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Abstract The Mathematical and Theoretical Biology Institute (MTBI) is a national
award winning Research Experience for Undergraduates (REU) that has been
running every summer since 1996. Since 1997, students have developed and
proposed their own research questions and derived their research projects from
them as the keystone of the program. Because MTBI’s mentors have no control over
what students are interested in, we need to introduce a suite of flexible techniques
that can be applied to a broad variety of interests. In this paper, we walk through
examples of some of the most popular techniques at MTBI: epidemiological or
contagion modeling and reproductive number analysis. We include an overview
of the next generation matrix method of finding the basic reproductive number,
sensitivity analysis as a technique for investigating the effect of parameters on the
reproductive number, and recommendations for interpreting the results. Lastly, we
provide some advice to mentors who are looking to advise student-led research
projects. All examples are taken from actual student projects that are generally
available through the MTBI website.
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1 Introduction

The Mathematical and Theoretical Biology Institute (MTBI) at Arizona State
University is a summer Research Experience for Undergraduates (REU) that has
been running every summer since 1996. From 1996 through its 2018 summer
program, MTBI has recruited and enrolled a total of 507 regular first-time under-
graduate students and 78 advanced (returning) students. To date MTBI students
have completed 211 technical reports, many of which have been converted into
publications (including, but not limited to, projects used as examples in this paper
[4, 30, 38, 41, 57]).

The program has received external recognition in the form of multiple national
awards. The Director of MTBI was awarded a Presidential Award for Excellence in
Science, Mathematics and Engineering Mentoring (PAESMEM) in 1997 and the
American Association for the Advancement of Science Mentor Award in 2007.
Also in 2007, the AMS recognized MTBI as a Mathematics Program that Makes a
Difference, and MTBI was awarded a Presidential Award for Excellence in Science,
Mathematics and Engineering Mentoring (PAESMEM) in 2011.

A key feature of MTBI is that students start with their own research topics and
associated questions [21, 23]. As a result, students often know more about the topic
being investigated than the mentors. This means that the mathematical techniques
taught at MTBI need to be extremely flexible and well suited to a large population of
research problems. In this paper, we give an overview of some of the mathematical
techniques that are most commonly used at MTBI, and how they can be put together
to form a complete research project.

1.1 Overview

The MTBI summer program runs for 8 weeks. In the first 3 weeks, students attend
lectures in theoretical ecology and various epidemiological-contact-contagion mod-
eling techniques, as used in broadly understood dynamical systems: nonlinear
systems of difference and differential equations, discrete and continuous time
Markov chains, partial differential equations and agent based modeling. In the final
5 weeks of the program, students form self-selected groups of three to five
undergraduates, and investigate a problem of their own choosing. They research
the background of the problem, identify a question, construct a model to address
the question, analyze the results, and write a technical report describing their
project. While the faculty mentors’ experience is primarily in mathematical biology,
students’ interests can be quite diverse [21]. Past projects have included such diverse
topics as epidemiology [1, 4, 5, 12, 27, 38, 39, 47, 48], eating disorders [40, 41],
party politics [13, 57], prison education [2, 49], immigration [25], the menstrual
cycle [37], education [29, 30, 32, 42], and ecology [28, 45, 55, 56]. Because of the
broad variety of student selected topics, students frequently know a lot more about
the modeling application than the mentors do. Students take the lead on the project
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and provide subject matter knowledge, while mentors provide general expertise in
mathematical modeling techniques that can be applied to a broad variety of topics.

The most common modeling method in MTBI is systems of ordinary differential
equations, with a focus on equilibrium analysis and the basic reproductive num-
ber (R0). By far the most popular techniques for reproductive analysis at MTBI
have been the next generation matrix (NGM) and sensitivity analysis. These are
extremely powerful, accessible, and flexible techniques that can be applied to a
broad variety of situations. Since the founding of the REU in 1996 to the present
year of 2018, students have written 211 technical reports. Of these reports, 34.6%
have used sensitivity analysis, 22.7% have used the NGM, and 12.3% have used
both. Since the techniques became popular with MTBI students in 2003, there have
been 140 technical reports: 50.7% have used sensitivity analysis, 31.4% have used
the NGM, and 19.3% have used both [51].

In this article, we provide an introduction to the next generation method of
finding the basic reproductive number (R0), details of how the reproductive number
might be checked of accuracy and meaningfully interpreted, and an introduction to
sensitivity analysis ofR0 as a way of evaluating the impact of possible interventions.
This introduction is followed by examples of some complexities that can arise in
using these techniques and how to handle them. All examples come from actual stu-
dent projects, the full texts of which can be found on the MTBI website [51]. Lastly,
we will provide some notes for mentors with an interest in student-led projects.

All together, this paper provides a nearly complete template for project in
epidemiological modeling. We do not discuss how to formulate a model here, except
for some notes to the mentors, so that part of the template is not complete. Also there
are many other techniques that can be included in an epidemiological/contagion
research paper that can add further insights into the model. A research project is
never really done. However, this paper will provide a guide for turning the model
that a student comes up with into a story that includes some results, conclusions,
and some recommendations. So that while this research effort might just be the first
chapter of the story that you tell about your research interests, it nevertheless has a
satisfying ending.

1.2 What Is the Basic Reproductive Number and Why
Is It Important?

Epidemiologists study the spread and control of diseases,1 and so the first question
they are usually interested in is whether or not it is possible to eradicate/eliminate

1Also other contagions. Epidemiological modeling it is quite common as it accounts for the
interactions of individuals and the possibility that contacts may lead to transitions in the state
of the individuals involved (contagion) and the possibility that cumulative transitions may or may
not be effective in spreading the contagion. The contagion is usually a disease, but it does not have
to be. A rumor, a meme, or an addiction, for example, would make a good contagion.
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the disease or whether or not it is possible to prevent the disease from invading a new
population. The basic reproductive number is related to responses to both questions.

In most, but not all epidemic models, an equilibrium state exists where the
disease does not exist. This is a state where the population is made up entirely of
uninfected people, that is, the infected populations are zero. It is typically called the
disease-free equilibrium.

1.2.1 Definitions of R0

Biologically, the basic reproductive number (R0) is often interpreted as “the
expected2 number of new infections created by a single (typical) infectious indi-
vidual in a population that is otherwise completely uninfected.” The typical units
structure for R0 looks something like:

R0 = infections

time · infected
(duration of infection). (1)

We can interpret the left-hand factor infections
time·infected as the expected number

of people that one person will infect per unit time. When we multiply by
(duration of infection), we get the expected number of people that one person
will infect over the entire time that they have the disease. Now imagine that a
disease is invading for the first time. There is one infected person. If R0 number is
greater than 1, then—on average—infected people more than replace themselves
(increase the infected population by more than 1) before they recover, (reducing
the infected population by 1) and the disease grows. If this number is less than 1,
then—on average—infected people do not replace themselves before they recover
and the disease dies out.

However, as we will see in our examples, both this structure and its biological
interpretation can be subject to considerable variation. In order to really explore R0,
we need to establish what it means independent of any particular model. This means
we need a mathematical definition.

Practically, R0 is a number calculated from the parameters of the model that can
be used to answer fundamental questions about disease invasion, persistence, and
control. When R0 < 1, values close to the disease-free equilibrium tend toward the
disease-free equilibrium making it impossible for a new disease to invade. When
R0 > 1, values close to the disease-free equilibrium tend away from the disease-
free equilibrium making it impossible for a disease to completely die out as long as
there is sufficient supply of susceptibles. Examining the conditions under which R0
changes from greater than one to less than one can suggest possible interventions
to control a disease. This gives us enough information to define basic reproductive
number mathematically.

2Alternatively “typical” or “average.”
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Definition 1 We formally define R0 a function of the parameters of the model
such that R0 < 1 implies that the disease-free equilibrium is locally asymptotically
stable,3 and R0 > 1 implying that the disease-free equilibrium is unstable.4

1.2.2 Methods of Finding R0

Historically, R0 was found by directly investigating the stability of the disease-free
equilibrium, and this is an approach that is still used today. But for models with
a lot of compartments or a lot of non-linearities, a direct analysis of the disease-
free equilibrium can be extremely algebraically intensive. In 1990, Diekmann et al.
[33] developed a new approach to finding the basic reproductive number that uses
a reduced form of the model. This reduces the computational complexity of the
problem of stability and makes complex models more accessible. It is a method that
has become very popular with our own students, but tutorials can be difficult to find,
so we decided to share this method of finding R0 here, along with some techniques
for interpreting the results.

1.3 Additional Reading

For an introduction to the techniques used in MTBI in general, we recommend
the MTBI course book [9]. Alternative books with similar content include [35]
or [54]. For more information on formulating a research question, we recommend
[58]. For more details on how to derive a model, we recommend [54]. For more
detailed treatment of the next generation method, see [33, 34]. For a deeper dive
into sensitivity analysis, see [3]. For a full collection of MTBI tech reports, see [51].
For further reading into the design of MTBI’s mentorship model, we recommend
reading [14, 18, 23, 24].

2 An Introductory Example: Student–Teacher Ratio

Katie Diaz, Cassie Fett, Grizelle Torres-Garcia, and Nicholas M. Crisosto were the
authors of the project we will use in our first example [32]. While most students
at MTBI take on ecology or biology projects, these students were particularly
interested in problems related to the quality of education in the USA. They worried
about students feeling discouraged by working in stressful school conditions with
little teacher support. As budget cuts started to affect class sizes, they were

3Populations close to the equilibrium tend toward the equilibrium.
4Populations close to the equilibrium tend away from the equilibrium
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concerned that problems with student attitudes and dropping out would increase.
So they designed a model to investigate the problem of how student–teacher ratio
in classes affects class sizes. In this model, Diaz, Feet, Torres-Garcia, and Crisosto
modeled a discouraged attitude as something that both students and teachers could
have. By social interaction, teachers and students could both pass on (metaphorically
infect others with) this negative attitude.

This student project example [32] is 2003, when the NGM and sensitivity where
first becoming popular with MTBI students and mentors. It received a poster award
at the AMS/MAA Joint Meetings in 2004. The project uses a relatively simple model
to study the development of positive or discouraged attitudes in the interactions
between students and teachers, and tells the full story of using the NGM to find R0,
interpreting the expression of R0, and using sensitivity analysis of R0 to explore
the effect of model parameters on the behavior of the system. Because the model is
relatively simple, this project serves as an excellent introductory example. We will
explore possible complications that you might encounter in your own project with
later examples. Like all student project examples used in this paper, the full text
of the students’ technical report can be found on the MTBI website [51], and we
strongly encourage students to review the original reports and related materials.

2.1 The Model

The researchers constructed a model with four classes: Teachers with positive
attitudes P1, discouraged teachers D1, students with positive attitudes P2, and
discouraged students D2. They assumed that each group influenced every other
group through a random mixing contagion process, resulting in the following system
of four differential equations5:

Ṗ1 = μ1q1 + λ1P1D1 + λ2P2D1 − β1D1P1 − β2D2P1 − μ1P1

Ḋ1 = μ1(1− q1)− λ1P1D1 − λ2P2D1 + β1D1P1 + β2D2P1 − μ1D1

Ṗ2 = μ2q2 + λ1P1D2 + λ2P2D2 − β1D1P2 − β2D2P2 − μ2P2

Ḋ1 = μ2(1− q2)− λ1P1D2 − λ2P2D2 + β1D1P2 + β2D2P2 − μ2D2

(2)

where μi represents the rate of flow of group i into and out of the school, qi is the
proportion of new recruits into group i with positive attitudes, λj is the rate at which
a discouraged person is encouraged by an interaction with a positive person from
group j , and βj is the rate at which a positive person is discouraged by an interaction

5Ṗ is notation used in the sciences for dP
dt

. Historically, dot notation comes from Newton, while
fraction notation is from Leibniz. Newton had a strong influence on the sciences, particularly
physics, and many scientific fields working with calculus continue to use his notation.
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with someone with a discouraged person from group j . Because the total population
of each group is constant (Ṗi + Ḋi = 0; i = 1, 2), the researchers chose to define
the classes as proportions rather than populations, and set Pi +Di = 1; i = 1, 2.

2.2 Finding R0 with the Next Generation Matrix

The next generation matrix method for finding R0 is a relatively recent and useful
reformulation for determining the stability of a disease-free or contagion-free
equilibrium, that was introduced by Diekmann et al. [33]. First we will explain
the general strategy that inspired this approach to finding R0, and then we will
describe precisely how to carry out that strategy mathematically, using the student–
teacher model as an example.

2.2.1 The Intuition Behind the NGM Strategy

Intuitively, the next generation method is based on the common structure of R0
described above (Eq. (1)). To aid in the discussion, we have reproduced that
structure here.

R0 = infections

time · infected
(duration of infection). (3)

In most models, the duration of the infection (units of time) is represented as a
recovery rate (units of 1

t ime
). For example, in the simple differential equation (̇I ) =

−μI , the expected time that an individual would stay in I is 1
μ

. If we also observe
that the left factor of (3) represents the rate at which individuals infect others, then
we can rewrite Eq. (3) as

R0 = infections

time · infected

1

individual recovery rate

R0 =(individual infection rate)(individual recovery rate)−1.

(4)

The next generation method extends this idea to matrices. In situations when
there are multiple types of infection to keep track of, the NGM separates the infected
system into two matrices of rates. Traditionally, these matrices of rates are called F
and V :

R = [infection rates][recovery rates]−1

R = FV −1.
(5)
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However, the R in this equation is a matrix, not a number. So it cannot represent
the basic reproductive number. Instead it represents a sort of measure of how each
class changes multiplicatively to the next generation. If we imagine a vector of
infected classes Y , then near the equilibrium

Y (t + 1) ≈ RY(t)
Y (t) ≈ RtY (0). (6)

In order to explore how the size of Y changes, we use the eigenvector equation.6

If Y is an eigenvector then:

RY = λY
Y (t) ≈ λtY (0). (7)

We see that when |λ| < 1, then Y decreases. Since Y represents infected classes,
this means the infection dies out. When |λ| > 1, then Y increases and the disease
grows.

In order to be sure the disease dies out, we need all eigenvalues |λ| < 1. If any
eigenvalue is greater than 1 in absolute value, then there is a path for the disease to
grow. This means we only need to check the eigenvalue that is largest in absolute
value (called the dominant eigenvalue). If this dominant eigenvalue is in (−1, 1), all
eigenvalues are within (−1, 1) and the disease dies out. If the dominant eigenvalue
is greater than 1 in absolute value, then the disease can grow. So the dominant
eigenvalue has the properties we are looking for in a basic reproductive number.
R0 = λ = ρ(FV −1), the dominant eigenvalue of FV −1.

2.2.2 The Mathematical Approach

Formally, the next generation method begins by separating the classes of the
model into two vectors: a vector X of “uninfected” classes and a vector Y of
“infected” classes. In this model, the infection process is bi-directional. From one
point of view, positive people are “infecting” discouraged people with positivity.
From another perspective, discouraged people are “infecting” positive people with
discouragement. Given the choice, the researchers chose to think of discouragement
as the infection. In Exercises 1 and 2 you will have the opportunity to show what
happens if you make the opposite choice.

The researchers chose discouragement as the infection, so X = [P1, P2]T , and
Y = [D1,D2]T . Now that we have defined the infection, we proceed to find the
infection-free equilibrium. In this case, a discouragement-free equilibrium does

6For a more thorough treatment of the biological interpretation of eigenvalues and eigenvectors,
see the chapters on discrete time modeling from Bodine et al. [7].
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not exist unless q1 = q2 = 1, so this becomes a condition of the model. In the
scenario where all people arrive with positive attitudes, then the discouragement-
free equilibrium is: X∗ = [1, 1]T , and Y ∗ = [0, 0]T . We will also define a
point for the discouragement-free equilibrium that includes all four classes W ∗ =
(P ∗1 ,D∗1 , P ∗2 ,D∗2) = (1, 0, 1, 0).

The main advantage of the NGM method is that it allows the researcher to ignore
any uninfected classes and focus only on the infected classes. This reduces the
complexity of calculations in the model. In this model, X is discarded and the new
equation for the model is

Ẏ =
[
Ḋ1

Ḋ2

]
=

[
μ1(1− q1)− λ1P1D1 − λ2P2D1 + β1D1P1 + β2D2P1 − μ1D1

μ2(1− q2)− λ1P1D2 − λ2P2D2 + β1D1P2 + β2D2P2 − μ2D2

]
.

(8)

The next step is to separate the Y equation for discouraged classes into two
separate rate vectors: F represents the rates of all flows from X to Y , and V
represents rates of all other flows. We also adjust signs so that

Ẏ = F − V . (9)

In the student–teacher model, the separation is

Ẏ =
[
β1D1P1 + β2D2P1

β1D1P2 + β2D2P2

]
−

[−μ1(1− q1)+ λ1P1D1 + λ2P2D1 + μ1D1

−μ2(1− q2)+ λ1P1D2 + λ2P2D2 + μ2D2

]

(10)

so

F =
[
β1D1P1 + β2D2P1

β1D1P2 + β2D2P2

]
(11)

V =
[−μ1(1− q1)+ λ1P1D1 + λ2P2D1 + μ1D1

−μ2(1− q2)+ λ1P1D2 + λ2P2D2 + μ2D2

]
. (12)

Note that although the terms μ1(1 − q1) and μ2(1 − q2) represent rates of new
infections, they are not rates flows from X to Y, but instead rates for flows from
outside the system into Y. Because of this, these terms are included in V and not F .
However, these terms are also problematic because they prevent a discouragement-
free equilibrium from existing. Because q1 = q2 = 1 is a necessary condition for
the discouragement-free equilibrium to exist, we set q1 = q2 = 1 and V becomes

V =
[
λ1P1D1 + λ2P2D1 + μ1D1

λ1P1D2 + λ2P2D2 + μ2D2

]
. (13)
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Next we define F and V as the Jacobian matrices of F and V evaluated at the
discouragement-free equilibrium W ∗ = (P ∗1 ,D∗1 , P ∗2 ,D∗2) = (1, 0, 1, 0)

F =
(
∂F

∂Y

)∣∣∣∣
W ∗
, V =

(
∂V

∂Y

)∣∣∣∣
W ∗
. (14)

So for the student–teacher discouragement model

F =
[
β1P1 β2P1

β1P2 β2P2

]∣∣∣∣
(1,0,1,0)

=
[
β1 β2

β1 β2

]
(15)

V =
[
λ1P1 + λ2P2 + μ1 0

0 λ1P1 + λ2P2 + μ1

]∣∣∣∣
(1,0,1,0)

=
[
λ1 + λ2 + μ1 0

0 λ1 + λ2 + μ2

]
. (16)

This allows us to calculate our next generation matrix and the basic reproductive
number.

Definition 2 The next generation matrix is FV −1, where F is the Jacobian of
the rates of flows from uninfected to infected classes evaluated at the disease-free
equilibrium, and V is the Jacobian of the rates of all other flows to and from infected
classes evaluated at the disease-free equilibrium (Eqs. (9) and (14)).

Definition 3 The basic reproductive number (R0) is the spectral radius (largest
eigenvalue) of the next generation matrix: R0 = ρ(FV −1) [33, 34].

So in the student–teacher model, the next generation matrix is

FV −1 =
[
β1 β2

β1 β2

] ⎡
⎢⎣

1

λ1 + λ2 + μ1
0

0
1

λ1 + λ2 + μ2

⎤
⎥⎦

=
⎡
⎢⎣

β1

λ1 + λ2 + μ1

β2

λ1 + λ2 + μ2
β1

λ1 + λ2 + μ1

β2

λ1 + λ2 + μ2

⎤
⎥⎦ (17)

and the basic reproductive number is

R0 = ρ(FV −1) = β1

λ1 + λ2 + μ1
+ β2

λ1 + λ2 + μ2
. (18)

Exercise 1 If you interpret a positive attitude as the infection instead of discour-
agement, how does the form of the resulting R0 change?
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2.3 Interpreting R0

Traditionally, the basic reproductive number (R0) is interpreted as “the average7

number of new infections created by a single (typical) infectious individual in a
population that is otherwise completely uninfected.” If R0 < 1, then an infection
does not replace itself, and the disease dies out. If R0 > 1 then the infection more
than replaces itself and the disease spreads.

An important feature of this interpretation is that by describing R0 as people per
person or infections per infection, R0 is a dimensionless quantity. We can use this
feature as a way to check our result in Eq. (18).

Since P1, P2, D1, and D2 are proportions, they are also dimensionless. Examin-
ing Eq. (2), we see that in order for units to match on both sides of the equation, this
means that λi , βi , and μi must all have units of 1

time . Then in Eq. (18), we see thatR0

has units of 1/time
1/time and so is dimensionless. This does not mean that we necessarily

calculated R0 correctly, but it is a good safety check.
The basic reproductive number is interpreted in a population that is mostly

susceptible, meaning that it must be interpreted in situations very close to the
disease-free equilibrium. When we compute the Jacobian around the disease-free
equilibrium, we are approximating the original model with an easier to interpret
linear model. In short the analysis is local and mathematically speaking we are
talking about local asymptotic stability.

Ẏ = F − V ≈ FY − V Y. (19)

In the case of the student–teacher discouragement model, this gives us

[
Ḋ1

Ḋ2

]
≈

[
β1D1 + β2D2

β1D1 + β2D2

]
−

[
(λ1 + λ2 + μ1)D1

(λ1 + λ2 + μ2)D2

]
. (20)

Linear models are relatively simple to interpret in the context of populations. In
the contexts of proportions the interpretation is a little bit more complex. So for now
let us imagine that the classesD1 andD2 represent populations, and we will correct
for proportions afterwards.

In population models, λ1+λ2+μ1 can be interpreted as a general “death rate” for
the D1 (discouraged teacher) class. Since average lifespan is the inverse of the exit
rate in a linear model, 1

λ1+λ2+μ1
is the average length of a single episode of teacher

discouragement. Similarly 1
λ1+λ2+μ2

is the average length of a single episode of
student discouragement. Similarly β1 and β2 can be interpreted as birth rates. But
β1 and β2 are both used as inputs into both equations. So 1/β1 is the average length

7Alternatively “typical” or “expected”.
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of time it takes for a discouraged teacher to create two new discouraged people: a
new discouraged student and a new discouraged teacher, and 1/β2 is the average
length of time for a discouraged student to create a new discouraged person and a
new discouraged teacher.8

Putting these interpretations together, we have that 1/(λ1+λ2+μ1)
1/β1

is the average
time that it takes a teacher to get discouraged divided by the average time it
takes a teacher to discourage a new student–teacher pair. This then calculates the
average number of student–teacher pairs that a single teacher discourages. Similarly

β2
λ1+λ2+μ2

is the average number of student–teacher pairs that a single student
discourages. Put together we have thatR0 is the average number of new discouraged
student–teacher pairs created by a discouraged teacher and a discouraged student.

There are two problems with this interpretation, and both problems are tied to
the idea thatD1 andD2 are proportions not populations. Our interpretation of R0 is
based on the idea of a single discouraged teacher and a single discouraged student.
But D1 = D2 = 1 is not the case of a single teacher and a single student. Instead
these are the cases of the entire populations being discouraged. So there are two
problems with this. The first problem is that D1 = D2 = 1 represent different
numbers of teachers and students, because the total populations are different. The
second problem is that in order for us to interpret R0, we need the population to be
mostly uninfected, which means that D1 and D2 need to be small. So we need an
interpretation that is meaningful forD1 andD2 as proportions, withD1 = D2 � 1.

So an overall better interpretation of this basic reproductive number is that
it measures the combined percentage of discouraged teachers and percentage of
discouraged students produced by a small percentage of discouraged teachers and
equivalent small percentage of discouraged students throughout the duration of time
that those small percentages are discouraged. For example, if R0 is 2, then we could
interpret this as saying that when the percentage of discouraged people is small,
the percentage of the next generation of discouraged people will be approximately
twice as big.

This structure of calculating the number of new infections per infection as
infection rate
output rates is a very common structure that you will see in a lot of basic reproductive

numbers. So it is important to remember both in interpreting your R0 and in using
that interpretation to check your calculations.

Exercise 2 Continuing from Exercise 1: If you interpret a positive attitude as the
infection instead of discouragement, how does the interpretation of the resulting R0
change?

8Remember that these approximations are only valid in a population that is almost entirely
uninfected, so these interpretations cannot really be used for parameter estimation of λi or βi .
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2.4 Sensitivity Analysis

Since the basic reproductive number models whether an initial infection spreads
or dies out, researchers typically want to know the effect of the parameters of the
model on R0. The problem is that the model typically has a significant number of
parameters. This makes it difficult to do a full exploration of R0. For example, we
typically cannot plot R0 as a function of every parameter in N-dimensional space.
There are a few solutions to the problem. If there are only one or two parameters
that can be controlled by policy, and the other parameters have known values, then
a typical approach is to create a graph of R0 as a function of those controllable
parameters, and look at the contour where R0 = 1. Sensitivity analysis is a different
approach that can be used to efficiently examine many parameters at once by
focusing on local changes in the parameter values [3]. When parameter values are
unknown, sensitivity analysis can sometimes provide some useful general results.
When parameter values can be estimated, sensitivity analysis can be used to suggest
an intervention.

The key idea of sensitivity analysis it to look at how a small percentage change in
one parameter affects the corresponding percentage change in a quantity of interest
(in this case, R0). So for example, a sensitivity index of 2 would mean that for a very
small increase in the parameter, R0 increases by twice that percentage. A sensitivity
index of −0.5 would mean that for a very small increase in the parameter, R0
decreases by half that percentage.

The reason why sensitivity analysis uses percentages rather than bare changes is
so that different parameters with different units can be compared on an even playing
field. If a parameter is measured in miles, a change of 0.0001 is much more dramatic
a difference than if the parameter is measured in feet. But a change of 0.01% would
be the same regardless of unit.

To calculate the percentage change in the parameter, we calculate the percentage
change in the parameter ξ as Δξ

ξ
. Similarly, the percentage change in R0 would

be ΔR0
R0

. The sensitivity index of R0 with respect to the parameter ξ is then just the
quotient of these two percent change, as long as the percentage change is sufficiently
small. The way we make sure that the change in percentage is small enough is by
taking a limit, so that Δξ becomes ∂ξ and ΔR0 becomes ∂R0.

Definition 4 The sensitivity index Sξ of R0 with respect to parameter ξ is given by
Eq. (21):

Sξ = ξ

R0

∂R0

∂ξ
. (21)

In the student–teacher discouragement model, the researchers calculated the
sensitivity of R0 with respect to each parameter.
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Sβ1 =
β1

R0(λ1 + λ2 + μ1)
Sμ1 = −μ1

Sβ1

(λ1 + λ2 + μ1)

Sβ2 =
β2

R0(λ1 + λ2 + μ2)
Sμ2 = −μ2

Sβ2

(λ1 + λ2 + μ2)

Sλ1 = −λ1

(
Sβ1

(λ1 + λ2 + μ1)
+ Sβ2

(λ1 + λ2 + μ2)

)

Sλ2 = −λ2

(
Sβ1

(λ1 + λ2 + μ1)
+ Sβ2

(λ1 + λ2 + μ2)

)
. (22)

Because all parameter values are positive and R0 is positive, the sensitivity
indices Sβ1 and Sβ1 are positive, while the indices Sλ1 , Sλ2 , Sμ1 , and Sμ2 are
negative. This gives us an expected result. Increasing the rates at which discouraged
teachers and teachers successfully convert other students and teachers (βi) increases
to growth in discouragement R0. Increasing the rate at which positive teachers
and students convert other students and teachers (λi) reduces R0. What might be
less expected is that increasing the rate of student and teacher turnover (μi) also
decreases R0. This is because of the assumption that q1 = q2 = 1 that was needed
to find an R0. Because all new people entering the school have positive attitudes,
turnover removes discouraged people and replaces them with positive people.

Next we can look at which sensitivity indices have the largest impact on the
system. Because μi < λ1 + λ2 + μi we have that |Sβi | > |Sμi |. So changing the
rate that discouraged teachers or students recruit always has a stronger impact than
the same percentage change in the corresponding turnover rate. Because λ1 + λ2 <

λ1+λ2+μi we have that |Sβ1+Sβ2 | > |Sλ1+Sλ2 |, which suggests that targeting the
spread of negative attitudes overall is more effective than targeting positive attitudes
overall.

Exercise 3 Continuing from Exercises 1 and 2: Use sensitivity analysis to investi-
gate the effect of the model parameters on the spread of positive attitudes and make
a recommendation.

The researchers also used parameter estimates to calculate the sensitivity indices
numerically, although the exact values they used are not included in the original
paper. Using these parameter estimates they found that in order from largest to
smallest absolute value Sβ2 = 0.5959, Sλ2 = −0.5224, Sβ1 = 0.4041, Sλ1 =
−0.435, Sμ1 = −0.04004, Sμ2 = −0.002159. This means that in a school that
would be modeled by these parameter estimates, the effects that students have on
the attitudes of teachers and students (β2 and λ2) have the strongest impact on the
spread of discouragement, but the impact of teachers (β1 and λ1) is not that much
less. Turnover (μ1 and μ2) has little impact in this scenario. Which interventions
the researchers recommend, however, would depend on other factors, such as how
difficult or costly it could be to alter a particular parameter.
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2.5 Other Full Examples

The full process of analysis in this example was: (1) Use the next generation matrix
to find the basic reproductive number, (2) interpret the basic reproductive number as
a way of verifying the calculation, and (3) use sensitivity analysis to investigate the
effect of parameters on the model and make recommendations for intervention. The
student–teacher model [32] is one full example of this process with a small model.
Because details necessarily had to be omitted, we highly recommend that you read
the original 2003 paper at https://mtbi.asu.edu/tech-report.

Other MTBI student papers that give detailed examples of the full process are:

• A 2012 study on HIV and malaria co-infection [4]
• A 2012 study on prison reform [2]
• A 2007 study on HIV and Tuberculosis [27]
• A 2006 study on the economics of sex work [31]

As you are reading some of the cited papers and technical reports, you will
notice that they do not always use notation in the same way. While the calculations
for F and V are always the same, notation for intermediate steps can vary. Some
researchers define X as the infected class, and Y as the uninfected class, so that
X = F − V . Some researchers do not define their uninfected X and infected Y
classes explicitly, and you have to identify how they separated their classes from the
F and V expressions. Other researchers will define F and V for all the classes in
the model (in the student–teacher model F and V would be 4× 4 instead of 2× 2)
but still only calculate the Jacobian for the infected classes, so the resulting F and
V are still the same (2× 2) matrices as above. Regardless of intermediate steps and
choice of notation, F and V are used consistently as in Eq. (14) and Definition 2.

Exercise 4 No paper ever includes all the details of the mathematics. Choose one of
the papers above and reconstruct the missing steps in the NGM method. Define X,
Y , F , and V . Then take the Jacobian to find F and V , calculate the next generation
matrix FV −1, and find the spectral radius R0. Verify your results with the results
from the paper.

Exercise 5 No paper ever includes all the details of the mathematics. Choose one
of the papers above and find their reproductive number, then calculate the sensitivity
indices for each parameter included in the reproductive number. If the paper
includes detailed parameter estimates, then use these estimates to also calculate
the sensitivity indices numerically. Use the parameter definitions given in the paper
to interpret the sensitivity indices and suggest a possible intervention. Verify your
results with the results from the paper.

https://mtbi.asu.edu/tech-report
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3 Challenges in the of the Next Generation Matrix

Because we introduced these techniques with a simple model, we have really only
spent time with a “best case” scenario. Since your own project will likely involve a
more complicated model, this also means that it is likely that a situation could arise
where you are not quite sure what the best decision is. In the next few sections, we
will discuss some complications that can arise when using these techniques to study
a model of your own creation. We will discuss each of these scenarios briefly using
examples from actual student projects, with a focus on the decisions that needed to
be made. As always, we encourage you to read the original papers [51] as a way of
filling in some of the missing details. And you should always consult your research
mentor about complications in your own model.

In this first section, we will discuss some complications that can arise when
finding and using a next generation matrix. Most of these complications revolve
around decisions related to how to define the uninfected (X) and infected (Y )
classes.

3.1 Defining the Infected Class: Infected but Not Infectious

This complication arose in research project from 2018 on the spread of herpes [1].
Herpes (HSV-2) is a disease that “hides” in the nervous system of the host, and only
periodically emerges to cause symptoms on the skin. Current treatments can force
the disease into the asymptomatic stage, but cannot eliminate the disease from the
body entirely, so it always returns. When the disease emerges, initial symptoms
resemble a lot of other diseases, while later symptoms are distinctive. Current
protocols only administer treatment when the disease has progressed to the later
stage, and the patient has already been infections for some time. The question the
Luis Almonte-Vega, Monica Colón-Vargas, Ligia Luna-Jarrń, Joel Martinez, and
Jordy Rodriguez-Rincón, wanted to study was the cost effectiveness of treating
during the early stages when the disease is less infectious, but money would be
wasted on treating false positives. Could spending extra on treating people who
only might have herpes save money in the long run by reducing the prevalence of
the disease?

The model the students constructed had seven population compartments: S for
susceptible, I1 for mildly symptomatic individuals, I2 for strongly symptomatic
individuals, L for asymptomatic individuals, T1 for individuals with mild symptoms
undergoing treatment, T2 for strongly symptomatic individuals undergoing treat-
ment, and X for false positive undergoing treatment.

During the project, the question arose of how to separate the infected and
uninfected classes for the next generation matrix. To illustrate, let us consider
a simple SIR model with partial immunity. Susceptible people become infected,
infected people recover, and recovered people have a chance of being infected again.
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So the flows would be S → I ↔ R. In this scenario, the only population that has
the disease is I , so the separation of classes for the NGM would be X = [S,R]T
uninfected and Y = [I ] infected.

But there could be another interpretation of this diagram where the disease is
never fully eradicated. In the case of herpes, the asymptomatic stage resembles
recovery, but it is really the same infection. So the structure of the model S →
I ↔ L. In this scenario, the both I and L have the disease, so the separation of
classes for the NGM would be X = [S] uninfected and Y = [I, L]T infected. The
key distinction here is that the flow from L → I in the SIL model is considered a
new stage in the same infection, while the flow from R → I in the SIR model is a
completely new infection.

So in the HSV-2 model, the students separated the classes into [S,X]T unin-
fected, and [I1, I2, L, T1, T2] infected. L, T1, and T2 were included because even
though the people in these compartments had no symptoms and were not contagious,
they still carried the disease in their bodies, so they were still infected.

We will discuss how to interpret the reproductive number from this model
in Sect. 4.4.

3.2 Defining the Infected Class: Multiple Levels of Infection

This complication arose in a research project from 2001 on collaborative learning
[29, 30], and another research project from 2005 on the success of political third
parties [13]. The 2005 paper on third parties is more detailed, so it is the one we will
discuss here, and also the one we recommend that you read first.

Karl Calderon, Clara Orbe, Azra Panjwani, and Daniel Romero were inspired
by the 2000 election, when election analysts attributed the defeat of Al Gore to
splitting the base. Ralph Nader, a Green Party candidate who won 2% of the vote,
which many believed could otherwise have gone to Gore and turned the election.
Using the growth of the Green Party as a source of data, the researchers wanted to
study the growth of grassroots political movements, and explore voter recruitment
strategies.

The third party model had a relatively simple structure, where the researchers
considered three levels of engagement. A population S of people who were
susceptible to the messages of the political party, a population V of people who
voted for the third party, and a population M of active members of the party.
Both voters and members could convince susceptible to become voters, although
members were more effective than voters. Also members could recruit voters to
become members. Lastly, voters could change their mind. So the structure of the
model was S ↔ V → M .

This model was interesting because it had two processes that could be considered
an infection: the recruitment of voters from S → V by voters and members, or
the recruitment of members from V → M by members. In the first case, where
voting is the infection, the separation of classes would be X = [S] uninfected, and
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Y = [V,M]T infected. In the second case, where membership is the infection,
the separation of classes would be X = [S, V ]T uninfected and Y = [M] infected.
Unlike the case of HSV-2 above, where the researchers needed to make a decision to
identify the correct separation, here there is not correct separation. The researchers
needed both perspectives to understand the behavior of the model. So this model
did the NGM process twice (once with each separation) and had two reproductive
numbers.

We will discuss how to interpret these reproductive numbers in Sect. 4.3.

Exercise 6 The collaborative learning paper [29, 30] has a very similar model to
the third parties paper [13], but their NGM section is extremely light on details.
Use the model from the collaborative learning paper and the NGM method to find
both reproductive numbers for this model. Verify your results with the results from
the paper.

3.3 Unclear Which Eigenvalue Is Largest: Co-infection

Another complication that can arise is with the definition of R0 as the spectral radius
of the NGM. The spectral radius is the largest eigenvalue, but sometimes it is not
clear which eigenvalue of the NGM is largest. This is a common problem when
studying the interaction between two diseases that can co-infect. Two projects that
encountered this problem were a 2012 paper on HIV and malaria co-infection [4, 5],
and a 2007 project on HIV and tuberculosis co-infection [27]. Both papers are very
similar. We will use the malaria model for this example.

Kamal Barley, Sharquetta Tatum, and David Murillo were inspired by the high
prevalence of both HIV and malaria in the Republic of Malawi. Both diseases
increase the impact on the other. HIV weakens the immune system, which makes it
easier for malaria to infect people, and malaria increases the viral load of HIV. In
particular the researchers were interested in studying how the interactions between
these two diseases might increase mortality.

In the malaria-HIV model, there were six classes: S susceptible humans, IM
humans infected with malaria, IH humans infected with HIV, IHM humans infected
with both diseases, V susceptible mosquitos, and IV mosquitos carrying malaria.
So in this model, there were four infected classes Y = [IM, IH , IHM, IV ]T and the
researchers calculated the NGM to be

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
βVMΛ

αNμV

0
βH

μH + α
βH kγ

(μH + α)(μHM + kγ + α) +
ρ2βH

μHM + kγ + α 0

0 0 0 0
βMV Nα

Λ(μM + γ + α) 0
ρ4βMV Nα

Λ(μHM + kγ + α) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)
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In this matrix, subscript H is for HIV, M for malaria, and HM for both. Λ
is recruitment rate for humans, N is the total population of humans, the βs are
infection rates, μs and α are mortality rates, γ is the recovery rate from malaria,
and k is the reduction in this recovery rate due to HIV infection.

This model has two eigenvalues that could both be largest, depending on
parameter values:

R0H = βH

μH + α

R0M =
√

βMV βVM

μV (μM + γ + α) .
(24)

So the basic reproductive number is whichever of these two eigenvalues happens
to be the largest.

R0 = max{R0H ,R0M }. (25)

This is a very common structure for R0 in the case of co-infection. We will
discuss how to interpret this result in Sects. 4.2 and 4.5.

Exercise 7 The malaria paper [4] also has a reduced model with four compart-
ments. Read the paper to identify the reduced model, and find R0 for the reduced
model by using the NGM method. Verify your results with the results from the paper.

4 Challenges in Interpreting R0

We have already discussed one scenario that complicated the interpretation of R0:
the situation where we are adding proportions instead of populations. However,
the overall the structure of the basic reproductive number in the student–teacher
model followed a relatively simple infection rate

output rates structure that is common to many
basic reproductive numbers. In this section, we will discuss other forms that R0
can take that commonly appear in student projects, and how to interpret those
structures. In order to keep these sections short, we will primarily be using flow
diagrams to discuss the models. As always we strongly encourage you read the
original papers for more details on the models and analysis. Furthermore, every
paper cited in this section also used a next generation approach to finding the basic
reproductive number, so these are all good sources if you want additional examples
of that approach.



106 C. W. Castillo-Garsow and C. Castillo-Chavez

4.1 Multiple Infection Pathways: The Case of SARS

This example project is from 2004 on the spread of SARS [38, 39]. Julijana
Gjorgjieva, Kelly Smith, and Jessica Snyder were inspired by the prominent news
coverage of the 2002 SARS epidemic. In particular, they were interested in the
control plan for SARS. Because the disease was new and there was no treatment,
control focused on isolating people who showed symptoms, and tracing their
contacts to identify other people who might have the disease. Since no treatment had
been developed, the researchers saw an opportunity to compare the current tracing-
and-isolation control plan to a possible future vaccination strategy.

The control plan for SARS involved tracing an infected individual’s contacts
in order to identify who else was at risk of contracting SARS, but this tracing
process was not always successful. Treatment for SARS generally involved isolation
to prevent further spread. So the model used classes for S susceptible, Ei traced
latent, En untraced latent, I infectious, W isolated, R recovered, and D dead.
This resulted in a model where an individual could take many different paths.
For example, an individual could never be identified by doctors and pass through
S → En → I → D (Fig. 1), or an individual could be caught in the infectious
stage and pass through isolation and treatment and survive, passing through S →
En→ I → W → R (Fig. 1).

Fig. 1 Flow diagram for the SARS model with contact tracing: S susceptible, En untraced latent,
Ei traced latent, I untraced infectious, W diagnosed and isolated infectious, D dead, and R
recovered [39]. β is the infection rate, k is the rate of developing symptoms, θ is the probability
that the patient is diagnosed while latent, α is the rate that infected individuals become isolated, δ
is the death rate due to infection, and γ s are recovery rates
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Using the next generation approach, the researchers found the following basic
reproductive number9:

R0 = β
(
(1− ρ)lθ
δ + γ2

+ (1− ρ)l(1− θ)α
(δ + γ2)(α + δ + γ1)

+ (1− ρ)(1− θ)
α + δ + γ1

+ ρl

δ + γ2

)
.

(26)

This R0 follows the standard infection rate
output rates pattern, but because there are multiple

pathways to get to I orW , these rates need to be averaged together by the proportion
of individuals who follow each path. Examining the flow diagram (Fig. 1), the only
path to I is S → En→ I . Individuals are infected at a rate β. Of these individuals,
a proportion (1− ρ) enter En, and of these individuals in En, a proportion (1− θ)
enters I . Looking at the outflows of I : average time in I is 1

α+δ+γ1
, so the infection rate

output rates

for I would be β
α+δ+γ1

, weighted by the proportion of infected individuals who enter
I : (1− ρ)(1− θ), which is what we see in Eq. (26).
W is less infectious than I , so the rate of those infected by W is βl < β. All

the terms with l in the numerator then involve pathways to W . Let us examine the
second term, βl(1−ρ)(1−θ)α

(δ+γ2)(α+δ+γ1)
. In this term, βl

(δ+γ2)
is infection rate

output rates for W . (1− ρ) is the
proportion moving from S → En. (1− θ) is the proportion moving from En → I .
Lastly, α

(α+δ+γ1)
is the rate from I → W divided by the total rate out of I , so it is the

proportion of individuals moving from I to W . So this term represents the infection
contribution from the S → En→ I → W path.

Similarly the first term βl(1−ρ)θ
δ+γ2

represents the infection contribution from the

S → En → W path, and the final term βlρ
δ+γ2

represents the infection contribution
from the S → Ei → W path.

Exercise 8 Imagine that each of the proportions in this model is instead a probabil-
ity. Combine each of these four paths together to create a probability tree diagram.
Interpret R0 as the expected value of infection rate

output rates for a single individual passing
through the system at random.

4.2 The Maximum of Two Reproductive Numbers:
Co-infection

This example project is from 2007 on the spread of HIV and tuberculosis [27].
Like the malaria project above, Diego Chowell-Puente, Brenda Jiménez-González,
and Adrian Smith were interested in studying how two deadly diseases interacted
in South Africa, where both are common. TB is often carried latently, and HIV

9In the original model, the researchers also included a vaccination parameter in R0, but we have
omitted it from this example.



108 C. W. Castillo-Garsow and C. Castillo-Chavez

Fig. 2 Flow diagram for the HIV-TB co-infection model: S susceptible, L infected with latent TB,
I infectious stage TB,H infected with HIV,HL infected with HIV and latent TB,HI infected with
HIV and infectious stage TB, and A developed AIDS [27]

increases the chance of TB developing symptoms. So the researchers wanted to
construct a model that would suggest strategies to control both epidemics.

Tuberculosis has a latent stage, during which a person is infected but unin-
fectious. HIV has an asymptomatic infectious stage, and the symptomatic stage,
when the infected person has developed AIDS. In order to track the behavior of a
population, the researchers needed to develop a model that captures every possible
combination of stages, as seen in Fig. 2. Note that the infection terms need to be
summed over a large number of compartments, because a large number of different
compartments all carry the same disease. For example, H , HL, HI , and A all carry
HIV and can infect a susceptible with HIV, so the HIV infection rate must include
all of these compartments.

Like most co-infection models, the basic reproductive number for this model
included a maximum.

R0 = max{RTB0 , RHIV0 }

RTB0 = β1

γ2 + μ+ τ ·
k

γ1 + k + μ
RHIV0 = β2

ω + μ +
β2ε3

μ+ σ ·
ω

ω + μ.

(27)
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In order to interpret this reproductive number, let us examine each component
using the tools from Sect. 4.1. Beginning with RTB0 , we see that the first factor

β1
γ2+μ+τ is the infection rate for TB divided by the sum of the rates out of I . So

this factor takes the form infection rate
output rates for TB by itself. The second factor k

γ1+k+μ
takes the form of rate from L to I divided by total rate out of L. So this is the
proportion of people in L who enter I . Taken together, this is the basic reproductive
number for the S → L→ I pathway by itself. This would be the path that TB takes
if there were no HIV.

Similarly, RHIV0 is the reproductive number for HIV by itself. β2
ω+μ is infection rate

output rates

for the H class, β2ε3
μ+σ is the infection rate

output rates for the A class, and ω
ω+μ is the proportion of

people moving from H → A.
The basic reproductive number for the whole system is the maximum of these

two reproductive numbers because R0 only tracks infected or uninfected. Once a
person in infected with either of the two diseases, they are counted as infected.
Being infected with both involves first being infected with one, and then the other.
Because R0 is only concerned with the disease-free state, that second co-infection
is not relevant. Only the first infection affects the disease-free state, so in examining
the disease-free state, we are only concerned with whichever infection is strongest.

For another example of this type of co-infection R0, see the HIV-malaria model
[5] discussed in Sects. 3.3 and 4.5.

4.3 Two Thresholds and Backwards Bifurcations

In this section we will return to the 2005 project on third parties from Sect. 3.2. In
this project [13], there were three classes of population: S susceptible, V voters,
and M members. Because either voting or membership could be considered the
infection, there were also two reproductive numbers:

R1 = β − φ
μ+ ε

R2 = γ

μ

(
1− 1

R1

)
.

(28)

In this model (Fig. 3), when a susceptible encounters a voter, there are two
possible outcomes. Either the voter can influence the susceptible to become a voter
(S → V ), or the susceptible can convince the voter not to vote (S ← V ). The
former happens at rate β and the latter occurs at rate φ, so the net rate of people
being influenced to vote is β − φ, and this becomes the infection rate, while μ+ ε
is time in V . So R1 follows our standard pattern of infection rate

output rates .
For R2, γ is the infection rate, and μ is the exit rate. Following our pattern

from Sect. 4.1, the remaining factor
(

1− 1
R1

)
should be some sort of proportion
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Fig. 3 Flow diagram for the third party model: S susceptible, V voters, and M members [13]

of the population. To figure this out, let us go back to an earlier interpretation of
R0 from Sect. 2.3. We think of R0 as infection rate

output rates , but because our rates typically

have units of 1/time, we can also think of R0 as total time infectious
time it takes to infect someone . So then

1
R1

would be time it takes to convince someone to vote
total time as a voter . In other words, it is the proportion

of voters who are currently convincing a susceptible to vote. Then
(

1− 1
R1

)
is the

proportion of voters who are not currently occupied convincing someone else to
vote, which means they have free time to interact with a member and be susceptible
to membership.

An interesting feature of this two threshold model is that R1 only measures the
impact of voters on susceptibles, but members can also convince susceptibles to
vote. This means it is possible for members to exist as a population when R1 < 1,
as long as enough members exist in the population. This is known as a backward
bifurcation. Also note that when R1 < 1, R2 < 0. This negative value for R2
is a little difficult to interpret, but it is occurring because members are recruiting
susceptibles to become voters and then almost immediately recruiting those voters
to become members, so voters have no time to recruit susceptibles as voters. This
maintains the member population without maintaining the voter population.

4.4 Geometric Series: Returning to the Infectious Class

In this section, we continue the discussion of the 2018 herpes model [1]. A key
feature of herpes discussed in Sect. 3.1 is that a single infection goes through
multiple cycles of infectiousness. This leads to a potentially infinite number of paths
to I: S → I , S → I → L→ I , S → I → L→ I → L→ I , etc. Each of these
paths is still a single infection, so each path needs to be considered in the basic
reproductive number. In order to study this phenomenon, the researchers started
with a simplified model before moving on to their full model. The simplified model
only has compartments for S susceptible, I infected, and L latent (Fig. 4). The basic
reproductive number for this simplified model was:

R0 = β

μ+ γ ·
1

1− γ
μ+γ · r

μ+r
. (29)
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Fig. 4 Flow diagram for the simplified herpes model: S susceptible, I infectious, and L latent [1]

In this basic reproductive number, β is the infection rate, divided by μ + γ is
the time in I , so this forms our standard basic reproductive number. Our previous
examples have suggested that the remaining factor should be a proportion. γ

μ+γ is
the proportion of people who leave I to enter L, and r

μ+r is the proportion of people

who leave L to return to I . So the product p = γ
μ+γ · r

μ+r is the proportion of people
in I who make a single round trip back to I (I → L→ I ).

Because people can make this round trip any number of times, we need to account
for all possible pathways. Infection for people who make zero round trips would be
β

μ+γ , from one round trip would be β
μ+γ p, two round trips: β

μ+γ p
2, three round

trips: β
μ+γ p

3, etc.

R0 = β

μ+ γ
∞∑
k=0

pk. (30)

Because the limit of a geometric series with common ratio p is 1
1−p , we have the

form of R0 given in Eq. (29).

Exercise 9 Other student projects with examples of this kind of looping R0 include
a 2018 study of prison recidivism [49] and a 2010 study of immigration [25]. Choose
one of these two projects, describe a model, use unit analysis to identify the units
of each parameter, verify that the reproductive number is unitless, and interpret the
reproductive number using the techniques you have learned so far.

4.5 Geometric Mean: Indirect Transmission

The project is from 2005 on the spread of HIV between two sexes: male truck drivers
and female sex workers [47]. Titus Kassem wanted to focus on the interaction
between two populations that were both at high risk of HIV in Nigeria. In particular,
truck drivers travel frequently and for great distances and interact with sex workers
in many different places. High numbers of sexual partners and travel lead to a
disproportionally large influence on the geographic spread of HIV. So Kassem
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wanted to study these two at-risk groups, and how their different ideas about condom
usage affected the spread of HIV.

The model used six classes, Sm susceptible males, Im HIV infected males, Am
males with AIDS, and similarly for females. The paper did not provide a flow
diagram, so instead, we duplicate the equations here.

Ṡm = μmNm + ψmAm − μSm − β1Sm
If

Kf

˙Im = β1Sm
If

Kf
− (γm + μm)Im

Ȧm = γmIm − (ψm + μm)Am
Ṡf = μfNf + ψfAf − μSf − β1Sf

Im

Km

İf = β2Sf
Im

Km
− (γf + μf )If

Ȧf = γf If − (ψf + μf )Af .

(31)

Exercise 10 Construct a flow diagram for this HIV model. Label each arrow with
the corresponding term from Eq. (31).

The researchers found that the basic reproductive number was:

R0 =
√

β1β2

(γm + μm)(γf + μf ) . (32)

Exercise 11 The paper has omitted the details of these steps. Use a NGM to verify
the basic reproductive number found in Eq. (32).

The basic reproductive number has an interesting form of the geometric mean
between two values: β1

(γm+μm) is the infection rate
output rates for males, and β2

(γf+μf ) is the
infection rate
output rates for females.

The reason for the geometric mean is because the disease has to make a round
trip. In order for a male to infect another male, the disease must first infect a female,
and vice-versa. So the number of new infected males produced by a single infected
male is the number of infected females produced by that infected male, times the
number of infected males produced by each new infected female. For example, if a
male infects 8 females, and each female infects 2 males, then the number of newly
infected males produced by that original male would be 8 · 2 = 16. But this is a
two-step process. In order to scale the process back to a single infection step, we
need to average the two values. Because the process is multiplicative, we average
with a geometric mean instead of an arithmetic mean. Note that

√
8 · 2 = 4 and

4 · 4 = 16, while an arithmetic mean does not quite work: 8+2
2 = 5 and 5 · 5 = 25.
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Fig. 5 Flow diagram for the math anxiety model: P for primary student, Sn for non-anxious
secondary student, Sa for anxious secondary student, Tn for non-anxious teacher, and Ta for
anxious teacher [42]

Exercise 12 Return to the HIV-malaria model [5] discussed in Sects. 3.3 and 4.2.
Draw the flow diagram, explain the model, conduct a unit analysis, and interpret the
basic reproductive number using the techniques you have learned so far.

4.6 Not Quite a Geometric Mean: Generational Models

This example comes from a 2017 study on the spread of math anxiety in a
school [42]. Arie Gurin, Guillaume Jeanneret, Meaghan Pearson, and Melissa
Pulley were inspired by their own past struggles with mathematics, and concern
for the impact that math anxiety has on the recruitment and retention of women
and minorities into STEM. Because many women with math anxiety become
elementary school teachers who teach mathematics, the researchers wanted to study
how generations of teachers might influence students attitudes toward mathematics
as those students become teachers themselves. The researchers were looking to
identify a best point of intervention to break the cycle of teachers with math anxiety
creating new generations of teachers with math anxiety.

The model had five classes: P for primary student, Sn for non-anxious secondary
student, Sa for anxious secondary student, Tn for non-anxious teacher, and Ta for
anxious teacher (Fig. 5).
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In this model, the basic reproductive number was

RS = εa

σ + εn + βn , RT = qnaμ+ ηa
μ+ ηn + ω + α

RCT S = σγa(1− qan)
μ+ ηn + ω + α , RCST =

Ψμ
γn
+ βaμ

σγn

σ + εn + βn
(33)

R0 = RS + RT +
√
(RS − RT )2 + 4RCT SRCST

2
(34)

where RS represents the typical number of new anxious students recruited by a
single anxious student (Sn→ Sa), RT represents the typical number of new anxious
teachers recruited by a single anxious teacher (Tn → Ta), RCT S represents the
typical number of new anxious students mentored into becoming anxious teachers
by a single anxious teacher (Sn → Ta), and RCST represents the typical number of
new anxious students recruited by a single anxious teacher (P, Sn→ Sa).

Interpreting the reproductive number requires two useful mathematical facts:

√
A+ B ≤ √A+√B (35)

max{A,B} = A+ B + |A− B|
2

. (36)

Applying these to the form of R0 we have

max{RS,RT } ≤ R0 ≤ max{RS,RT } +
√
RCT SRCST . (37)

RS and RT are within generation effects, and the form of R0 tells us that either
of these is strong enough by itself to support an epidemic of math anxiety. If enough
students recruit their peers, or enough teachers recruit their peers, then anxiety is
sustained.

The geometric mean term represents a generational effect that takes place in
two paths: in the first path, an anxious teacher mentors a non-anxious student into
becoming an anxious teacher (Sn → Ta). In the second path, an anxious teacher
mentors a non-anxious student into becoming an anxious student (P, Sn → Sa).
These are the two ways that an anxious teacher can pass on their anxiety to the next
generation.

However, this is not a true geometric mean. Unlike the HIV model, the two paths
do no share endpoints, so this is not an average of two events happening sequentially.
Instead what is happening is that neither of these paths makes a full cycle. One path
is student to teacher, and the other path is teacher to student. So each represents only
a half-step of infection and not a full teacher to teacher or student to student cycle,
so each needs to be square-rooted.

Lastly, note that if there are no peer-pressure effects (RS = RT = 0), then
the generational effects by themselves may not be enough to sustain the epidemic.
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However, generational effects can create an epidemic where peer-pressure by itself
might not be enough (RS = RT < 1). This is not a straight sum because the
two methods of spread (peer-pressure and generational) are competing with each
other. For example, when teachers recruit more primary students to become anxious
secondary students, it creates fewer non-anxious secondary students to be recruited
by their peers so the peer effect is weaker. Another example is when anxious
students recruit more non-anxious students through peer-effects, it leaves fewer non-
anxious students to be recruited though mentoring effects.

Exercise 13 Other student projects with similar forms for R0 include a 2001 study
on bulimia [40, 41] and 2018 study on hospital screening for MRSA [12]. Choose
one of these papers, draw the flow diagram, explain the model, conduct a unit
analysis, and interpret the basic reproductive number using the techniques you have
learned so far.

5 Ways to Complicate Your Sensitivity Analysis

Sensitivity analysis is an extremely flexible technique and there is really no end
to the number of ways that you can complicate it. For example, in a simple
variation, you could study the sensitivity of the equilibria to the parameter values,
or the sensitivity of the equilibria to R0. You can also use more complex methods
and numerical simulations to look at sensitivity of a compartment to a particular
parameter as a function of time. Examples of student projects using this type of
forward sensitive analysis include a 2018 study on the menstrual cycle [37] and
a 2018 study of MRSA [12]. Using this approach, George et al. [37] was able
to identify specific days in the menstrual cycle that intervention would be most
effective.

All of these approaches go beyond studying the basic reproductive number and
are outside of the scope of this paper. For details on these and other ways to
use sensitivity analysis, we really recommend that you read an in-depth paper on
the subject [3] and explore some of the many student projects that use sensitivity
analysis in ways not described here [51].

6 Conclusions for Students

In this paper, we have shown you an overview of the most popular techniques used
at MTBI, as well as examples of variety of topics that you can investigate with these
techniques. All together, this article forms a sort of “research project in a box.” It is
up to you to unpack the contents of the box, consult your research mentor, and add
your own personal interests to generate a unique research project.



116 C. W. Castillo-Garsow and C. Castillo-Chavez

This approach does some with some warnings: While reproductive number
analysis is the most commonly used approach at MTBI, it is not suitable for
every research project. This is an extremely flexible approach than can be used to
investigate a lot of projects, not every problem is well suited to an ODE contagion
model. Sometimes a different modeling approach, such as difference equations [15],
Markov chains [53], cellular automata [43], agent based modeling [28], a probability
model [50], or a statistical approach [46] is better suited to a particular research
project.

Even within the realm of differential equations, not every question is a question
that can be answered by reproductive analysis. For example: sometimes a problem
is an equilibrium problem [49], or a cost problem [1], or an optimal control
problem [11]. The reproductive number can be useful in investigating these types
of problems, but it does not provide the whole story.

What is most important is that you choose a research project that you are
passionate about. Our best projects come from students who have chosen a topic
personally meaningful to them. Many of our student projects are driven by students
who have suffered from the very diseases or social problems they choose to study.
This passion gives students the drive to really dig deep into the topics that they
choose to study. It improves their understanding of the problem, the accuracy of
their model, the effort they put into their mathematics, and the quality of their
interpretations and recommendations.

So our advice for building a project is as follows: (1) Keep in mind what
kinds of techniques are possible, both techniques described in this paper and other
techniques you might have learned about. (2) Think about what kinds of questions
can be answered with the different techniques are your disposal. (3) Be aware that
there are more techniques that your mentor can help you with that you might not
think of on your own. (4) Find a topic that you are passionate about. (5) Define
a research question that is interesting to you. (6) Let the research question choose
your techniques, do not let your techniques choose your research question.

7 Generating Possible Research Questions

In developing a project, we prefer to that you choose a topic that has a personal
meaning to you, as passion tends to make the best projects. But a research problem
should also be of interest to others. Generating research questions/projects often
emerges from reading what was said or left untouched in articles at the interface
of the biological, computational, mathematical, and social sciences. Here are some
directions and possibilities:
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Research Project 1 The official confirmation of an outbreak of Ebola hem-
orrhagic fever in West Africa took place in 2014. Efforts to assess its impact
and what could be learned from it were launched [19]. Models made use of
earlier estimates of the basic reproductive number [26] with modeling results
providing increased understanding of Ebola dynamics and helping assess the
impact of various control efforts [17]. Soon after an effective vaccine was
discovered and tested. Yet, as the 2018 Ebola epidemic in the Republic of
Congo evolved, we began to experience one of the worst outbreaks. In short,
fighting Ebola, vaccine in hand, did not prevent its devastating impact on the
affected populations, Why?

Research Project 2 What is the impact of cross-immunity on influenza
strain dynamics and how does its role compare to the effect of partially
effective vaccines? What if we had a partially effective universal flu vaccine?
What percentage of the population should be vaccinated to ameliorate the
impact of an outbreak?

One of the most challenging family of viruses is that associated with influenza A.
Currently, there are three subtypes of influenza A, with variants of each subtype,
called strains, being continuously generated across the world and transported
primarily by the mobility patterns of billions of individuals. Influenza involves what
it is known as seasonal and pandemic variants. The kind spread and its impact
depends on the variation between strains. The 1918 pandemic was devastating and
it has been linked to at least 50 million deaths. Vaccines, typically effective against
seasonal influenza, are in general ineffective against novel strains, the most likely of
drivers of pandemic influenza. As an outbreak sweeps a region, it alters the average
immunological profile of a population. By how much? Well it depends on levels of
protection, cross-immunity, that may protect against future strains. Some relevant
references include [8, 10, 52].

Research Project 3 The HIV epidemic, the re-emerging tuberculosis (TB)
epidemic and their synergistic impact on each other, including the growth of
antibiotic resistant TB as well as the need to reduce the evolution of resistance
on HIV treatment are ongoing challenges. Studying the modeling history of
these diseases brings tremendous insights and would help those willing to go
through the mathematics, and offers the opportunity to learn new methods as
well. We recommend the following references [16, 20, 22].



118 C. W. Castillo-Garsow and C. Castillo-Chavez

Research Project 4 A most important challenge facing the study of epi-
demics come from key questions at the intersection of three fields, demogra-
phy, epidemiology, and genetics. These problems are particularly challenging
because they involve multiple temporal scales: the epidemiological, the
demographic, and the evolutionary time scales. What models and approaches
have we developed to address the joint dynamics of these three processes? A
good place to start may be [36].

Research Project 5 Moving from the field of epidemiology but still looking
at problems that involve some form of contagion can also be addressed
in frameworks built to address particular data patterns. We have work, for
example, on the spread of scientific ideas and on whether or not there is a
copycat effect on that temporal patterns generated by school mass shootings
[6, 59]. In general, social science provides many opportunities to innovate
with epidemiological techniques. Many of our students have had success with
projects in this area.

8 Notes for Mentors

Guiding a student-led research project is a very different experience from assigning
a research project. Assigning a research project allows the mentor to anticipate and
plan for any difficulties that might arise, but it comes at the cost of student passion.
A student-led research project is a passionate research project, but it will often be in
an area outside your area of expertise. The mentor of a student-led research project is
always playing catch-up. She (or he) relies on her experience and expertise to think
faster than the students and anticipate problems that might arise while the project is
being developed.

The primary role of the mentor of a student-led project is to serve as an academic
advisor in almost the same way that you would mentor a graduate thesis. The mentor
pushes to the student farther, provides instruction when students suffer from a skill
gap, and generally encourage students to work to find their own answers instead of
providing answers.

Part your role as a mentor will be to push the students to really understand
the context. Make sure students do research into the subject and look at previous
models. Use your knowledge of the literature and your academic connections to
suggest places that students might research.

One of the most difficult things for students to do is to develop a research
question. Help the students make sure their research question is clearly defined,
academically interesting, and small enough that students can get some results within
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the time limit of their project. In general, the best research questions tend to be about
choosing between mechanisms or strategies. Make sure that students avoid yes/no
questions or questions where the answer is obvious.

For example, the Herpes group in 2018 [1] went through a number of research
questions including “What is the effect of early treatment on HSV-2?” This is
not a good research question because the answer “HSV-2 infections decrease” is
obvious. The group further refined their research question to being about the cost
of treatment, then about the relative cost of two different treatment strategies, and
finally about finding the most cost-effective combination of both strategies.

In developing a research question and a corresponding model, it is important that
mentors help students maintain a delicate applied mathematics balance. Students are
often driven by a mathematical question or a biological question and tend to forget
the other half of the model. When a model or question that is too mathematical,
students tend to only pay lip-service to the biology. The biology becomes inaccurate,
or the interpretation of the results becomes uninteresting. When a model or question
is too biological, typically the students want to include every possible detail, the
problem becomes too complex, and mathematical results become impossible within
the time limit of the project. For more information on the delicate balance between
biology and mathematics, the different ways in which researchers from different
fields value models, and how these differences affect students selecting a research
question, we highly recommend reading Smith et al. [58].

Similarly, do not let students get away with stating bare mathematical results.
Students have tendency to assume that bare mathematical results speak for them-
selves. But students are supposed to provide topic level expertise. Force discussion,
interpretation, and recommendations. There is a reason why we have included
such a long section on the interpretation of R0. Students should not anticipate that
the readers of their papers will do the work of converting results into academic
significance.

A major part of the role of a mentor is to make sure that mathematical models
do not get too big. Use your modeling experience to anticipate the complexity of
the model students propose. Count compartments and non-linearities to anticipate
the complexity of the algebra. In many ways, Sect. 4 on interpreting the basic
reproductive number is more useful for mentors than students. Mentors can use this
approach backwards to anticipate the form of R0 and how complex it will be. For
example, if students want to construct a model has a generational effect, a loop-back
latency period, and co-infection, squash that immediately. The resulting R0 would
be a total mess.

Much of the role of mentor is to provide mathematical expertise. Students will
often come up with interesting research questions or models where the necessary
analysis does not match the mathematical techniques they have learned in class.
Much of mentoring is providing just-in-time tutoring in mathematical techniques
that students either do not know about or have not learned very well. Occasionally,
you will be missing tools as well, and a problem will require an approach or a
technique that you are not familiar with. When you encounter this scenario of
missing tools, learn the tools. One of the benefits of expertise and experience is
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that you learn mathematics much faster and much better than a student. Use this
ability to learn to tutor your students in the missing tools that you both need.

Lastly, the most important role of a mentor is to inflame the passions that students
have for a topic. Students work much harder when they are passionate about a topic.
They innovate in ways we would not think to and study ideas that we would not
normally study. They push us to innovate and improve our own practice of research.
This is the primary reason why MTBI has used student-led projects since 1997.

Motivating students can be a tricky and often frustrating business. We have
found that having a social agenda greatly improves the interest of both students and
funding agencies in our program [23]. MTBI is a program driven by social impact.
The entire program is intentionally designed to improve the representation of
minorities in the sciences by creating a pipeline to graduate school. This intentional
design is not hidden from students. We share our social and political passions with
students, and this in turn encourages them to explore social and biological problems
that they are passionate about. They see that mathematics can have a direct impact
on the world and are fueled by their own passions to make the world a better place.

In the past, we have met with some resistance to this idea. We have encountered
faculty who have strongly believed that student researchers and funding agencies
should be motivated primarily by the intellectual merit of a research project without
emphasizing broader impacts. We understand and share the frustrations of many of
these researchers. It is a difficult thing to feel as if the research we are passionate
about is not valued by others on its own merits. But the reality is the broader impacts
will always be an important motivator for students and a determinant in attracting
diverse populations to the mathematical sciences. And while we can say that intel-
lectual merit is definitely a necessary motivator of students [44], the appeal of mak-
ing a change in society does not take away from that motivation, it only adds to it.
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