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Development and validation of a deep-learning model 
for detecting brain metastases on 3D post-contrast MRI: 
a multi-center multi-reader evaluation study
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Abstract
Background. Accurate detection is essential for brain metastasis (BM) management, but manual identification is 
laborious. This study developed, validated, and evaluated a BM detection (BMD) system.
Methods. Five hundred seventy-three consecutive patients (10 448 lesions) with newly diagnosed BMs and 377 
patients without BMs were retrospectively enrolled to develop a multi-scale cascaded convolutional network using 
3D-enhanced T1-weighted MR images. BMD was validated using a prospective validation set comprising an in-
ternal set (46 patients with 349 lesions; 44 patients without BMs) and three external sets (102 patients with 717 
lesions; 108 patients without BMs). The lesion-based detection sensitivity and the number of false positives (FPs) 
per patient were analyzed. The detection sensitivity and reading time of three trainees and three experienced radi-
ologists from three hospitals were evaluated using the validation set.
Results. The detection sensitivity and FPs were 95.8% and 0.39 in the test set, 96.0% and 0.27 in the internal vali-
dation set, and ranged from 88.9% to 95.5% and 0.29 to 0.66 in the external sets. The BMD system achieved higher 
detection sensitivity (93.2% [95% CI, 91.6–94.7%]) than all radiologists without BMD (ranging from 68.5% [95% 
CI, 65.7–71.3%] to 80.4% [95% CI, 78.0–82.8%], all P < .001). Radiologist detection sensitivity improved with BMD, 
reaching 92.7% to 95.0%. The mean reading time was reduced by 47% for trainees and 32% for experienced radi-
ologists assisted by BMD relative to that without BMD.
Conclusions. BMD enables accurate BM detection. Reading with BMD improves radiologists’ detection sensitivity 
and reduces their reading times.

© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Neuro-Oncology.

applyparastyle "fig//caption/p[1]" parastyle "FigCapt"
applyparastyle "fig" parastyle "Figure"

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License  
(https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any 
medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

1559

https://orcid.org/0000-0001-5864-0279
https://orcid.org/0000-0003-0221-6529
https://orcid.org/0000-0002-4630-9404
https://orcid.org/0000-0002-7547-5209
https://orcid.org/0000-0003-1188-0640
https://orcid.org/0000-0001-8533-623X
mailto:xchuanm@sysucc.org.cn?subject=
mailto:zhangr@sysucc.org.cn?subject=
https://creativecommons.org/licenses/by-nc/4.0/


 1560 Yin et al. Deep-learning model for detecting brain metastases

Key Points

• The multi-scale cascaded network enabled accurate brain metastasis detection 
on MRI.

• The detection system improved radiologists’ abilities to detect brain metastases.

Brain metastases (BMs) are the most common intracranial 
tumors, affecting an estimated 20–45%1 of patients with ad-
vanced solid tumors. BM incidence is increasing as a result 
of systemic and brain-directed therapies2 and the develop-
ment of superior neuroimaging strategies.3 BMs can dra-
matically alter treatment paradigms given the associated 
neurocognitive deficits, reduced quality of life, and poor 
prognosis, representing an increasingly prevalent challenge 
in multiple disciplines. Stereotactic radiosurgery (SRS) is 
the standard of care for eligible patients with limited BMs4,5 
because neurocognitive function is better maintained with 
SRS than with whole-brain radiation therapy.6 Additionally, 
growing evidence supports SRS as a monotherapy for pa-
tients with multiple BMs.7–10 The development of even small 
BMs alters the tumor stage, and the number of BMs im-
pacts treatment decisions. Thus, early and accurate detec-
tion of the number, size, and location of BMs is essential for 
decision-making.11

MRI is the preferred modality for BM detection, di-
agnosis, response evaluation, and surveillance. Three-
dimensional contrast-enhanced T1-weighted imaging 
(CET1WI) has significantly increased BM detection sensi-
tivity.12 However, manual BM identification by radiologists 
can be laborious and time-consuming. For patients with 
multiple metastases, it can be challenging to identify all le-
sions, especially those sized ≤ 5–7 mm, for which the detec-
tion sensitivity is as low as 50–60%.13–16 Thus, effective BM 
detection is an urgent unmet need.

Several methods have been developed for computer-
aided detection (CAD) of BMs on MRI using various 
algorithms and sequences, and some encouraging pre-
liminary results have been published.13,15–25 A  recent 
meta-analysis of 12 studies reported comparable BM 
detectability between classical machine learning and 

deep-learning (DL) approaches, which achieved pooled 
sensitivities of 88.7% and 90.1%, respectively.24 Despite 
ongoing CAD tool development, barriers in the wide-
spread clinical translation of these techniques remain, 
and, as far as we know, no clinically useful system is avail-
able. All but one study20 included in the meta-analysis 
used a single-center design,13,15–19,21–23,25 meaning that 
algorithm robustness was not evaluated. One study13 
was a prospective design, and all others were retrospec-
tive,15–23,25 which can lead to selection bias. In addition, 
most studies had relatively small sample sizes (<200 pa-
tients; range 19–1632),13–15,17,18,20,21,26,27 and sample rep-
resentativeness may have been limited. Furthermore, 
previous studies reported relatively low detection sen-
sitivities (59%–81%) for small lesions (≤5–6  mm)16,26 
or high number of false positives (FPs; up to 302 per 
person),18,21,24,25 indicating that an optimized model is 
needed. Finally, most previous studies focused on the 
standalone performance of systems by testing retro-
spective data, and only a limited number of studies re-
ported that radiologists’ BM detection sensitivity was 
improved with CAD.13,14,22,25 To the best of our knowl-
edge, the impact of incorporating CAD into the clinical 
workflow on radiologists has not been determined.

In this multi-center study, we developed a DL-based 
system for automatic BM detection (BMD) on 3D 
CET1WI using a large-scale cohort. We prospectively 
validated the BMD system using datasets from four 
institutions and evaluated radiologists’ BM detection 
efficiency with and without assistance from our novel 
system. We hypothesized that our approach would en-
able high BM detection sensitivity and generate few 
FPs, providing a valuable adjunct to radiologists in 
detecting BMs.

Importance of the Study

Early and accurate detection of brain metastases 
(BMs) is vital for effective treatment. Currently, radi-
ologists manually identify BMs, which is laborious, 
time-consuming, and particularly challenging when 
detecting subtle lesions. We developed a multi-scale 
cascaded convolution network for BM detection and 
prospectively validated its generality using multi-
center datasets. Our method had a superior detec-
tion sensitivity of 93.2%, with 0.38 false positives per 
scan in the multi-center validation. The BM detection 

system achieved the highest reported sensitivity, 89%, 
for metastases sized ≤ 3  mm. Additionally, the multi-
reader assessment by six radiologists with various 
levels of experience demonstrated that using our 
novel system increased mean sensitivity by 21% and 
decreased mean reading time by 40%. Therefore, our 
robust BM detection system will facilitate early and 
accurate BM diagnosis and improved management by 
efficiently assisting radiologists in BM detection and 
reducing radiologists’ workloads.
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Materials and Methods

Study Design and Participants

This multi-center multi-reader evaluation detection study 
was conducted in four hospitals of different tiers. Between 
August 11, 2019 and December 31, 2020, 676 consecutive pa-
tients who were newly diagnosed with BMs and underwent 
3D-enhanced MRI at Sun Yat-sen University Cancer Center 
(SYSUCC) were retrospectively included as the training and 
test set. Between September and December 2020, we also 
consecutively enrolled patients who had extracranial tumors 
but no evidence of BMs and had received head MRI, desig-
nated as the negative control set for training and testing. To 
evaluate the robustness of our system, consecutive cohorts, 
defined as the validation set, were prospectively recruited 
from SYSUCC and Meizhou People’s Hospital (MZPH), 
Dongguan People’s Hospital (DGPH), and Fujian Cancer 
Hospital (FJCH) between February and May 2021.

For the group with BMs, the inclusion criteria were pa-
tients: (1) with extracranial primary tumor(s) confirmed by 
pathology; (2) with newly developed BMs; (3) who under-
went 3D-enhanced brain MRI and at least one follow-up 
MRI, but only the initial scan with at least one lesion was as-
sessed in this study. For control patients, the inclusion cri-
teria were patients: (1) with extracranial primary tumor(s) 
confirmed by pathology; (2) who underwent 3D-enhanced 
brain MRI and showed no evidence of BMs. We excluded 
patients: (1) with primary intracranial tumor(s); (2) with me-
ningeal metastasis; (3) who had undergone brain surgery; 
(4) with excessive artifacts. There were no limitations on 
the number or size of metastases in patients included in the 
training and test sets, but patients in the validation set with 
more than 50 BMs were excluded. The detailed distributions 
of all datasets are provided in Supplementary Material 1.

This multi-center study was approved by the institu-
tional review boards (No. B2021-198-01) and undertaken 
according to the Declaration of Helsinki. For patients 
who were retrospectively recruited from SYSUCC for 
the training set and testing sets, informed consent was 
exempted by the institutional review board. Informed 
consent was obtained from patients included in the pro-
spective validation set.

MRI Protocol and Image Quality Control

Details of MRI acquisition are provided in Supplementary 
Material 2 and Supplementary Table 1. All MRI scans and 
clinical data were carefully reviewed by two board-certi-
fied neuroradiologists (with 12 and 8 years of experience, 
respectively).

Image Segmentation

No overlapping images were included among the training, 
test, and validation sets. Ground truths were manually 
established in the training set by marking a rectangular 
box around each BM on the axial 3D CET1WI images. This 
was done by four radiologists (with 3, 3, 8, and 10 years 
of experience, respectively), using UII Brain Metastasis 

Annotation Software (1.0, United Imaging Intelligence, 
Shanghai, China). The markers were confirmed by two 
neuroradiologists (with 12 and 8 years of experience, re-
spectively). For all prospective sets, the BMs were inde-
pendently confirmed by three experts (with 30, 28, and 
11 years of experience, respectively) from three hospitals. 
Divergences were resolved by consensus in either the 
training or validation set. The BM size was defined as the 
largest cross-sectional dimension on the axial image.

BMD Architecture and Implementation

The BMD system consisted of three components, i.e., the 
multi-scale detection network (feature pyramid network 
[FPN]),28 the cascade network, and the classification network 
(a 3D variant of LeNet network).29 Anchor boxes with different 
shapes were employed in the FPN to improve detection sen-
sitivity for BMs of various sizes and shapes. To reduce FPs 
while maintaining high sensitivity, we designed a cascade 
network with multiple serial neural network blocks, where 
the first detection network aimed to detect lesions with high 
sensitivity, and subsequent networks were trained using the 
same positive samples but different negative samples. The 
negative samples were FPs from the previous network. In 
this way, the cascaded networks focused on effectively re-
moving FPs in the detection results and improving the overall 
performance based on the bagging training concept.30 BMD 
architecture details are provided in Supplementary Material 
3 and Supplementary Figures 1 and 2.

Model implementation was based on the Pytorch frame-
work,31 an open-source Python DL library. We used focal 
loss (α = 2; β = .999) as the loss function. The model was 
trained using the Adam optimization algorithm to dy-
namically adjust the learning rate. The initial learning rate 
was 1 × 10 − 4. The training used an Intel (R) Xeon (R) CPU 
E5-2698 v4 @ 2.20 GHz central processing unit (CPU) and 
an Nvidia Tesla V100-SXM2, 32G × 8 graphics processing 
unit (GPU) with CUDA version 10.1. Additionally, data aug-
mentation (e.g., random shifting, rotation) was performed 
to enrich the training dataset.

Multi-Center Validation of BMD and Multi-Reader 
Evaluation

We first evaluated BMD performance using an internal test 
set from SYSUCC. We then assessed the robustness using 
a validation set from the four participating hospitals.

To assess the clinical value of BMD to radiologists, we 
designed a multi-center observer performance study. We 
recruited nine radiologists from three hospitals (SYSUCC, 
MZPH, DGPH) with varying degrees of experience (trainee [< 
3 years], experienced [5–10 years], and expert [> 10 years]). 
These radiologists, who were not involved in patient selec-
tion or image annotation and were blinded to patient in-
formation, were asked to independently read the validation 
images slice by slice using the two reading modes, with an 
interval of 3 weeks between readings. In the first session, 
all images were read without BMD. In the second session, 
the same data were presented again in random order, and 
the readers used BMD at the start of the assessment. The 
readers were instructed to mark each lesion. There was no 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac025#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac025#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac025#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac025#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac025#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac025#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac025#supplementary-data
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reading time limit. The reading time per case was recorded 
in each session for efficiency analysis.

Statistical Analysis

The lesion-based detection sensitivity, free-response re-
ceiver operating characteristic (FROC), the number of FPs per 
scan were evaluated, and the 95% confidence intervals (CIs) 
were calculated to assess BMD performance. The sensitiv-
ities were further categorized based on the BM size. For the 
two reading sessions of the multi-reader analysis, we com-
pared lesion-based detection sensitivities using McNemar’s 
test, patient-based area under the curve (AUC) using Z 
Test and reading times using Wilcoxon’s signed-rank test. 
Correlations between lesion size and number and BMD sen-
sitivity were analyzed using binary logistic regression anal-
ysis. Because all MRI scans from patients were integrated as 
one data set, the within-patient correlation for patients with 
multiple BMs was not considered. Statistical analyses were 
conducted using SPSS (25.0, IBM Corp., Armonk, NY, USA) 
and were two-sided with a significance level of 0.05.

Results

Patient Characteristics

A flowchart depicting the patient selection processes 
is shown in Figure 1. Out of 1,124 patients in the 

retrospective cohort from SYSUCC, 174 were excluded. 
The final data set comprised 950 patients (mean age, 
55  ±  12  years; 518 males, 432 females) who were as-
signed to two sets with a temporal split on October 31, 
2020: (a) a training set of 411 patients with 9360 BMs and 
269 patients without BMs and (b) a test set of 162 patients 
with 818 BMs and 108 patients without BMs. For the val-
idation set, data from 191 patients with BMs and 152 pa-
tients without BMs were prospectively collected from the 
four participating hospitals. Forty-three patients were 
excluded, and the final validation set comprised 148 pa-
tients with BMs and 152 patients without BMs as follows: 
46 patients with 348 BMs and 44 patients without BMs 
from SYSUCC; 38 patients with 177 BMs and 32 patients 
without BMs from MZPH; 34 patients with 315 BMs and 
36 patients without BMs from DGPH; 30 patients with 225 
BMs and 40 patients without BMs from FJCH. Lung cancer 
was the leading primary tumor type, with 90%, 82%, and 
84% prevalence in the training, test, and validation sets, 
respectively, followed by breast cancer. The patient char-
acteristics are presented in Table 1. Details of excluded in-
dividuals among the participating hospitals are provided 
in Supplementary Material 1.

In the training, test, and validation sets, the mean 
number of BMs per patient, mean metastasis size, and 
the number of metastases smaller than 10 mm were 17, 5, 
and 7, 5.5 ± 4.1 mm, 7.5 ± 6.3 mm, and 7.1 ± 6.0 mm, and 
8895 (92.4%), 674 (82.4%), and 888 (83.3%), respectively. 
The metastasis size and number distributions are shown 
in Figure 2.
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191 consecutive patients with BMs prospectively collected from 4
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43 individuals excluded:
with primary intracranial tumor (n = 8)
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image artifacts (n = 4)
leptomeningeal disease (n = 10)
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With BMD 

Comparing the sensitivity, AUC and reading time of 6 readers with and 
without BMD

3 trainees and 3 experienced radiologists from 3 hospitals reading the 
images of validation set (n = 300) without BMD

3 weeks washout

148 patients with 1066 BMs (SYSUCC = 46, MZPH = 38, DGPH = 34, FJCH = 30)
and 152 control patients (SYSUCC = 44, MZPH = 32, DGPH = 36, FJCH = 40)
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hospitals independently establishing the ground truth
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Fig. 1 Flow diagram for development, validation and multi-reader evaluation of BMD. BMD, brain metastases detection; BMs, brain metastases; 
SYSUCC, Sun Yat-sen University Cancer Center; MZPH, Meizhou People’s Hospital; DGPH, Dongguan People’s Hospital; FJCH, Fujian Cancer 
Hospital; FROC, free-response receiver operating characteristic; AUC, area under the curve.
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BMD Performance

The BMD model performance is summarized in Figures 2 
and 3. The model achieved detection sensitivities and FPs 
of 95.8% and 0.39 and 93.2% and 0.38 for the test and val-
idation set, respectively. The detection sensitivities and FPs 
were 96.0% and 0.27, 95.5% and 0.36, 88.9% and 0.66, and 
92.9% and 0.29 for validation sets from SYSUCC, MZPH, 
DGPH, and FJCH, respectively. Specifically, the sensitivities 
were 89%, 93%, and 93% for metastases ≤ 3 mm, > 3 mm 
and ≤ 6 mm, and > 6 mm and ≤ 9 mm in the validation set, 
respectively. When sets from different centers were ana-
lyzed, these sensitivities ranged from 84% to 93%, from 90% 
to 97%, and from 85% to 97%, respectively. FROC curves 
showed high and similar detection performance of the BMD 
for different sets (Figure 3A).

Reader Performance

Reader performances and reading times are shown in  
Table 2 and Figures 3 and 4. For validation set reads 
without BMD, the mean detection sensitivity was 73% 
[95% CI: 72–74%], ranging from 69% to 80%. When assisted 

by BMD, reader sensitivity significantly improved to 94% 
([95% CI: 94–95%], P < .001). Similar increases were ob-
served among trainees and experienced readers, with 
mean improvements of 25% and 18%, respectively (70% 
[95% CI: 69–72%] without BMD vs. 95% [95% CI: 94–96%] 
with BMD, P < .001; 76% [95% CI: 75–78%] without BMD vs. 
94% [95% CI: 93–95%] with BMD, P < .001). Additionally, the 
detection sensitivity of each reader improved when using 
BMD. For the patient-based analysis, the mean AUC of the 
reading was not significantly different between the two 
reading modes (0.960 [95% CI: 0.949–0.970] without BMD 
vs 0.948 [95% CI: 0.937–0.960] with BMD, P > .05, Figure 3B),  
even when trainee and experienced reader subgroups 
were analyzed (0.957 [95% CI: 0.942–0.972] without BMD vs 
0.958 [95% CI: 0.943–0.973] with BMD, P > .05); 0.963 [95% 
CI: 0.948–0.977] without BMD vs. 0.939 [95% CI: 0.921–
0.957] with BMD, P > .05, respectively, Figure 3C). One of 
the trainees’ reading AUC was significantly improved with 
BMD (0.875 [95% CI: 0.831–0.918] without BMD vs. 0.964 
[95% CI, 0.939, 0.988] with BMD, P < .001; Figure 3D).

For all readers, the mean reading time per case was 
140 s ± 100 without BMD and 85 s ± 57 with BMD (Table 2), 
representing a 40% decrease. Reading times for trainees 
and experienced readers were reduced by 47% and 32%, 
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respectively, with BMD. The time-saving benefits were more 
apparent among the trainees, with a 60% reduction ob-
served for Reader 3. The distributions of reading time per 
case with and without BMD for each reader are shown in 
Figure 4. We also analyzed reading time for cases with and 
without BMs. For cases with BMs, the mean relative time-
savings were 42%, 48%, and 35% for all readers, trainees, 
and experienced readers, respectively, and 29%, 44%, and 
28% for cases without BMs. The results indicated that BMD 
could shorten reading times for patients with and without 
BMs.

Discussion

In this multi-center study, we developed a cascaded model 
based on FPN for BM detection on 3D CET1WI MRI across 
a large number of patients. We assessed robustness using 
four prospective cohorts, including three external sets. 
Additionally, we conducted a multi-center multi-reader 
assessment to evaluate the impact of BMD assistance on 
reader detection performance and reading time. The BMD 
system successfully detected 93.2% of BMs with low FPs 
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of 0.38 per scan in the validation set and yielded superior 
sensitivities in the three external validation sets, ranging 
from 88.9% to 95.5%. Furthermore, our model achieved the 

highest reported sensitivity of 89% (134/151) for detecting 
BMs ≤ 3  mm and 97% (173/178) for BMs ≥ 10  mm, the 
target size criteria for response evaluation recommended 
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in the Response Assessment in Neuro-Oncology Brain 
Metastases.32 Additionally, this system assisted radiolo-
gists with various experience levels to improve their detec-
tion effectiveness, increasing the mean sensitivity by 21% 
and decreasing the mean reading time by 40%. Hence, the 
developed network may provide a robust and suitable tool 
for the early screening of patients with high BM risk,33 rou-
tine follow-ups, and response evaluations.

In a single-center study, Farjam et al.13 prospectively en-
rolled 29 patients to develop a set of unevenly spaced 3D 
spherical shell templates to detect BMs in post-Gd T1WI, 
obtaining a 93.5% sensitivity and 0.024 intracranial FP rate 
for 186 metastases < 5  mm. However, the ground truth 
was established by a radiologist with unspecified exper-
tise, and the clinical impact of their system was not evalu-
ated. Additionally, a randomized multi-reader multi-case 
study of 10 patients with a total of 23 tumors from a tertiary 
hospital demonstrated that CAD increased the mean de-
tection sensitivity of six physicians from 82.6% to 91.3%.22 
However, the study focused on tumor segmentation more 
than detection and did not analyze the reading time. Our lit-
erature search returned only one similar multi-center study 
by Xue et al.,20 who retrospectively included 1652 patients 
from three centers to construct a model for detecting and 
segmenting BMs. The model significantly reduced radia-
tion oncologists’ segmentation time, but FPs and reading 
time were not assessed. Reports on the underlying BM 
detection efficiency improvement in the clinical applica-
tion of CAD are limited. A similar CAD-aided BM detection 
study reported that readers took an additional 72 s per case 
using CAD after complete interpretation; however, perfor-
mance was slightly improved, with a figure-of-merit AUC 
increasing from 0.874 to 0.898 using CAD.

Unlike most previous publications, the current study 
used a multi-center multi-reader prospective validation 
design, in which the performance and clinical significance 
of the model were comprehensively assessed. It should 
also be noted that cases without BMs were included in the 
multi-reader interpretation. We believe this scenario better 
reflects the real-world setting in which radiologists work. 
We observed a reading time reduction for both metastatic 
and non-metastatic cases; thus, our BMD system will pro-
vide an efficient assistant tool that can be integrated into 
the clinical workflow as a concurrent-reading mode. At 
the same time, several issues should not be ignored when 
using BMD. First, we analyzed the average number of FPs 
per case in the BMD only and reader with BMD groups. 
The obtained numbers were 0.38 for AI only and 0.23 for 
reader with BMD, respectively. This suggests that the re-
sults of BMD should be carefully reviewed and identified 
by radiologists, especially for the trainees. Second, not 
in all cases, the reading time was reduced with BMD. For 
cases with limited BMs, if BMD has multiple FPs, readers 
will spend time distinguishing FPs from real ones, poten-
tially resulting in longer reading time. Third, users should 
pay close attention to the lesions that were easy to be over-
looked by BMD, especially for the small metastases with 
slight enhancement or non-enhancement (Supplementary 
Figure 3B). Nonetheless, we believe that human and AI are 
complementary. BMD has been integrated into our radi-
ology workstation since May 2021 as a right-hand partner 
and has been optimized through clinical application.

Previous studies have developed methods for the detec-
tion and/or segmentation of BMs across a diverse range of 
lesion numbers (1–180 per person) and sizes (1–52 mm),13–27  
utilizing either classical machine learning13,14,17,25,26 or 
DL15,16,18–24,27 and diverse sequences (single, two,23,26 
three,15 or a combination18). Among them, the overall sen-
sitivity and FPs per person ranged from 81.1%26 to 100%20 
and 0.5923 to 302,25 respectively. The current work investi-
gated the largest number of metastases (11 514) across the 
most extensive ranges of metastasis numbers per patient 
(1–587) and lesion sizes (1.2–72.1  mm), with the highest 
proportion of small lesions ≤ 5 mm (58.6%, 6754/11 514), 
covering a diverse set of 32 primary tumor subtypes. We 
believe our study was more representative of real-world 
data. Regardless of the notable abilities of multi-sequence 
mode,14,17,22,25 the costs of additional scan time and se-
quence availability may prevent wide clinical implemen-
tation. Our method, which only used CET1WI sequences, 
produced a high sensitivity of 89% for detecting metas-
tases ≤ 3 mm (example provided in Supplementary Figure 
3A), higher than the previously reported maximum sen-
sitivity of 82.4%22 for metastases of this size. Considering 
the trade-off between sensitivity and feasibility, our model 
may be more suitable for broad practical application. 
Additionally, we found that the sensitivity of our network 
on validation set was weakly correlated with the lesion size 
(P =  .023, odds ratio: 1.079, 95% CI: 1.010–1.151), but was 
not related to the number of lesions per patient (P = .984). 
FPN was applied to boost sensitivity; however, this should 
be optimized for a few small lesions with lower contrast 
than that of normal brain parenchyma.

Compared with existing DL techniques for BM detec-
tion, our approach contains several unique aspects. First, 
we included negative controls to train, test, and validate 
our system, unlike previous studies designating controls 
either in testing or validating.14,23,25 An intelligent model 
must learn to consistently distinguish normal anatomy 
in addition to tumors, much like a human being would. 
Additionally, these controls were used to evaluate the 
specificity of the DL model. Another feature that separates 
this study from previous works is the strength of using 16 
types of scanners manufactured by four suppliers, diverse 
images from four institutions, and the largest number of 
participating centers and readers. It is more challenging 
to maintain an overall high performance for BMD consid-
ering these factors. The clinical applicability and advance-
ment of existing BMD models have been limited by the 
retrospective nature, small sample sizes, and/or single 
institutional research at similar-tier hospitals. Thus, the 
robustness and general applicability of previously devel-
oped networks remain unknown. Our BMD system was de-
veloped and validated using a large cohort of over 1,000 
patients from different-tier hospitals and exhibited an 
overall high sensitivity (89–96%) for BM detection in the 
validation sets, which strongly suggests this BMD is ap-
plicable in diverse real-world scenarios. Furthermore, dif-
ferences in the network architecture set our BMD system 
apart. A multi-scale network based on FCN with different 
shapes of anchor boxes at different scales was employed 
for various BM sizes and shapes, i.e., detecting by lesion 
sub-classifications. Subsequently, a multiple serial cas-
cade network was designed to reject FPs, and the results 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac025#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac025#supplementary-data
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were then judged by the 3D variant of LeNet to further de-
crease the number of FPs.

FPs and false negatives were inevitable in our study. Both 
metastases and blood vessels can manifest as a nodule or 
punctuation of hyperintensity on CET1WI, and the latter 
may be mislabeled as metastasis. Most FPs in this model 
derived from blood vessels (77%; examples provided in 
Supplementary Figure 3C and 3D), consistent with other 
studies13,14,17,21 that reported blood vessels accounted for 
as many as 62%–88% of FPs.14,17,21 FPs can be removed by 
means of size, hyperintensity, and sphericity criteria,13 the 
degree of anisotropy method,14 artificial neural network al-
gorithms,25,26 the RUSBoost algorithm,21 and 3D contrast-
enhanced black-blood imaging26 that can suppress blood 
vessel signals, enabling clearer delineation and better de-
tection of small BMs.34 It was reported that black-blood im-
aging could improve detection sensitivity while reducing 
small-nodule FPs to 0.42–0.59 per person.23,26 Different 
from previous studies, the current model rejected FPs via a 
cascade network with multiple serial neural network blocks. 
Our observer study revealed that FPs are easily recognized 
by radiologists by tracing anatomical structures in mul-
tiple planes. Thus, misdirection would probably be avoided 
in practice and would not require additional reading time, 
suggesting that our FPs were clinically acceptable. Our 
method failed to identify 6.8% of BMs, almost all of which 
were small lesions with low contrast to surrounding paren-
chyma or annular enhancement, consistent with previous 
studies.13,16,21 Earlier studies found that CAD methods were 
likely to overlook lesions that were attached to vessels, had 
low contrast to the background,13,21 or were close to the 
surface or gray matter–white matter interfaces of the cere-
brum.16 Park et al.23 combined 3D black-blood imaging with 
3D gradient echo in a DL model, which increased the sen-
sitivity from 25.5% to 82.4% for nodules ≤ 3 mm relative to 
the 3D gradient echo model alone. Compared with single-
scale detection networks that only perform detection on 
the finest level, different scales of image features can be 
utilized in our multi-scale detection network to detect di-
verse BMs and improve the sensitivity for tiny lesions. In 
addition, precisely segmenting vessels from brain tissues 
may be a potential strategy to detect more lesions adjacent 
to vessels. The detection of small BMs with lower contrast 
to the background remains a challenge for CAD and also 
experienced radiologists.

The potential limitations of this study must be discussed. 
First, the training and test sets were labeled retrospec-
tively, which might have led to a certain level of selection 
bias; however, the prospective validation suggests that 
this limitation is not prominent. Second, only post-contrast 
T1-weighted MR images were used for this study to reflect 
what is commonly used in practice. Third, the current model 
was designed for thin-slice images, and the performance 
may be reduced for thick-slice images, such as 5 mm. We 
are training a thick-slice model to address this issue. Fourth, 
the impacts of other algorithms on reading times were 
not available for comparison, but our network showed 
high performance and significantly reduced radiologists’ 
reading time relative to their reading times without BMD. 
Finally, the current method does not automatically segment 
the mass contour nor identify the primary tumor types, 
which we will also address in our ongoing work.

Conclusions

We developed and prospectively validated an automatic 
system employing FPN for BM detection on CET1WI MR 
images from four institutions. Our multi-center evaluation 
showed that this system facilitated radiologists with var-
ious levels of experience to achieve a high level of detection 
sensitivity and reduced reading time using the concurrent-
reading mode. Our findings provide evidence for CAD of 
BMs in clinical translation with improved confidence.
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Supplemental material is available at Neuro-Oncology 
online.
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