence of degree correlations on network structure

and stability in protein-protein interaction networks. BMC Bioinformatics 8, 297
(2007).

18. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks.
Nature 393, 440–442 (1998).

19. Alon, U. An introduction to Systems Biology: Design principles of Biological Circuits
(Chapman and Hall/CRC, London, 2006).

20. Dwivedi, S. K. & Jalan, S. Emergence of clustering: Role of inhibition. arXiv,
1405.2413 (2014).

21. Lotem, E. Y. et al. Network motifs in integrated cellular networks of
transcriptionregulation and proteinprotein interaction. PNAS 101, 5934–5939
(2004).

22. Bandyopadhyay, J. N. & Jalan, S. Universality in complex networks: Random
matrix analysis. Phys. Rev. E 76, 026109 (2007).

23. Aguiar, M. A. M. de. & Bar-Yam, Y. Spectral analysis and the dynamic response of
complex networks. Phys.Rev.E 71, 016106 (2005).

24. Clancy, S. Genetic mutation. Nat. Educat. 1, 187 (2008).
25. Atay, F. M., Jalan, S. & Jost, J. Randomness, chaos, and structure. Complexity 15,

29–35 (2009).
26. Jalan, S. & Bandyopadhyay, J. N. Randomness of random networks: A random

matrix analysis. EPL 87, 48010 (2009).
27. Ravsaz, E. Hierarchical Organization of Modularity in Metabolic Networks. et. al.,

Science 297, 1551–1555 (2002).
28. Cohen, J. D. & Tong, F. The Face of Controversy. Science 293, 2405–2407 (2001).
29. Zyczkowski, K. [Quantum mechanical eigenvector statistics of chaotic systems].

[153–168] Quantum Chaos [Cerderia, H. A., Ramaswami, R., Gutzwiller, M. C. &
Casati, G. (ed.)] (World Scientific, Singapore, 1991).

30. Jalan, S. et al. Spectral analysis of gene co-expression network of Zebrafish. EPL 99,
48004 (2012).

31. Plerou, V. et al Random matrix approach to cross correlations in financial data.
Phys. Rev. E 65, 066126 (2002).

32. Minguzzi, S. et al. An NTD-Associated Polymorphism in the 3 UTR of MTHFD1L
can Affect Disease Risk by Altering miRNA Binding. Hum. Mutat. 35, 96–104
(2014).

33. Ginestier, C. et al. ALDH1 Is a Marker of Normal and Malignant Human
Mammary Stem Cells and a Predictor of Poor Clinical Outcome. Cell Stem Cell 1,
555–567 (2007).

34. Wuchty, S., Arjona, D. & Bauer, P. O. Important miRs of Pathways in Different
Tumor Types. PLoS Comput. Biol. 9, e1002883 (2013).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6368 | DOI: 10.1038/srep06368 6



35. Choi, M. et al. K1 Channel Mutations in Adrenal Aldosterone-Producing
Adenomas and Hereditary Hypertension. Science 331, 768–772 (2011).

36. Moore, M. J. & Silver, P. A. Global analysis of mRNA splicing. RNA 14, 197–203
(2008).

37. Chi, B. et al. Aly and THO are required for assembly of the human TREX complex
and association of TREX components with the spliced mRNA. Nucleic Acids Res.
41, 1294–1306 (2013).

38. King, M. C. & Welch, P. L. A novel functional screen for new breast cancer genes.
Gynecol. Oncol. 98, 68 (2005).

39. Yousef, G. M. et al. Kallikrein gene downregulation in breast cancer. Br. J. Cancer
90, 167–172 (2004).

40. McClellan, J. & King, M. C. Genetic Heterogeneity in Human Disease. Cell 141,
210–217 (2010).

41. Hampton, O. A. et al. A sequence-level map of chromosomal breakpoints in the
MCF-7 breast cancer cell line yields insights into the evolution of a cancer
genome. Genome Res. 19, 167–177 (2009).

42. Stark, A. M. et al. Reduced metastasis-suppressor gene mRNA-expression in
breast cancer brain metastases. J Cancer Res Clin Oncol. 131, 191–198 (2005).

43. Wu, M. Y., Eldin, K. W. & Beaudet, A. L. Identification of Chromatin Remodeling
Genes Arid4a and Arid4b as Leukemia Suppressor Genes. JNCI 100, 1247–1259
(2008).

44. Ko, J. H. et al. Expression profiling of ion channel genes predicts clinical outcome
in breast cancer. Mol. Cancer 12, 106 (2013).

45. Inozume, T. et al. Novel melanoma antigen, FCRL/FREB, identified by cDNA
profile comparison using DNA chip are immunogenic in multiple melanoma
patients. Int. J. Cancer 114, 283–290 (2005).

46. Bergthorsson, U., Andersson, D. I. & Roth, J. R. Ohno’s dilemma: Evolution of
new genes under continuous selection. PNAS 104, 17004–17009 (2007).

47. Li, Y. & Agarwal, P. A Pathway-Based View of Human Diseases and Disease
Relationships. PLoS ONE 4, e4346 (2009).

48. Yildirim, M. A. et al. Drugtarget network. Nat. Biotechnol. 25, 1119–1126 (2007).
49. Benson, D. A. et al. GenBank. Nucleic Acids Res. 40, D48–D53 (2012) (http://www.

ncbi.nlm.nih.gov/Date of access: 15/02/2014).
50. Bairoch, A. et al. The Universal Protein Resource (UniProt). Nucleic Acids Res. 33,

D154–D159 (2005) (http://www.uniprot.org/Date of access: 17/02/2014).
51. Page, M. J. et al. Proteomic definition of normal human luminal and myoepithelial

breast cells purified from reduction mammoplasties. PNAS 96, 12589–12594
(1999).

52. Patwardhan, A. J. et al. Comparison of Normal and Breast Cancer Cell Lines Using
Proteome, Genome, and Interactome Data. J. Proteome Res. 4, 1952–1960 (2005).

53. Kulasingam, V. & Diamandis, E. P. Proteomics Analysis of Conditioned Media
from Three Breast Cancer Cell Lines. Mol. Cel. Proteomics 6, 1997–2011 (2007).

54. Szklarczyk, D. et al. The STRING database in 2011: functional interaction
networks of proteins, globally integrated and scored. Nucleic Acids Res. 39,
D561–D568 (2011) (http://string-db.org/ Date of access: 09/03/2014)

55. Boccaletti, S. et al. Complex networks: Structure and dynamics. Phys. Rep. 424,
175–308 (2006) and references therein.

56. Newman, M. E. J. The Structure and Function of Complex Networks. SIAM
Review. 45, 167–256 (2003).

57. Atas, Y. Y. et al. Distribution of the Ratio of Consecutive Level Spacings in
Random Matrix Ensembles. Phys Rev. Lett. 110, 084101 (2013).

58. Mehta, M. L. Random Matrices 1st edition (Elsevier, San Diego, 2004).
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