
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1390  | https://doi.org/10.1038/s41598-022-05280-1

www.nature.com/scientificreports

Arousal‑based pupil modulation 
is dictated by luminance
Jasmine Pan1,2*, Michaela Klímová1,2, Joseph T. McGuire1,2 & Sam Ling1,2

Pupillometry has become a standard measure for assessing arousal state. However, environmental 
factors such as luminance, a primary dictator of pupillary responses, often vary across studies. To 
what degree does luminance interact with arousal-driven pupillary changes? Here, we parametrically 
assessed luminance-driven pupillary responses across a wide-range of luminances, while concurrently 
manipulating cognitive arousal using auditory math problems of varying difficulty. At the group-
level, our results revealed that the modulatory effect of cognitive arousal on pupil size interacts 
multiplicatively with luminance, with the largest effects occurring at low and mid-luminances. 
However, at the level of individuals, there were qualitatively distinct individual differences in the 
modulatory effect of cognitive arousal on luminance-driven pupillary responses. Our findings suggest 
that pupillometry as a measure for assessing arousal requires more careful consideration: there are 
ranges of luminance levels that are more ideal in observing pupillary differences between arousal 
conditions than others.

Investigation of pupil size dates back to at least the Roman times1. Commonly considered a visual reflex, pupils 
are well known to respond to visual factors, such as in the case of the pupillary light reflex, wherein pupils con-
strict in response to high luminance (brightness) and dilate in response to low luminance (darkness). However, 
in the past century, pupillometry research has revealed that pupils also respond to endogenous factors that 
modulate arousal, including cognitive load and mental effort2–4—with pupils typically dilating with increased 
levels of arousal, load and effort. Pupillary changes with arousal have also been linked with affect, behavioral 
state, surprise, attention and incentives5.

Seminal findings supporting the notion that pupils were “windows into the mind”6,7 popularized pupillometry 
as a measure for tracking arousal and cognitive processing. Indeed, strong correlations have bridged pupil size 
changes with cortical and behavioral arousal states8–11, under isoluminant conditions, establishing pupillometry 
as a widely-adopted measure for indexing and tracking arousal states in both human and animal studies. Inter-
estingly, however, the visually-reflexive aspects of pupillometry have been less considered in the vast majority 
of these studies, as the luminance levels employed, while typically isoluminant within studies, have often varied 
across studies [e.g., Nassar et al. (screen luminance at 0.457 ± 0.010 cd/m2); McGarrigle et al. (screen luminance 
at an intermediate level between 0.0019 cd/m2 and 123 cd/m2 calibrated for each observer)12,13]. While these 
studies all substantiate that pupils dilate with increased levels of arousal, little is known regarding the potential 
interaction between arousal-driven pupillary changes and the pupillary light reflex. For instance, it is unknown 
whether the modulation of pupil size by arousal differs between environmental conditions of low luminance 
versus high luminance.

Here, we ask whether certain luminances are, in fact, more ideal in observing pupillary changes by arousal 
than others. A small handful of studies have examined the interaction between luminance, and cognitive pro-
cesses and emotional arousal, on pupil size14–18. While interactions between luminance and cognitive processes 
(e.g., cognitive load, short-term memory, working memory) as well as emotional arousal on pupillary responses 
have been reported14–17, there have been some conflicting results observed among these studies. For example, 
Peysakhovich et al. and Pfleging et al. found larger tonic, sustained, pupillary responses with cognitive load 
under lower luminance and illumination; meanwhile, Steinhauer et al. observed larger modulation of pupil size 
by sustained cognitive processing in their bright condition compared to the dark condition14–17. In all of these 
studies, however, only 2 to 3 luminance and/or illumination levels were investigated, and the 2 or 3 luminance 
and illumination levels chosen within a study were highly variable between studies.

Here, we aim to map the modulatory effect of arousal across a wider range of luminances, which could pos-
sibly reconcile the conflicting results observed among the previous studies. Mapping out the relationship across 
a range of luminances is critical in shaping our understanding of the arousal-based pupillometry literature. There 
have been a large variety of stimulus and environmental conditions deployed in these studies, all assuming an 
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additive relationship between visually-determined pupillary states and arousal—a relationship that has gone 
largely untested.

In this study, we sought to quantify the interaction between luminance and arousal, to determine whether 
this interaction is indeed additive, as has tacitly been assumed in prior work, or whether they interact multipli-
catively such that arousal-driven pupillary effects are greater in some luminance regimes than in others. Pupil 
size is typically mapped as a function of luminance, which we refer to here as the pupillary light function (PLF). 
The human PLF has a signature nonlinear profile19, with the dynamic range of pupil sizes typically occurring 
between 2 to 8 mm. The potential modulation of the PLF by arousal can be characterized by one of a number of 
possible effects. Figure 1 illustrates three possible patterns of modulation of the PLF by arousal. For example, one 
possible effect is a consistent increase in pupil size across all luminance levels under higher levels of arousal, or an 
additive shift. Alternatively, arousal may drive multiplicative effects, such as (1) an increased pupil size primarily 
at lower luminances, or a maximum response shift, or (2) an increased pupil size only at mid-luminances, or an 
inflection point shift.

To test which of these models can best account for the relationship between the PLF and arousal, in this study 
we measured the pupillary light response profile under states of both high and low arousal. There are multiple 
forms of arousal, such as affective arousal and physical arousal, but here, we focus on cognitive arousal—which 
we define as arousal tied to cognitive factors such as effort and task difficulty. It has been suggested that affec-
tive arousal’s modulation on pupil dilation is primarily mediated by the sympathetic pathway18 whereas the 
effect of cognitive arousal on pupillary responses is predominantly mediated by inhibition on the parasympa-
thetic system16, all while the pupillary light reflex is mainly mediated by a balance between the parasympathetic 
and sympathetic nervous system20. While the relationship between cognitive effort and arousal has often been 
examined, in which it has been argued that effort does not equate to arousal21,22, here we do not draw such 
connections. Rather, our examination of cognitive arousal is built on the idea that cognitive effort and arousal 
are interrelated, such that arousal is a core concept and that effort and load can drive arousal. Arousal levels as 
assessed through physiological measures have been shown to increase with task difficulty, oftentimes linked with 
increased subjective mental effort23.

We manipulated cognitive arousal by varying the difficulty (Hard versus Easy) of auditory arithmetic prob-
lems. By presenting problems in a continuous back-to-back stream blocked by difficulty, observers maintained 
a sustained state of high cognitive arousal (Hard task) or low cognitive arousal (Easy task). Studies deploying 
arithmetic difficulty have consistently found a modulation of pupil sizes, such that more difficult math problems 
evoked larger pupil size than less difficult math problems24–28. Such pupil dilation changes with increased dif-
ficulty implicate autonomic changes driven by the locus coeruleus-norepinephrine arousal system29, in which 
the locus coeruleus is commonly believed to play a role in the arousal system, mainly in the release of norepi-
nephrine throughout cortex that can derive from changes in brain state (e.g., drowsiness, alertness), reward, 
engagement, punishment and more9,30,31. The pathway tied with pupillary dilation also includes the locus coer-
uleus, however, the link between pupillary changes with arousal within the dilation-constriction pathways is 
still under investigation, as there is still ongoing research mapping out the neural pathways underlying pupil 
dilation5. Moreover, whether the locus coeruleus plays a central role in the modulation of pupil size by different 
forms of arousal, such as cognitive arousal and affective arousal, remains an open question. Cognitive arousal’s 
modulation on pupillary responses could be predominantly tied to an alternative, but not exclusive, pathway 
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Figure 1.   Possible effects of arousal on the pupillary light reflex response. The blue curve depicts the pupillary 
light response under a low arousal condition, while the different pink and red curves represent three possible 
modulations of the response under high arousal. The red curve illustrates a maximum response shift, in which 
arousal modulates pupil response at the low luminances. The solid pink curve illustrates an inflection point shift, 
or a horizontal shift of the curve, in which arousal’s modulation on the pupil response occurs at mid-, but not 
high- and low-luminances. Lastly, the dotted pink curve illustrates an additive shift, or an overall increase in 
pupil size with increased arousal across all luminance levels.
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to the locus coeruleus which encompasses the superior colliculus, shown to be involved in modulation of pupil 
size via attention-related mechanisms32.

In sum, we aimed to examine the potential interaction between cognitive arousal-driven pupil changes and the 
pupillary light reflex. To do so, we measured the PLF under high and low cognitive arousal. Our results revealed 
that there are indeed luminance regimes more ideal in observing pupillary differences—with high luminance 
being the least ideal. We also observe individual differences in the modulatory effect of cognitive arousal on the 
pupillary light function, with some observers showing the largest modulation at low- and/or mid-luminances and 
others showing equal modulation across the luminances tested. The results have implications for the selection of 
an ideal luminance in future experiments employing pupil size as a measure of arousal.

Methods
Observers.  Twenty-four observers (age: 18–35; 15 females) participated in this one-session study, with 
the exception of one subject who completed the session over 2 days due to eye-tracker issues. Five observers 
were excluded from analysis due to eye-data loss, excessive eye movements and/or failure to maintain fixa-
tion. All observers provided written informed consent and had normal or corrected-to-normal vision using 
contact lenses. The Boston University Institutional Review Board approved the study, and the experiment was 
performed in accordance with relevant guidelines and regulations. Before the start of the experiment, verbal 
instructions and a short practice run on the task were given.

Apparatus.  The stimuli were created using MATLAB (2017b) in conjunction with the Psychophys-
ics Toolbox33,34, displayed using a gamma-corrected Display +  + LCD monitor (Cambridge Research Ltd, 
1440 × 1080 px, 100 Hz).

Observers sat in a room with no illumination other than the display screen and viewed the visual stimuli 
from a viewing distance of 116 cm with their head position stabilized with a chin rest. Observers listened to the 
auditory stimuli using Sennheiser HD 202 II headphones with the volume set to 50%. The left eye was recorded 
using an EyeLink 1000 Plus Desktop Mount (SR Research) sampled at 1000 Hz. Heart rate was recorded using 
Biopac’s MP160 system using a photoplethysmogram transducer attached to the observer’s index finger of choice.

Auditory stimuli.  We presented auditory math problems in order to avoid visual confounds when measur-
ing the PLF. Auditory math problems were uniquely generated in MATLAB for each observer and produced in 
real-time using Psychtoolbox’s ‘Speak’ function, using the Linux operating system’s “male1” voice. In both the 
Easy and Hard condition, observers had to indicate whether a given math equation was true or false. The Easy 
condition consisted of “add 1” equations. An observer might hear, for example, “81 plus 1 equals 83”, and had 
to report whether the given equation was correct or incorrect. The Hard condition consisted of equations which 
involved subtracting a number in the 10’s digit. Here, an observer might hear, for example, “42 minus 18 equals 
24”. Across the entire session, approximately 50% of the equations were true and 50% were false.

All the numbers presented in any position of the equation fell within the range of 1 to 99. For the Hard condi-
tion, the majority of the subtraction equations (78.5% across participants) involved borrowing. In order to make 
the Hard condition more challenging, we generated one-third of all the incorrect answers in the session to share 
the same last digit as the correct answer, but minus 10 or 20 the actual answer. Another one-third of the incorrect 
answers were ± 1, 2, or 3 the correct answer. The remaining incorrect answers consisted of a random number 
always less than the first number presented. In the Easy condition, one-third of all the incorrect answers in the 
session shared the same last digit as the correct answer, but was plus 10 or 20 the actual answer. Another one-
third of the incorrect answers were plus 1, 2, or 3 the correct answer. The remaining incorrect answers consisted 
of a random number always greater than the first number presented.

Procedure.  Observers were told to maintain steady fixation at a fixation cross placed in the center of the 
screen (diameter: 0.1°; luminance: 15.57 cd/m2). In each 10-min task block, the screen cycled through 10 lumi-
nances (0.92 to 233.37 cd/m2, log-spaced: 0.92, 1.69, 3.13, 5.80, 10.74, 19.88. 36.81, 68.12, 126.09, 233.37), pre-
sented in a pseudorandom order for 60-s each. At the same time, observers listened to math equations (4 s), 
and made a button press to indicate whether the given equation was true or false (2 s). The math equation and 
response window (total 6 s per trial) were presented continuously throughout the block, resulting in 100 math 
problems per block (Fig. 2; All figures were generated and edited using MATLAB and Adobe Illustrator35,36). 
Accuracy feedback (total percent correct) was displayed at the end of each block. Observers completed a total of 
4 blocks: 2 blocks of both the Hard and Easy condition, order randomized. At the end of the session, all observ-
ers completed a post-experiment questionnaire recording demographic information and perceived difficulty of 
the experimental conditions.

Eye‑tracking.  Pupil size and gaze position were measured monocularly (left eye) using an EyeLink 1000 
Plus desktop eye-tracker at a sampling rate of 1000 Hz. Pupils were measured using centroid mode and a stand-
ard 5-point calibration was run at the beginning of the experimental session.

In order to map out the pupillary light reflex response, pupil size was expressed in the absolute units of mil-
limeters by converting EyeLink’s arbitrary units to millimeters using Hayes and Petrov’s formula37. Blinks were 
interpolated using cubic-spline interpolation38. Time points with abnormal pupil sizes (< 2 mm or > 9 mm) 
were treated as signal loss, with 1 s prior to the signal loss also excluded from analyses. For each participant, 
we calculated the standard deviation (SD) for both the x- and y- eye-positions to confirm fixation was being 
maintained. Time points where the horizontal or vertical eye-positions exceeded 2° from a participant’s x- and 
y-center of fixation were excluded from analysis. Four participants were excluded from further analysis due to 
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excessive eye movements or failure to maintain fixation, with an x- and y- eye-position SD greater than 1.5° and/
or having greater than 10% of data excluded from analysis. For the 19 subjects that entered analysis, the mean 
x- and y-center of fixation across participants were respectively − 0.4244° and − 0.1835°, and the mean percentage 
of data excluded from analysis was 2.89%.

For each subject and condition, mean pupil diameter in millimeters was computed for each luminance by 
averaging the eye traces across each 60-s luminance presentation. In terms of the pupillary light reflex, when 
presented with a bright luminance screen from a dark luminance screen, it takes approximately 0.2 to 1.5 s for 
the pupil to reach minimum constriction. When presented with a dark luminance screen from a bright lumi-
nance screen, it takes approximately 10 to 30 s for the pupil to reach maximum dilation (reviewed in5). When 
comparing different blocks of pupil sizes for a luminance level within an arousal condition, we do not see any 
carryover effects from the previous luminance that affects mean pupil size between the two blocks of either Hard 
or Easy math problems. In other words, the mean pupil size for one luminance level between the two blocks 
of either a Hard or Easy condition is always comparable despite the randomization of luminance presentations 
(Supplementary S1). We also computed the mean pupil diameter over the last 30 s of each 60-s trace in order 
to exclude the first half of trials where the pupil is most affected by the previous luminance level presentation 
and might have not yet reached steady-state pupillary size in response to the given luminance. We did not find 
any differences in the overall results, except for very minor pupil size differences (Supplementary S2). There is, 
however, a decrease in pupil size across the session observed in the majority of the observers, such that smaller 
pupil sizes were observed in later blocks compared to the earlier blocks of the same difficulty condition (Supple-
mentary S1). This decrease in baseline pupil size across the progression of blocks has been observed in previous 
pupillometry studies, potentially arising from habituation and experience with the task, or practice effects4,39.

Heart rate.  Like pupil dilation, changes in heart rate have been found to accompany changes in arousal22,29, 
such that heart rate positively correlates with task difficulty40. This additional physiological marker was added as 
a secondary measure for our manipulation of cognitive arousal. During the session, pulse plethysmogram was 
recorded using Biopac’s TSD200 photoplethysmogram transducer, placed on the observer’s finger of choice, in 
conjunction with the PPG100C amplifier in the Biopac MP160 system (Biopac Systems, CA, USA). Recordings 
were analyzed offline using AcqKnowledge vers 5.0, where heart rate was calculated in beats per minute (BPM). 
Heart rate calculation in BPM was calculated using a positive peak detection, with removal of a baseline window 
width of 25 ms, a noise rejection of 5% of the peak and averaged over every 5 cycles. Visual artifacts were manu-
ally excluded from the BPM calculation, and all remaining abnormal heart rates (< 30 or > 150 BPM) were also 
excluded from further analysis conducted in MATLAB in which a time course of the BPM data were then aver-
aged across luminance levels. Heart rate data for one observer was excluded from analysis due to data collection 
on two separate days. There was no significant difference in mean heart rate across the Hard and Easy condi-
tions (Hard: 68.0648 BPM, 95% CI [62.664 73.465]; Easy: 66.5693, BPM 95% CI [56.360 76.778]; paired t-test, 
t(17) = 1.9699, p = 0.0654). Across luminance levels, such differences were only significant at three luminance 
levels (luminances 10.74, 36.81, 233.37 cd/m2; Supplementary S7).

Analysis.  The pupillary light reflex function (PLF) for each condition (Hard, Easy) exhibited a nonlinear 
relationship. In order to quantify the pupillary light function and its changes with arousal level to test our ques-
tion of whether the relationship between luminance and arousal in influencing pupillary responses is indeed 
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simultaneously listened to and carried out solving back-to-back auditory math problems, indicating on a 
keyboard whether the problem given was true or false. Accuracy on the math problems were given at the end of 
the block.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1390  | https://doi.org/10.1038/s41598-022-05280-1

www.nature.com/scientificreports/

additive, as have been tacitly assumed, or whether a multiplicative interaction exists between these two factors, 
we fit our data with a hyperbolic ratio function, but more specifically, a modified version of the Naka–Rushton 
contrast response function41–43:where

where

where P(L) is the pupil response as a function of luminance; L is the luminance level; Pmax is the maximum pupil 
response; L50 is the luminance at half the maximum pupil response; and n is the slope, or the nonlinearity in the 
gain of response to the input intensity. M represents the magnitude of the PLF, which is derived by subtracting 
Pmax from Pmin , or the minimum, baseline pupil response. Since the pupillary light reflex response is a decrement 
curve—as opposed to the Naka-Rushton function which is an increment curve—M is negative after data fitting 
with Eq. (1) (Fig. 3). Taking the absolute value of M gives the full pupillary range of the PLF curve. The pupillary 
light reflex curves were fit separately for both the Hard and Easy conditions using MATLAB’s fmincon function 
by optimizing the parameter estimates using nonlinear least squares, with four free parameters, Pmax , Pmin , 
L50 , and n. L50 was constrained between 0.92 to 233.37 cd/m2. Pmax was constrained to the greatest mean pupil 
size observed across all luminances for each observer for individual fits, as Pmax represents the maximum pupil 
response in the context of our experiment, and non-saturating PLFs may lead to fits of unrealistically large Pmax 
values.

Bootstrapping analysis was used as a measure of accuracy and reliability of the parameter estimates. We 
sampled with replacement the data for each observer to obtain a PLF (20 data points for each luminance level) 
for each condition (Hard, Easy). We then computed a group-averaged PLF by averaging the data points across 
observers, and fitted it with the modified decrement Naka-Rushton function (Eq. 1). The parameter estimates 
Pmax , Pmin , L50 , and n were then subtracted between the Hard and Easy conditions to obtain a difference score. 
We repeated this 2000 times to generate a distribution of difference scores, in which p-values were then computed 
as a proportion of the difference scores that fell below or above zero.

Results
The Hard math problems were indeed more difficult than the Easy problems (Hard accuracy: 79.71%, 95% CI 
[72.634 86.787]; Easy accuracy: 95.74%, CI [94.416 97.058]). Perceived difficulty (on a scale from 1–5, with 1 
as easy and 5 as hard) of the Hard math problems was also higher than that of the Easy math problems (Hard 
perceived difficulty: 3.842, CI [3.380 4.304], Easy perceived difficulty: 1.263, CI [1.045 1.481]). We replicated 
previous work finding the modulation of pupil size by math problem difficulty24–28, wherein the Hard condition 
produced larger pupil diameters than the Easy condition for all individual luminance levels at the group level 
(Fig. 4; two-tailed t-test; p < 0.05) as well as larger pupil diameters in the Hard condition compared to the Easy 
condition when collapsed across luminance levels for all subjects (Supplementary S3; paired t-test t(18) = 9.9118, 
p < 0.001). Larger pupillary responses in the Hard condition compared to the Easy condition were also observed 
in group average time-courses of pupillary responses over the 6-s trials, broken down by luminance and arousal 
levels (Supplementary S4). However, the modulation by arousal did not appear to be uniform (Fig. 4; see also 
Supplementary S4, S5).

To quantify the PLF and its interaction with arousal, we fitted the pupillometry data with a modified decre-
ment Naka-Rushton function (see “Methods” section). Here, the three primary modulatory effects we tested 
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Figure 3.   Illustration of the parameter estimates from the modified decrement Naka-Rushton function. Note 
that M is negative as it is a decrement curve.
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were maximum response gain, inflection point gain, and additive shift. Maximum response gain is characterized 
by a shift in the parameter Pmax , indicating that arousal’s modulation leads to a multiplicative increase in the 
maximum pupil size at the lowest luminances. Inflection point gain is characterized by a shift in the parameter 
L50 , causing a horizontal shift of the PLF wherein arousal’s modulation on pupil response occurs solely at mid-
luminances, and is absent at higher and lower luminances. Additive shift is characterized by a shift in both the 
Pmax and Pmin parameter, in which arousal boosts pupil size across all luminance levels. Our group results were 
best described as both a maximum response gain (Hard Pmax mean: 7.3495 mm, 95% CI [7.1158 7.5832]; Easy 
Pmax mean: 7.1393 mm, CI [6.8891 7.3896]; paired t-test, t(18) = 4.3707, p < 0.001), wherein arousal primarily 
modulated pupil size at lower luminance levels, as well as an inflection point gain (Hard L50 mean: 26.8607 cd/
m2, CI [20.7466 32.9748]; Easy L50 mean: 19.469 cd/m2, CI [16.3717 22.5672]; paired t-test, t(18) = 2.9312, 
p = 0.0089), in which arousal primarily modulated pupil size at mid-luminance levels (Fig. 5a). Bootstrapping 
tests (Fig. 5b) for all of the parameter estimates ( Pmax , L50 , Pmin, and n ) also confirms the modulation by arousal 
is best characterized by a maximum response gain (bootstrap test, p < 0.001), as well as an inflection point gain 
change (bootstrap test, p < 0.001) on the PLF, with no difference between the Hard and Easy condition PLFs in 
terms of baseline pupil size (bootstrap test, p = 0.1700) and slope (bootstrap test, p = 0.0785). To obtain a clearer 
picture of the modulation of arousal at both the group and individual subjects’ level, Fig. 5c displays scatterplots 
of parameter estimates from the model-fits for each observer between the Hard and Easy condition. We found 
a reliable increase in Pmax , or maximum pupil response, in the Hard condition across majority of the observers. 
Similarly, we observed a sizeable increase in L50 , or the luminance of inflection point, in the Hard condition 
for most observers. In terms of baseline pupil response, Pmin , observers’ parameter estimates generally hovered 
around unity, indicating little to no difference in minimum pupil response as a function of arousal. We also find 
no difference in slope of the PLF, n , at a group level.

Due to variability in parameter estimates across participants, we then fit the modified Naka-Rushton to 
individual observer’s PLFs, assessing whether the maximum response gain, inflection point gain, additive shift 
gain, or a combination of the different models (4 possible combination of models) best characterized the modula-
tion of arousal within individuals. To test this, the data were fit to additional modified versions of the modified 
decrement Naka-Rushton function where we add an additional arousal coefficient, A44,45 to test for arousal’s 
modulation of the PLF.

The maximum response gain model (AR) equation was expressed as:

where the additional arousal parameter A modulates the gain of the Pmax parameter, leading to a multiplicative 
effect or vertical shift of the curve on the overall response (see red curve in Fig. 1).
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Figure 4.   Group results. (a) Group-level mean pupillary light reflex function for the Hard and Easy condition 
fitted with the modified Naka-Rushton function. Error bars represent SEM. Overall, greater pupil size is 
observed in the Hard condition compared to the Easy condition across all ten luminance levels. (b) To test 
for significance between the pupil size in the Hard and Easy conditions, the difference in pupil size was taken 
between the Hard and Easy condition for every observer at every luminance level. Group-averaged pupil 
differences across all ten luminance levels were then calculated. The shaded gray area represents the 95% 
confidence interval.
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Figure 5.   Parameter estimates. (a) Left: Mean parameter values for Pmax, maximum pupil response at lowest luminance 
for the Hard (red) and Easy (blue) condition. This parameter reflects a multiplicative gain of pupil size response, such that 
maximum pupil response is higher in the Hard condition than in the Easy condition. Right: Mean parameter estimates for 
L50, the inflection point or luminance value at half maximum pupil response, for both the Hard and Easy condition. Each 
circle represents the parameter estimate of an individual observer, and the error bar represents the 95% confidence interval. 
(b) Bootstrapped distributions (2000 iterations) of the difference between Hard and Easy parameter estimates for Pmax, L50, 
Pmin, and n. (c) Scatterplot of individual observer parameter estimates comparing Hard versus Easy for Pmax, maximum pupil 
response, L50, inflection point, Pmin, minimum pupil response, and n, slope. The purple dot indicates the group-averaged 
parameter estimates, with the error bars indicating the SEM. The dotted line indicates the unity line of no difference in 
parameter estimates between the Easy and Hard condition.
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The inflection point gain model (AIP) equation was expressed as:

where the additional arousal coefficient A scales multiplicatively with luminance levels Ln , leading to a horizontal 
shift of the curve (see solid pink curve in Fig. 1).

The additive gain model (AA) equation was expressed as:

where the additional arousal parameter A scales Pmax , leading to an overall shift of the curve across all luminances 
(see dotted pink curve in Fig. 1). In addition to these three core models, we fit four additional models which 
consisted of all the possible combinations of the three models listed above.

In order to assess which model best captured individual observer’s arousal modulation on the PLF, the Easy 
(low arousal) data were first fit with the modified decrement Naka–Rushton equation (Eq. 1). The parameter 
estimates obtained ( Pmax , L50 , Pmin, and n ) were then treated as fixed parameters when fitting the Hard (high 
arousal) data with the 7 models described above (e.g., Eqs. 2–4 and combination models). When fitting the 
Hard data with each of the 7 models, the additional arousal parameter, A, was the only parameter we obtained 
the best estimates for. To evaluate the most parsimonious model to account for the modulatory effect of arousal 
on the data, we then calculated the corrected Akaike Information Criterion (AICc), using sum of square errors 
(SSE). The corrected AIC was used as it better takes into account smaller sample sizes (N < 30)46. In the selection 
of the best parsimonious model, we then calculated ∆AICc, by subtracting the minimum AICc value out of all 
seven models from all the other models’ AICc values. The closer a ∆AICc value is to zero, the better the model is 
believed to explain the data, compared to other models.

For every observer, we resampled with replacement the PLF for each condition (Hard and Easy) for 2000 
iterations, and conducted model comparisons on each iteration to obtain confidence intervals around each model 
estimate. Model comparisons revealed different winning models across groups of observers: 8 observers had 
the maximum response gain and inflection point gain combination model as the most parsimonious model, 3 
observers had the maximum response gain model, 2 observers had the inflection point model, 2 observers had 
the additive gain model, 2 observers had the full model, 1 observer had the additive and inflection point gain 
combination, and 1 observer had the maximum response gain and additive combination model. The winning 
model for each observer well-characterized the modulation by arousal on individual subjects’ PLFs (group-
averaged R2 = 0.97309, CI [0.9649 0.9813]). Overall, the majority of the subjects’ modulation is best described as 
a combination of both a maximum response gain and inflection point gain—consistent with our group results. 
However, there is also a diversity of winning models across the remaining observers, which indicates different 
patterns of modulations across observers. Some observers show a modulation by arousal across all luminances 
(additive), others only at low luminances (maximum response gain) or at mid-luminances (inflection point 
gain), and others show a mixture of modulatory effects (see Supplementary S6 for examples of different winning 
modulations on individual PLFs). However, despite the heterogeneity in winning models across observers, the 
∆AICc test revealed that the full model is overall the best model in explaining the data across observers (Full 
model ∆AICc: 4.010, 95% CI [3.301 4.719]; Maximum response & Inflection point ∆AICc: 4.404, CI [0.728 8.080]; 
Additive & Inflection point ∆AICc: 7.6377, CI [3.487 11.789]; Additive & Maximum response ∆AICc: 9.2419 
[2.593 15.891]; Additive ∆AICc: 11.1430, CI [4.601 17.686]; Inflection point ∆AICc: 13.9058, CI [7.638 20.174]; 
Maximum response ∆AICc: 14.0908, CI [5.433 22.749]; Fig. 6), with the maximum response gain and inflection 
point gain combination model coming closely in second.

Discussion
In this study, we examined the potential interaction between cognitive arousal and luminance on pupillary 
responses. In our experiment, cognitive arousal was manipulated using auditory math problems of two dif-
ficulty levels, Hard and Easy, while observers viewed a display cycling through various luminance levels. Doing 
so allowed us to capture the full pupillary light response function under two different arousal levels without 
any visual confounds in the mapping of the pupillary light response. Quantification of the pupillary response 
function and its changes with cognitive arousal level revealed that cognitive arousal’s modulation on pupil size 
multiplicatively interacted with luminance—with the greatest modulation overall occurring at low- and mid-
luminances, and little to no modulation occurring at high-luminances. However, on an individual subject’s 
level, there was heterogeneity in arousal’s modulation across participants, with some participants showing the 
greatest modulation at low-luminances, mid-luminances, equal modulation across all luminances, or different 
combinations of the modulations listed. Despite individual variability, across all participants, mid-luminances 
are always modulated by cognitive arousal.

Our finding that the greatest modulation by cognitive arousal on pupil size occurs across low and mid-
luminances is consistent with previous studies that examined the interaction between luminance and cognitive 
effects, such as cognitive load15,17. These studies also observe larger sustained pupil size differences at lower 
luminances when compared to a higher luminance condition, demonstrating that the pupillary light response 
is dominant over the cognitive modulation of the pupillary response at higher luminances. However, why this 
occurs remains an open question, and future studies can aim towards investigating the mechanism and function 
underlying why generally smaller (constricted) pupil sizes when viewing high luminances are tied to smaller 
pupil modulation by arousal and cognitive factors.

(3)P(L) = (Pmin − Pmax)
(A ∗ Ln)

(A ∗ Ln)+ L
n
50

+ Pmax

(4)P(L) = (Pmin − Pmax)
L
n

Ln + L
n
50

+ [Pmax ∗ A]
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In our current study, we focused on examining overall absolute pupil size, containing both tonic—absolute 
baseline pupil size indexing general arousal state—and phasic—transient and task-evoked, often indexing cogni-
tive or emotional processing expressed in pupil size change from baseline—pupillary responses as an index of 
general sustained cognitive arousal state. Based on our results, we suggest that mid-luminances (~ 5 to 37 cd/m2) 
may be most ideal for pupillometry studies examining the effect of cognitive arousal on pupil size. On a group 
level, the greatest modulation was found at both low- and mid-luminances; however, on an individual level, there 
was variability in the modulation by cognitive arousal. A majority of the observers displayed a modulation by 
arousal at low luminances; however, there were a few observers that displayed no modulation at low luminances. 
Nonetheless, consistent across all observers was a modulation at mid-luminances, as observers who displayed 
the greatest modulatory effect at low luminances also showed some effect at mid-luminances.

Our findings are best applied to experiments that want to include pupillometry as a physiological measure of 
cognitive arousal between conditions by looking at overall baseline and/or absolute pupil size differences. Here, 
we examined the effect of sustained cognitive arousal on pupillary light responses using arithmetic problems of 
varying difficulty levels. Whether a similar modulation is observed using different tasks or forms of arousal when 
examining its interactions with luminance on pupil size is currently unknown. Furthermore, whether our results 
translate to phasic, task-evoked, pupillary responses also remains an open question. Peysakhovich et al. 2017 
examined separately the effects of tonic and phasic pupil responses to luminance and cognitive arousal, using 
an n-back task as well as a math task. They observed an impact of luminance in the arousal modulation for tonic 
pupillary responses, but not for phasic pupil responses under the two luminance conditions they tested (~ 11 
vs. ~ 28 cd/m2). However, the authors suggest that the lack of an effect may be due to the two luminance levels 
they chose, both of which are mid-luminance levels. Future studies can test whether different tasks and types of 
arousal (e.g., affective arousal) show the same or a different type of modulation on the PLF and on task-evoked 
pupillary responses over a wide-range of luminances.

Additionally, future extensions of the work could test a wider range and more extreme levels of luminances, 
as the luminances tested in the current study ranged between 0.92 and 233.37 cd/m2. Nonetheless, we do not 
believe testing a wider range of luminances would affect our results. A smaller modulation on pupil size was 
already found at the higher luminances (> 100 cd/m2) in our experiment, and thus we expect either a smaller or 
no modulation of arousal to occur at even higher luminances. However, it would be interesting to test the small 
subset of observers in our experiment who show the pattern of an overall additive increase in pupil size across 
all luminances at even higher luminances, and observe what pattern of results observers who already show little 
to no modulation at the higher luminances would show at even higher luminances. Future studies could also 
examine the modulation of cognitive arousal on the pupillary light reflex (pupillary response to light or higher 
luminance) versus the pupillary dark reflex (pupillary response to dark or lower luminance), across a range of dif-
ferent luminances. Indeed, previous work has found that cognitive load, using a pro-saccade and an anti-saccade 
task, modulates the pupillary dark reflex, but not the pupillary light reflex, in distractor processing47. In our cur-
rent study, due to the randomization of our luminance presentations, we were unable to examine whether there 
are differences in modulation of the pupillary dark versus light reflex with our cognitive arousal manipulation.

The field of pupillometry has been gaining traction within the past decade, and employing pupillometry as a 
physiological measure of arousal is now widely-adopted. Studies that employed pupillometry have all carefully 
controlled for luminance, a potential confound in pupillary responses, within the context of the experiment; 
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however, are there certain luminance levels that are more ideal in observing pupillary differences between arousal 
conditions than others? In the present study, we find that across participants the largest modulatory effect by 
cognitive arousal was observed at low- and mid-luminances and the smallest effect was observed at higher 
luminances; meanwhile, there is variability between individuals whether the modulation by cognitive arousal 
was observed at low luminances. Taken together, high luminances is the least ideal for studies that want to use 
pupillometry as a measure of cognitive arousal, and mid-luminances (~ 5 to 37 cd/m2) may be most ideal, as 
mid-luminances are always modulated by cognitive arousal across all participants.

Nonetheless, qualitatively distinct individual differences in the modulatory effect of cognitive arousal on 
the pupillary light function suggest that selection of an ideal luminance for pupillometry studies manipulating 
arousal is more complicated than previously thought, as there is no single luminance level that works best across 
all participants. We suggest that when selecting a luminance level, or comparing results across different stud-
ies—or even between individuals—considering individual differences during the formation of an experiment and 
interpretation of the results is important. Our experiment is the first to observe the interaction between arousal 
and luminance across a wide-range of luminances, and carries implications for the design and interpretation 
of studies employing pupillometry. Future work can aim to examine different forms of arousal (e.g., affective 
arousal) and its interaction with luminance on pupil response, and disentangle the mechanisms underlying such 
interactions and the different modulatory effects on the pupil.

Data availability
Data are available from the corresponding author upon request.
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