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mTORC1 signaling in hepatic lipid metabolism
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ABSTRACT

The mechanistic target of rapamycin (mTOR) signaling
pathway regulates many metabolic and physiological
processes in different organs or tissues. Dysregulation
of mTOR signaling has been implicated in many human
diseases including obesity, diabetes, cancer, fatty liver
diseases, and neuronal disorders. Here we review recent
progress in understanding how mTORC1 (mTOR com-
plex 1) signaling regulates lipid metabolism in the liver.
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INTRODUCTION

Most organisms have evolved mechanisms to respond to
dynamic environmental cues including nutrients, growth
factors, and cellular energy levels for survival and growth.
Mechanistic target of rapamycin (mTOR) integrates these
environmental cues to modulate metabolic pathways for cell
growth. Dysregulation of mTOR signaling has been impli-
cated in many human diseases, including obesity, diabetes,
cancer, and neuronal disorders (Cornu et al., 2013; Saxton
and Sabatini, 2017).

TOR was identified in yeast genetic screens as the factor
that confers resistance to the anti-fungal and immune
depressant drug rapamycin, and its mammalian counterparts
were identified shortly afterwards (Heitman et al., 1991;
Cafferkey et al., 1993; Kunz et al., 1993; Brown et al., 1994;
Sabatini et al., 1994; Sabers et al., 1995). mTOR is an evo-
lutionarily conserved serine/threonine kinase that belongs to
the phosphoinositide 3-kinase (PI3K)-related kinase family
andexists in twodistinct signaling complexes,mTORcomplex
1 (mTORC1) and mTORC2 (Cornu et al., 2013; Saxton and
Sabatini, 2017). Both mTORC1 and mTORC2 share four
protein components, including the TOR kinase, DEP domain-
containing mTOR-interacting protein (DEPTOR) and mam-
malian lethal with Sec13 protein 8 (mLST8) (Cornu et al.,

2013; Saxton and Sabatini, 2017) (Fig. 1A). In contrast, reg-
ulatory-associated protein of mTOR (RAPTOR) and proline-
rich AKTsubstrate 40 kDa (PRAS40) are specific tomTORC1,
while rapamycin-insensitive companion of mTOR (RICTOR),
mammalian stress-activated protein kinase-interacting pro-
tein (mSIN1), and protein observed with RICTOR-1 and -2
(PROTOR1/2) are only associated with mTORC2 (Cornu
et al., 2013; Saxton and Sabatini, 2017).

mTORC1 is sensitive to rapamycin and promotes protein
synthesis and lipid synthesis, as well as inhibiting autophagy
and lysosome biogenesis in response to growth factors, amino
acids, stress, oxygen levels, and energy status. These
responses occur in part through the phosphorylation of
mTORC1 substrates, including ribosomal S6 kinase 1 (S6K1),
eukaryotic translation initiation factor 4E (eIF4E)-binding pro-
teins 1 and 2 (4E-BP1/2), UNC-5 like autophagy activating
kinase (ULK1), and transcription factorEB (TFEB) (Cornuet al.,
2013; Lamming and Sabatini, 2013; Settembre et al., 2013b;
Caron et al., 2015; Kim and Guan, 2015; Saxton and Sabatini,
2017). Growth factors such as insulin stimulate mTORC1
through the PI3K/AKT pathway. Activated AKT phosphorylates
tuberous sclerosis complex 2 (TSC2) to inhibit TSC1, a
GTPase-activating protein (GAP) for the small GTPase Ras
homologue enriched in brain (RHEB), while the active RHEB
strongly enhances mTOR activity (Inoki et al., 2002; Manning
et al., 2002; Potter et al., 2002; Inoki et al., 2003a; Saucedo
et al., 2003; Stocker et al., 2003; Tee et al., 2003; Zhang et al.,
2003). Amino acids activatemTORC1 through theRAS-related
GTP-binding protein (RAG) family of small GTPases, which
promote the translocation of mTORC1 from the cytoplasm to
the surface of lysosomes, where mTORC1 is activated by
RHEB (Kim et al., 2008; Sancak et al., 2008; Sancak et al.,
2010; Cornu et al., 2013; Saxton and Sabatini, 2017). Intra-
cellular energy levels also regulatemTORC1activity viaTSCor
RAPTOR in response to AMP-activated protein kinase
(AMPK), or via the RAG GTPases in an AMPK-independent
manner (Inoki et al., 2003b; Shaw et al., 2004; Gwinn et al.,
2008; Kalender et al., 2010; Efeyan et al., 2013).
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In contrast, mTORC2, which is insensitive to acute treat-
ment with rapamycin but can be disrupted by chronic rapa-
mycin treatment, responds to growth factors to modulate
metabolism and cytoskeletal organization by activating AGC
family kinases, including AKT, SGK1, and PKCα (Cornu
et al., 2013; Saxton and Sabatini, 2017). mTORC2 phos-
phorylates AKT at Serine 473 in response to growth factor
signaling and thereby enhances mTORC1 activity (Sar-
bassov et al., 2005; Cornu et al., 2013; Saxton and Sabatini,
2017). In addition, mTORC1 negatively regulates mTORC2
activity via phosphorylation of IRS1, Grb10, and mSIN1
(Harrington et al., 2004; Shah et al., 2004; Hsu et al., 2011; Yu
et al., 2011; Cornu et al., 2013; Liu et al., 2013; Saxton and
Sabatini, 2017). Although mTORC2 also regulates lipid
homeostasis, much less is known about the substrates of
mTORC2 than of mTORC1. Moreover, mTOR signaling
regulates many metabolic and physiological processes,
including protein synthesis, nucleotide synthesis, glucose
metabolism, and lipid metabolism (Cornu et al., 2013; Caron
et al., 2015; Saxton and Sabatini, 2017). In this review we
focus on recent findings about the signaling mechanisms
downstreamofmTORC1 that regulate lipidmetabolism in the
liver.

LIPID METABOLISM IN THE LIVER

As a major site of lipogenesis and lipid oxidation, the liver is
a central organ in lipid metabolism, while impaired hepatic
lipid metabolism is tightly correlated with obesity, diabetes,
and fatty liver disease (Samuel and Shulman, 2012; Rui,
2014). In the fed state, when carbohydrates are abundant,
the liver converts glucose into fatty acids (FAs) by de novo
lipogenesis (Rui, 2014; Wang et al., 2015). Depending on
the metabolic status, hepatocytes also obtain FAs from
lysosomes by autophagy, and can also take up FAs from the
bloodstream, which are released from adipose tissue and
digested food in the gastrointestinal tract. FAs are then
processed to triacylglycerols (TAGs) and cholesterol esters
for storage during feeding or metabolized to produce energy
during fasting (Rui, 2014; Wang et al., 2015).

Hepatic lipogenesis includes de novo lipogenesis of FAs
from acetyl-CoA or malonyl-CoA and further processing to
TAGs. Lipogenesis is catalyzed by the rate-limiting enzymes
acetyl-CoA carboxylase (ACC) and fatty acid synthase
(FAS), both of which are transcriptionally controlled by vari-
ous transcriptional regulators in response to nutrients and
hormones, including sterol response element-binding protein
(SREBP) family members, carbohydrate-responsive element
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Figure 1. mTOR signaling in hepatic lipid metabolism. (A) The protein composition and key features of mTORC1 and mTORC2.

mTORC1 responds to growth factors, amino acids, stress, oxygen and energy, while mTORC2 only responds to growth factors.

(B) mTORC1 promotes SREBP-dependent lipogenesis through the phosphorylation of CRTC2, S6K1, and Lipin-1. (C) mTORC1

inhibits lipophagy by blocking autophagy initiation and attenuating lysosome biogenesis.
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binding protein (ChREBP), and nuclear receptors (PPARγ,
FXR, and LXR) (Rui, 2014; Wang et al., 2015). Insulin is the
primary hormone that drives hepatic lipogenesis, while
PI3K/AKT signaling is required for both inhibition of gluco-
neogenesis and stimulation of lipogenesis (Rui, 2014; Wang
et al., 2015). However, it is paradoxical that both gluconeo-
genesis and lipogenesis are enhanced in obese and/or
diabetic models, suggesting that lipogenesis is selectively
resistant to insulin. The results from Brown and Goldstein’s
lab show that inhibition of mTORC1 by rapamycin in primary
rat hepatocytes and in rat liver tissues blocks insulin-stimu-
lated lipogenesis, but has no effect on insulin-inhibited glu-
coneogenesis, indicating that mTORC1 is the point at which
the insulin signaling pathway bifurcates to promote lipogen-
esis and inhibit gluconeogenesis (Li et al., 2010).

During fasting, glycogenolysis and gluconeogenesis are
sequentially induced to produce glucose. Fasting also pro-
motes lipolysis in adipose tissue, resulting in release of
nonesterified fatty acids which are converted into ketone
bodies in the liver through β-oxidation and ketogenesis (Rui,
2014; Wang et al., 2015). Autophagy is a conserved cata-
bolic process that removes damaged macromolecules and
organelles in response to stress and scarcity of nutrients
(Rabinowitz and White, 2010; Mizushima and Komatsu,
2011). Recent studies have demonstrated that autophagy
plays a critical role in lipid oxidation by shuttling lipid droplets
to the lysosome for hydrolysis, a process named lipophagy
(Singh et al., 2009; Rabinowitz and White, 2010; Mizushima
and Komatsu, 2011).

MTORC1 PROMOTES LIPOGENESIS

mTORC1 plays a critical role in promoting lipogenesis by
regulating the expression of many lipogenic genes. One
important family of transcription factors that controls lipid
synthesis is the SREBPs. SREBPs belong to the family of
basic helix-loop-helix-leucine zipper (bHLH-Zip) transcription
factors. The SREBP family consists of three closely related
members, SREBP1a, SREBP1c and SREBP2, among
which SREBP1c and SREBP2 are the major isoforms
expressed in the liver (Horton et al., 2002; Goldstein et al.,
2006; Ferre and Foufelle, 2007). SREBP1 is a master tran-
scriptional regulator of insulin-stimulated fatty acid synthesis,
whereas SREBP2 mainly controls cholesterol synthesis
(Horton et al., 2002; Goldstein et al., 2006; Ferre and Fou-
felle, 2007). SREBPs reside in the endoplasmic reticulum
(ER) as inactive precursors with a complex including the
sterol cleavage activating protein (SCAP) and insulin-in-
duced gene (INSIG). Upon sensing insulin stimulation or
sterol depletion, the SREBP/SCAP complex disassociates
from INSIG and binds to Sec24, a subunit of the COPII
complex, and then buds from the ER. The N-terminus of
SREBP (nSREBP), which is released after cleavage by
site-1 protease (S1P) and S2P in the Golgi, shuttles to the
nucleus and induces the expression of genes involved in

cholesterol and fatty acid synthesis (Horton et al., 2002;
Goldstein et al., 2006; Ferre and Foufelle, 2007).

mTORC1 promotes the trafficking, processing, and tran-
scription of SREBPs (Fig. 1B). In 2008, Portsmann and
colleagues were the first to show that rapamycin impairs the
nuclear accumulation of SREBPs and downregulates the
expression of lipogenic genes (Porstmann et al., 2008). The
results from Manning’s lab further demonstrated that
mTORC1 is necessary for SREBP activity (Duvel et al.,
2010; Yecies et al., 2011). mTORC1 promotes hepatic lipo-
genesis by activating SREBP in an S6K1-dependent and
S6K1-independent manner (Peterson et al., 2011; Owen
et al., 2012; Caron et al., 2015; Han et al., 2015). Although
the mechanism of S6K1-dependent activation of SREBP is
unclear, the S6K1-independent activation of SREBP
involves inhibition and phosphorylation of CRTC2 (CREB
regulated transcription coactivator 2) and Lipin-1 (Peterson
et al., 2011; Han et al., 2015). CRTC2, a master regulator of
gluconeogenesis, competes with Sec23A, a subunit of the
COPII complex, to interact with Sec31A, another COPII
subunit, thus disrupting SREBP1 transport from the ER to
the Golgi. During feeding, mTOR is activated by insulin and/
or amino acids, and then phosphorylates CRTC2, thereby
attenuating the inhibitory effect of CRTC2 on COPII-depen-
dent SREBP1 maturation (Han et al., 2015).

mTORC1 also regulates the SREBP transcriptional net-
work at the transcriptional level via the negative regulation of
Lipin-1, a phosphatidic acid phosphatase required for glyc-
erolipid biosynthesis (Peterson et al., 2011). When phos-
phorylated by mTOR, Lipin-1 resides in the cytoplasm, while
the dephosphorylated Lipin-1 shuttles to the nucleus.
Nuclear Lipin-1 promotes the association of SREBPs with
the nuclear matrix and inhibits their ability to bind SRE-
containing lipogenic genes (Peterson et al., 2011). It should
be noted that mTORC1 signaling is essential, but not suffi-
cient, to activate SREBP-dependent lipogenesis in the liver.
Since mTORC1 has positive regulatory roles in lipid syn-
thesis, it was expected that liver-specific Tsc1 null mice
would develop severe hepatosteatosis. However, Tsc1 null
mice were protected against age- and diet-induced hepatic
lipid accumulation (Yecies et al., 2011). It is possible that the
constitutively active mTORC1 negatively feeds back to AKT,
thereby enhancing the expression of Insig2a, a negative
regulator of SREBPs in the liver, and finally inhibiting the
processing of SREBPs (Yecies et al., 2011).

As discussed above, mTORC1 enhances lipogenesis via
the positive regulation of SREBPs. It remains unclear whe-
ther mTORC1 affects other transcriptional regulators of
lipogenic genes. Since mTORC1 is over-activated due to the
enhanced levels of branched chain amino acids in obese
models (Um et al., 2004; Khamzina et al., 2005; Han et al.,
2015), these recent insights into the regulation of lipogenesis
by mTORC1 provide us with a better picture to understand
the selective insulin resistance that underlies the enhanced
lipogenesis and gluconeogenesis in obese animals.

mTORC1 promotes hepatic lipogenesis and inhibits lipophagy REVIEW
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MTORC1 INHIBITS LIPOPHAGY

mTORC1 inhibits lipophagy mainly through the inhibition of
autophagy and lysosome biogenesis (Fig. 1C). mTORC1
inhibits the autophagy-initiating UNC-51-like autophagy
activating kinase (ULK) complex by phosphorylating com-
plex components including autophagy-related gene 13
(ATG13) and ULK1/2. mTORC1 phosphorylates ULK1 and
prevents the phosphorylation of ULK1 by AMPK. Moreover,
mTORC1 phosphorylates ATG14L, a component of the
VPS34 complex, thereby inhibiting the kinase activity of
VPS34 and blocking autophagosome formation (Ganley
et al., 2009; Hosokawa et al., 2009; Jung et al., 2009; Kim
et al., 2011; Yuan et al., 2013; Shimobayashi and Hall, 2014;
Kim and Guan, 2015).

The lysosome is a central organelle for energy metabo-
lism and for nutrient sensing and recycling in response to
starvation or nutritional stress (Xu and Ren, 2015). mTORC1
also inhibits lysosome biogenesis at the transcriptional level
by the direct phosphorylation of TFEB. TFEB, a member of
the MiTF/TFE (microphthalmia-associated transcription fac-
tor) family of transcription factors that includes MITF, TFE3
(transcription factor binding to IGHM enhancer 3), TFEB and
TFEC, controls the expression of an array of genes involved
in lysosome biogenesis and autophagy (Settembre et al.,
2013b; Raben and Puertollano, 2016).

Under fed conditions, TFEB is phosphorylated by mTOR
at multiple serine residues and sequestered in the cytoplasm
by binding to 14-3-3 (Pena-Llopis et al., 2011; Martina et al.,
2012; Roczniak-Ferguson et al., 2012; Settembre et al.,
2012). In contrast, starvation induces calcium release from
lysosomes through MCOLN1 (Mucolipin 1), further activating
the calcium-dependent protein phosphatase 2B (PP2B/cal-
cineurin), and thereby promoting TFEB dephosphorylation
(Medina et al., 2015). In addition, FGF21, a fasting-induced
hormone, promotes lipid oxidation and ketogenesis, and
enhances PP2A-dependent dephosphorylation of TFEB
(Chen et al., 2017). Dephosphorylated TFEB shuttles to the
nucleus and directly binds to a 10-base pair motif known as a
CLEAR (coordinated lysosomal expression and regulation)
element, which is enriched in the promoter of numerous
autophagic and lysosomal genes (Sardiello et al., 2009;
Settembre et al., 2011; Settembre et al., 2013b). By acti-
vating the transcription of these genes, TFEB promotes
autophagy and lysosome biogenesis. Furthermore, TFEB
has been shown to promote lipid oxidation by upregulating
the expression of PPARα and PPARγ coactivator 1 α
(PGC1α) (Settembre et al., 2013a), which are master regu-
lators of lipid oxidation and mitochondrial biogenesis
(Handschin and Spiegelman, 2006; Fan and Evans, 2015).
HLH-30, an orthologue of TFEB in C. elegans has a similar
effect on lipid metabolism (O’Rourke and Ruvkun, 2013),
indicating that the roles of TFEB in lipid metabolism are
conserved. Therefore, TFEB orchestrates lipophagy by
coordinating lysosome biogenesis, autophagy, lipid oxida-
tion, and mitochondrial function.

TFE3, another member of the MiTF/TFE family, is also
phosphorylated by mTORC1 and regulates autophagy and
lysosome biogenesis in starved cells by binding to the CLEAR
elements of autophagic and lysosomal genes (Martina et al.,
2014; Raben and Puertollano, 2016). Interestingly, ZNF306
(ZKSCAN3), a transcriptional repressor of zinc finger tran-
scription factors, is phosphorylated by mTORC1 and stays in
the nucleus to inhibit the expression of autophagic and lyso-
somal genes in fed cells (Chauhan et al., 2013).

Interestingly, mTORC1 is inactivated during autophagy
initiation and is then reactivated, probably by the increased
amino acid levels that are generated by lysosomal degra-
dation after long periods of starvation. The reactivated
mTORC1 is important for lysosomal reformation (Yu et al.,
2010). Also, lysosomal positioning is critical for the kinase
activity of mTORC1 (Korolchuk et al., 2011). The cooperation
of mTORC1 with the regulators of the autophagic-lysosomal
pathway ensures an efficient autophagy flux in response to
different environmental cues. Defective functioning of the
autophagic-lysosomal pathway, dysregulated mTORC1 sig-
naling, and impaired lipid metabolism in the liver affect each
other and may further exacerbate vulnerable lipid home-
ostasis and insulin sensitivity in obesity (Um et al., 2004;
Khamzina et al., 2005; Yang et al., 2010; Samuel and
Shulman, 2012; Han et al., 2015; Martinez-Lopez and Singh,
2015).

CONCLUSIONS

The identification of novel regulators has further strength-
ened our knowledge of the basic layout of mTORC1 sig-
naling and its central role in lipid metabolism by promoting
lipogenesis and inhibiting lipophagy in the liver. Even though
rapamycin has been shown to increase lifespan and to
protect against cancer, side effects such as dyslipidemia
may limit its clinical usefulness. Therefore, identifying bona
fide mTOR substrates and their molecular roles in lipid
metabolism is a promising approach to generate new com-
pounds to target these mechanisms in the future.
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