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β-lactams, the most widely used class of antibiotics, are well-tolerated, and their

molecular mechanisms of action against many bacteria are well-documented.

Mycobacterium abscessus (Mab) is a highly drug-resistant rapidly-growing

nontuberculous mycobacteria (NTM). Only in recent years have we started to gain

insight into the unique relationship between β-lactams and their targets in Mab. In this

mini-review, we summarize recent findings that have begun to unravel the molecular

basis for overall efficacy of β-lactams against Mab and discuss emerging evidence that

indicates that we have yet to harness the full potential of this antibiotic class to treat

Mab infections.
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INTRODUCTION

AlthoughMycobacterium abscessus (Mab) was first discovered in 1953 (Moore and Frerichs, 1953),
it was only recently that genomic sequencing differentiated theMab complex into three subspecies:
M. abscessus sensu stricto, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense
(Adekambi et al., 2004, 2006; Viana-Niero et al., 2008). These subspecies exhibit differential
susceptibilities to certain antibiotics and differential clinical outcomes.

Mab can cause pulmonary disease in addition to skin and soft tissue infections, lymphadenitis,
and disseminated disease. Mab is sometimes considered a respiratory colonizer; however, in
the setting of immunosuppression or structural lung disease, such as cystic fibrosis (CF) and
bronchiectasis,Mab can cause chronic pulmonary disease. In CF patients,Mab infections are often
incurable and associated with rapid lung function decline (Griffith et al., 2007; Esther et al., 2010;
Benwill and Wallace, 2014). The cure rate for Mab lung disease is only 30–50% (Jarand et al.,
2011), with a recent review reporting sputum culture conversion rates as low as 25% with antibiotic
treatment alone (Diel et al., 2017).

Poor treatment outcomes ofMab infection have been ascribed to both innate and acquired drug
resistance. Mab is intrinsically resistant to multiple antibiotic classes which has been attributed
to various factors (Brown-Elliott and Wallace, 2002; Nessar et al., 2012; van Ingen et al., 2012).
Acquired resistance has further limited therapeutic options (Flume, 2016). Current treatment
regimens are suboptimal, as they require several months of intravenous multidrug therapy with
potentially cytotoxic antibiotics and produce poor outcomes (Wallace et al., 1985; Floto et al., 2016).

In this review, we will briefly summarize Mab treatment recommendations, discuss unique
molecular targets of β-lactams in Mab, and highlight emerging insights into how β-lactams may
be leveraged to treat individuals infected withMab.
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CURRENT Mab TREATMENT
RECOMMENDATIONS

The US Cystic Fibrosis Foundation and European Cystic Fibrosis
Society recently developed consensus guidelines for management
ofMab lung disease in CF patients (Floto et al., 2016). Similar to
tuberculosis, Mab infection is treated with multidrug regimens
divided into an intensive phase, followed by a continuation
phase. Per recent guidelines, the intensive phase of Mab therapy
should consist of an oral macrolide, combined with 3–12 weeks
of intravenous amikacin, plus at least one of the following:
intravenous cefoxitin, imipenem, or tigecycline (Floto et al.,
2016). Guidelines for the continuation phase include a daily oral
macrolide, inhaled amikacin, and two to three additional oral
antibiotics, including minocycline, clofazimine, moxifloxacin,
and linezolid.

Macrolides have historically been considered the backbone
of treatment against Mab. They have relatively low toxicity,
are orally bioavailable (Griffith et al., 2007; Floto et al., 2016),
and exhibit consistent activity against Mab in vitro (Griffith
et al., 2007). However, subspecies abscessus and bolletii harbor
a functional erm(41) gene, which confers inducible macrolide
resistance and can limit the effectiveness of this drug class.
In contrast, subspecies massiliense carries a non-functional
erm(41) gene (Nash et al., 2009), thus cannot exhibit inducible
macrolide resistance and is associated with improved outcomes
on macrolide-based regimens (Koh et al., 2011). Consequently,
the CF guidelines recommend subspeciation of Mab complex,
which many clinical laboratories are not equipped to perform
routinely. Therefore, some CF centers prescribe initial treatment
regimens comprised of intravenous amikacin plus either cefoxitin
or imipenem, rather than a macrolide (Philley et al., 2016).

Cefoxitin and imipenem are currently the only two β-lactams
included in the guidelines for treatment of Mab infections. This
antibiotic class has been largely understudied against Mab and
may be a potential untapped resource in combating this highly-
resistant microbe.

MECHANISM OF ACTION OF β-LACTAMS
AGAINST Mab

β-lactams are the most widely-used antibiotic class to treat
bacterial infections (Hamad, 2010) and their safety and efficacy
profiles have been well-established. There are five subclasses of
β-lactams currently available in the clinical setting: penicillins,
cephalosporins, monobactams, carbapenems, and penems. β-
lactams have been studied extensively for treatment of drug-
resistant Mycobacterium tuberculosis (Mtb) infections, which is
summarized elsewhere (Story-Roller and Lamichhane, 2018).
Certain β-lactam subclasses also exhibit activity against Mab
(Lavollay et al., 2014; Kaushik et al., 2015; Lefebvre et al., 2016).
While initial insights into the molecular mechanism of action of
β-lactams against mycobacteria were gleaned largely from Mtb,
recent studies have begun to elucidate the relationship between
Mab and β-lactams (Lavollay et al., 2014; Lefebvre et al., 2016;
Kumar et al., 2017a).

β-lactams exert their activity by inhibiting synthesis of an
essential component of the bacterial cell wall, the peptidoglycan
(PG) (Hartmann et al., 1972). The building block of PG is a
disaccharide with a stem peptide comprised of four or five amino
acids; specifically N-acetyl-glucosamine-N-acetyl-muramic
acid-L-alanyl-D-glutaminyl-meso-diaminopimelyl-D-alanyl-
D-alanine in Mab (Lavollay et al., 2011). Polymerization
of disaccharides by transglycosylases and stem peptides by
transpeptidases produces a three-dimensional macromolecule,
the PG (Figure 1).

The dominant model of PG architecture was largely
established by studies using model organisms, such as E. coli.
According to this historical model, the final step of PG synthesis
is catalyzed by D,D-transpeptidases (DDT), also known as
penicillin binding proteins, which link the 4th amino acid of one
stem peptide to the 3rd amino acid of the adjacent stem peptide,
thereby generating a 4 →3-linked peptide network. However, as
early as 1974, it became clear that the chemical architecture of
mycobacterial PG, and therefore the enzymes necessary for its
synthesis, were distinct from those described in the historical
model. This study reported that stem peptides in the PG of M.
smegmatis, Mtb, and M. bovis BCG were predominantly cross-
linked with non-canonical linkages between the 3rd amino acid
of one peptide and the 3rd amino acid of another (Wietzerbin
et al., 1974). That same year, this group also demonstrated that
the enzyme, L,D-transpeptidase (LDT), generated these 3 →3
linkages in Streptococcus faecalis (Coyette et al., 1974).

The first direct evidence demonstrating that stem peptides
in Mab PG are predominantly cross-linked by 3 →3 linkages
was reported in 2011 (Lavollay et al., 2011). Subsequently, five
putative LDTs, LdtMab1−5, were identified in Mab (Mattoo et al.,
2017) and the first crystal structure of one of these enzymes,
LdtMab2, was described (Kumar et al., 2017a). These studies
confirmed that Mab utilizes both LDTs and DDTs to generate
3 →3 and 4 →3 linkages between stem peptides, respectively
(Figure 1). The majority of linkages in Mab are 3 →3, which
suggests that LDTs are at least as important as DDTs for
synthesis of its PG. Several studies report that genes involved
in PG synthesis and remodeling are largely conserved across
mycobacteria, implying a similar PG chemical composition,
architecture, and metabolism (Sanders et al., 2014; Mattoo et al.,
2017). A review of PG biosynthesis in Mtb by Pavelka et al. is
recommended for further insight into mycobacterial PG biology
(Pavelka et al., 2014).

LDTs ARE PREFERENTIALLY INHIBITED
BY CARBAPENEMS AND
CEPHALOSPORINS

β-lactams mimic the C-terminal end of the native stem peptide
of PG, bind to the active site of transpeptidases, and irreversibly
inhibit their enzymatic activity (Park and Strominger, 1957). As
the historical model consideredDDTs to be the only enzymes that
synthesized PG, they were assumed to be the sole targets of β-
lactams. The discovery of LDTs (Mainardi et al., 2005) prompted
inquiry into whether β-lactams also interacted with this enzyme
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FIGURE 1 | Model of M. abscessus peptidoglycan. The hexagonal structures depict sugars N-acetylglucosamine (gray) and N-acetylmuramic acid (cyan). L-alanine

(L-Ala), D-glutamine (D-Gln), meso-diaminopimelic acid (m-DAP) and D-alanine (D-Ala).

class. Subsequent studies have demonstrated that LDTs andDDTs
of mycobacteria differ in their binding affinities to β-lactam
subclasses and are consequently inhibited by different subclasses
to varying degrees (Dubee et al., 2012; Kumar et al., 2017b). DDTs
are effectively bound and inhibited by all β-lactam subclasses,
whereas Mab LDTs are preferentially bound and inhibited by
carbapenems and to a lesser extent by cephalosporins (Kumar
et al., 2017a,b).

Although the crystal structures of LDTs of Mab bound to
β-lactams are not yet available, several groups have reported
crystal structures of LDTs of Mtb bound to carbapenems and
penems (Kim et al., 2013; Li et al., 2013; Bianchet et al.,
2017; Kumar et al., 2017b; Steiner et al., 2017). As LDTs and
DDTs of Mab are differentially inhibited by β-lactam subclasses,
comprehensive inhibition of PG synthesis will likely require
simultaneous administration of multiple β-lactams belonging to
different subclasses to optimally inhibit the two enzyme classes.

FACTORS THAT DETERMINE POTENCY
OF β-LACTAMS AGAINST Mab

The major molecular factors limiting effectiveness of β-lactams
against Mab are β-lactamase activity and the bacterial cell
wall. Factors that commonly affect other antibiotic classes,
including poor permeability of the cellular envelope, low affinity
of antibiotic targets, drug efflux pumps, and chromosomally-
encoded neutralizing enzymes, have been elegantly summarized
elsewhere (Nessar et al., 2012; van Ingen et al., 2012).

β-Lactamases
The potent activity of the chromosomally-encoded β-lactamase,
BlaMab, is primarily responsible for poor efficacy of β-lactams
against Mab (Soroka et al., 2014). β-lactamases hydrolyze the
β-lactam ring, thereby inactivating these antibiotics (Kasik
et al., 1971). Not only does BlaMab degrade several β-lactams
with significantly higher efficiency than BlaC of Mtb, BlaMab

is not effectively inhibited by common β-lactamase inhibitors
(BLI) clavulanate, tazobactam, and sulbactam (Soroka et al.,
2017); agents that inhibit BlaC of Mtb (Wang et al., 2006).
The observation that these BLIs do not reduce the minimum
inhibitory concentration (MIC) of β-lactams against Mab in a
whole-cell assay (Kaushik et al., 2017) is additional confirmation
that β-lactamase activity in Mab is more robust than in
Mtb. Subspecies massiliense harbors an additional β-lactamase,
BlaMmas (Ramirez et al., 2017).

BlaMab is inactivated by avibactam (Dubee et al., 2015a), a
recently-developed BLI whose core chemical composition differs
from older BLIs and lacks a β-lactam ring (Coleman, 2011).
Observations that avibactam reduces the MIC of several β-
lactams against Mab provides further validation of its efficacy
against both the BlaMab protein and whole-cell Mab (Dubee
et al., 2015a; Kaushik et al., 2017; Lefebvre et al., 2017). A
recent study showed avibactam not only inhibits β-lactamases
but also inhibits LDTs (Edoo et al., 2018). A recombinant Mab
strain lacking blaMab exhibited increased sensitivity to β-lactams
and was rendered susceptible to amoxicillin and ceftaroline
(Lefebvre et al., 2016). This study also observed that β-lactams
plus avibactam exhibited similar efficacy against the parental
Mab strain as compared to each drug alone against 1blaMab ,

suggesting that avibactam fully inhibits BlaMab. While BlaMab and
BlaMmas hydrolyze penicillins and cephalosporins with similar
efficacy, BlaMmas also exhibits mild carbapenemase activity, a
potential concern as it suggests an evolutionary movement
toward β-lactamases with extended spectra (Ramirez et al., 2017).
This study also noted that BlaMmas is structurally similar to
other acquired carbapenemases normally found in gram negative
bacteria, such as KPC-2 and SFC-1. Avibactam activity against
BlaMmas has not yet been assessed and further study is warranted.

Cell Wall
Mycobacteria possess an unusually thick cell wall composed of
layers of complex hydrophobic molecules including fatty acids,
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mycolic acids, lipoproteins, glycopeptidolipids (GPL), and largely
insoluble PG and arabinogalactan layers. Although poorly-
understood in Mab, epigenetic factors generating differential
levels of these molecules, especially GPLs, are associated with
two distinct colony morphotypes—rough and smooth—within a
clonal population. The rough morphotype tends to be associated
with higher rates of antimicrobial resistance, including against
β-lactams (Cangelosi et al., 1999; Greendyke and Byrd, 2008;
Lavollay et al., 2014). Additionally, glycosylation of lipoproteins
limits permeability of the cell wall to antibiotics that inhibit PG
synthesis (Becker et al., 2017). Cell wall porins are also partially
responsible for β-lactam resistance, as they allow transport
of small hydrophilic molecules across the membrane, which
interact with targets within the cytoplasm to potentially activate
expression of drug resistance genes (Nguyen and Thompson,
2006; Nessar et al., 2012).

ACTIVITY OF β-LACTAMS AGAINST Mab

We identified thirty-five studies with documented MIC ranges
of β-lactams against clinical isolates of Mab globally (Table 1).
These data serve to highlight the high degree of variability in
observed MIC ranges among clinical isolates, even within each
study, and this variability is partially why standardized treatment
regimens against Mab are often not practical in the clinical
setting. Imipenem and cefoxitin were the most commonly-
tested β-lactams and nearly all studies included Mab strains
that were resistant to these agents based on established MIC
breakpoints (Woods et al., 2011). Only in four studies were
all strains susceptible or intermediate to cefoxitin (Lee et al.,
2012; Lavollay et al., 2014; Singh et al., 2014; Jeong et al.,
2017). Two studies performed subspeciation and observed that
all strains of subspecies massiliense and/or bolletii were either
susceptible or intermediate to imipenem, whereas subspecies
abscessus exhibited higherMICs to this drug (Lavollay et al., 2014;
Singh et al., 2014). The reason for this is not currently known.
Although seventeen studies also evaluated additional β-lactams,
it is evident that this antibiotic class is largely understudied
againstMab.

FURTHER POTENTIATION OF β-LACTAMS
AGAINST Mab BY BLIs

Several studies have investigated the ability of BLIs to potentiate
β-lactams against Mab, both in vitro and in vivo. The
combination of amoxicillin and avibactam effectively reduced
abscess formation and prolonged survival of zebrafish infected
withMab reference strain ATCC 19977 compared to amoxicillin
alone (Dubee et al., 2015a). A subsequent study found that
a combination of imipenem and avibactam also prolonged
zebrafish survival compared to imipenem alone (Lefebvre et al.,
2017). Avibactam also decreases the MIC of ceftaroline against
Mab (Dubee et al., 2015b). Combinations of carbapenems and
avibactam against clinical isolates ofMab showed that avibactam
reducedMICs to therapeutically-achievable levels (Kaushik et al.,
2017). The greatest MIC reductions were noted with tebipenem,

ertapenem, and panipenem; demonstrating that avibactam can
successfully overcome β-lactamase activity and further suggests
that carbapenems, especially those developed after imipenem,
such as doripenem, biapenem and tebipenem, have untapped
potential for use againstMab (Kaushik et al., 2017).

SYNERGY STUDIES WITH β-LACTAMS
AND OTHER DRUGS

As combination regimens are essential for clinical management
of Mab infections, several studies have evaluated antibiotic
synergy against Mab with mixed results (Cremades et al., 2009;
Shen et al., 2010; Bastian et al., 2011; Choi et al., 2012; van
Ingen et al., 2012; Oh et al., 2014; Singh et al., 2014; Ferro
et al., 2016; Mukherjee et al., 2017; Aziz et al., 2018; Pryjma
et al., 2018; Schwartz et al., 2018; Zhang et al., 2018). In vitro
studies have shown variable synergy of β-lactams in combination
with other drugs. One study found no evidence of synergy
among combinations of either imipenem or ertapenem with
various other antibiotics (Cremades et al., 2009). However,
another study reported high levels of synergy against Mab
clinical isolates when clofazimine and amikacin were combined
with several β-lactam subclasses (Schwartz et al., 2018). In
a final study, rifampin combined with either doripenem or
biapenem significantly reduced the MICs of both drugs to
within therapeutic levels, compared with each carbapenem alone
(Kaushik et al., 2015).

DUAL β-LACTAMS FOR Mab

Given that different subclasses of β-lactams target distinct
aspects of mycobacterial cell wall biosynthesis, Mab regimens
that contain two β-lactams from different subclasses may have
high efficacy in Mab. As mentioned above, mycobacterial DDTs
are inhibited by all β-lactams, whereas LDTs are preferentially
inhibited by carbapenems and cephalosporins (Kumar et al.,
2017a,b). A combination of cefdinir and doripenem was
observed to be synergistic against Mab 19977 (Kumar et al.,
2017a), demonstrating that dual β-lactams have therapeutic
potential against Mab. This promising finding warrants further
investigation into the effects of dual β-lactams against clinical
isolates ofMab, further potentiation with BLIs, and additional in
vivo studies.

PRECLINICAL MODELS AND CLINICAL
TRIALS

At least two groups have taken initiatives to develop animal
models of Mab infection (Lerat et al., 2014; Obregon-Henao
et al., 2015). Two studies have assessed efficacy of antibiotic
treatment of mice infected with Mab, one of which included
a β-lactam, cefoxitin. Lerat et al. assessed regimens containing
clarithromycin, amikacin, or cefoxitin monotherapy vs. a three-
drug combination in nude mice infected withMab ATCC 19977.
Cefoxitin monotherapy was equally effective as triple therapy,
resulting in prolonged survival and reduced splenic bacillary
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loads compared to untreated controls (Lerat et al., 2014). Several
clinical trials assessing efficacy of non-β-lactam antibiotics
against NTMs have been undertaken (clinicaltrials.gov). To
date, there are no published clinical trials that have specifically
investigated β-lactams for the treatment of Mab; however, we
are hopeful that an increasing awareness of β-lactams as viable
treatment options may lead to clinical trials with this class in the
future.

FUTURE DIRECTIONS AND
CONCLUSIONS

There is a dearth of research exploring β-lactams as potential
treatments for Mab. Given the increasing prevalence of highly
drug-resistant Mab isolates leading to poor clinical outcomes,
new therapeutic approaches are needed to adequately treat
these infections. Given our understanding of the differential
mechanisms of β-lactam subclasses, and the ability of certain BLIs
to overcome β-lactamase activity, currently-available β-lactams
are a largely untapped resource for Mab treatment. Of the β-
lactam subclasses, carbapenems/penems have the greatest activity
against Mab, followed by cephalosporins, then penicillins. As
noted above (Kumar et al., 2017a), it is likely that combinations
of different β-lactam subclasses are required to fully inhibit
PG synthesis in Mab. This insight may partially explain why
prior studies evaluating β-lactams individually have not shown
significant efficacy against this microbe. Further investigation
may identify novel treatments utilizing combinations of β-
lactams that optimally inhibit the distinct enzymatic targets
present inMab.

Appropriate selection of companion BLIs is another area
in which β-lactams can be potentiated for use against Mab.
Several studies have demonstrated efficacy of the BLI avibactam
in inhibiting BlaMab activity, which is a major factor contributing
to the high MIC of most β-lactams against Mab. However,
avibactam is currently only available as a coformulated
combination with ceftazidime, which itself does not appear to

have activity against Mab (Dubee et al., 2015a; Kaushik
et al., 2017). If avibactam were to be made available as
an individual formulation, this would significantly increase
its clinical usefulness, as regimens could be tailored to
combine it with any β-lactam shown to be effective against a
particular microbe or strain. Recently, two novel carbapenem-
BLI combinations have been developed. These are meropenem-
vaborbactam, which was recently FDA-approved for use against
gram-negative organisms, and imipenem-relebactam, which is
currently in phase II clinical trials (Zhanel et al., 2018). There
are no published studies assessing efficacy of these BLIs against
Mab, but their coformulation with carbapenems may confer
greater potential for clinical use and further studies with these
drugs are certainly warranted. It is possible that β-lactam-BLI
combinations will become integral to effective treatment of drug-
resistant Mab in the future. Additional animal studies as well
as clinical trials with this drug class will be essential for the
development of novel treatment regimens with improved clinical
outcomes. Furthermore, repurposing already FDA-approved β-
lactams for use against Mab may allow for expedited clinical
implementation of regimens that show promise in preclinical
models.
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