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Intrauterine infection–inflammation is a major cause of early preterm birth and subsequent 
neonatal mortality and acute or long-term morbidity. Antibiotics can be administered 
in pregnancy to prevent preterm birth either prophylactically to women at high risk for 
preterm delivery, or to women with diagnosed intrauterine infection, prelabor rupture 
of membranes, or in suspected preterm labor. The therapeutic goals of each of these 
scenarios are different, with different pharmacological considerations, although effective 
antimicrobial therapy is an essential requirement. An ideal antibiotic for these clinical 
indications would be (a) one that is easily administered and orally bioactive, (b) has a 
favorable adverse effect profile (devoid of reproductive toxicity or teratogenicity), (c) is 
effective against the wide range of microorganisms known to be commonly associated 
with intra-amniotic infection, (d) provides effective antimicrobial protection within both 
the fetal and amniotic compartments after maternal delivery, (e) has anti-inflammatory 
properties, and (f) is effective against antibiotic-resistant microorganisms. Here, we 
review the evidence from clinical, animal, and ex vivo/in vitro studies that demonstrate 
that a new macrolide-derived antibiotic  –  solithromycin  –  has all of these properties 
and, hence, may be an ideal antibiotic for the treatment and prevention of intrauterine 
infection- related pregnancy complications. While this evidence is extremely encouraging, 
it is still preliminary. A number of key studies need to be completed before solithromycin’s 
true potential for use in pregnancy can be ascertained.

Keywords: macrolide antibiotics, intrauterine infection, prelabor rupture of membranes, Ureaplasma, Mycoplasma, 
pregnancy

iNTRODUCTiON

Preterm infants are at high risk of adverse outcomes, including both acute and long-term dis-
ability and death (1–4). Evidence from multiple clinical and animal studies suggests that the 
majority of early preterm deliveries (before 34 weeks’ gestation) arise as the result of intrauterine 
infection and inflammation (5, 6), although causation is hard to prove in any individual case. 
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FiGURe 1 | Relative frequency of colonization by different bacteria of the amniotic cavity in preterm deliveries with intact membranes and intra-
amniotic infection. Note that more than one bacterium are frequently detected. Data, compiled from Ref. (16–19), are indicative only and will vary according to 
clinical and demographic characteristics, plus methodological differences.
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Ascending intrauterine infection occurs when bacteria residing 
in the vagina ascend and breach the cervical barrier, colonize 
and invade the fetal membranes and amniotic fluid (AF) – and 
sometimes infect the fetus itself (7, 8). When a vigorous inflam-
matory response ensues (typically manifested as histologic 
chorioamnionitis), this may trigger preterm labor and delivery 
(7, 9, 10). Microbial colonization of the amniotic cavity without 
a significant inflammatory response rarely manifests as a cause 
of preterm delivery (11–13).

In order to successfully prevent intra-amniotic infection-
associated preterm birth and associated neonatal sequelae, an 
effective antibiotic therapy needs to be a core component of 
any pharmaceutical solution. Ideally an antibiotic administered 
antenatally for preterm birth prevention should (a) be easily 
administered and orally bioactive; (b) have a favorable adverse 
effect profile in pregnancy (devoid of reproductive toxicity 
or teratogenicity); (c) exhibit efficacy against the wide range 
of microorganisms known to be commonly associated with 
intra-amniotic infection; (d) be able to provide effective antimi-
crobial protection within both the fetal and amniotic compart-
ments after maternal delivery; (e) possess anti-inflammatory 
properties; and (f) be effective against antibiotic-resistant 
microorganisms.

In this review, we discuss the key properties, benefits, and 
potential obstetric and perinatal applications of the novel anti-
biotic solithromycin. We suggest that solithromycin is the first 
antibiotic that may meet all of the above-mentioned criteria and 
as such has the potential to represent an exciting and major new 
advance in obstetric and perinatal medicine. We highlight the 
key indications where solithromycin may be of most benefit, and 
identify areas where further research is needed in order to facili-
tate the introduction of solithromycin into obstetric practice.

iNTRAUTeRiNe iNFeCTiON, 
ANTiBiOTiCS, AND PReTeRM BiRTH

Intrauterine infection and inflammation play a well-recognized 
role in the etiology of spontaneous preterm labor and birth, 
particularly in early preterm deliveries or those complicated by 
preterm prelabor rupture of membranes (PPROM) (6, 9, 12). 
A large number of microorganisms have been implicated in 
the etiology of preterm birth, including many organisms com-
monly found in normal vaginal microbiota as well as conditions 
associated with vaginal dysbiosis (Figure 1) (14–16). Some of the 
bacteria that commonly cause infection-driven preterm birth are 
common Gram-positive bacteria frequently found in the repro-
ductive tract of pregnant women; some are more closely associ-
ated with oral microbes, while others are often found in women 
with abnormal vaginal microbiota [bacterial vaginosis (BV)] and/
or are associated with reproductive tract infections (14, 17–19). 
In many preterm deliveries, multiple bacteria are present in the 
amniotic cavity (14, 17, 20). The incidence of confirmed intra-
amniotic infection in preterm deliveries varies according to a 
variety of factors, including race and gestational age. In a recent 
analysis, Romero et  al. reported that AF bacterial colonization 
rates are around 10–15% in preterm births overall, approaching 
30% in extreme preterm births delivered before 30 weeks’ gesta-
tion (12). In an earlier review of the topic, DiGiulio described a 
frequency of AF infection ranging from 15 to 50%, with preg-
nancies complicated by PPROM having a similar infection rate 
(14). Intra-amniotic inflammation (with or without infection) is 
considerably more common, and increases more markedly with 
decreasing gestational age at delivery (12, 21, 22).

Bacteria of the class Mollicutes, in particular the “genital myco-
plasmas,” such as Ureaplasma parvum, Ureaplasma urealyticum, 
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and Mycoplasma hominis, are the most common group of 
 microorganisms isolated from the amniotic cavity of preterm 
deliveries (9, 14). Vaginal colonization rates of these organisms 
in pregnant women ranges from 35 to 90% for Ureaplasma spp. 
and 5–75% for Mycoplasma hominis (23). Dual colonization with 
both microorganisms is approximately fourfold more common in 
women with preterm vs. term deliveries (23, 24). Most studies with 
a preterm birth endpoint have reported a significant association 
with intrauterine Ureaplasma sp. colonization and preterm birth 
(25); studies of AF and placental tissues obtained from preterm 
deliveries show a clear link between Ureaplasma colonization, a 
vigorous inflammatory response, and preterm delivery (24–29).

The clinical evidence is supported by experimental studies 
consistent with causality (30). Using a pregnant sheep model (31), 
we reported that intra-amniotic injection with Ureaplasma par-
vum resulted in chronic chorioamnionitis accompanied by pro-
inflammatory cytokines in the AF and enhanced lung maturation. 
Experiments in Rhesus macaques have shown that intra-amniotic 
Ureaplasma sp. injection also drives intrauterine cytokine and 
prostaglandin production, preterm labor, and chorioamnionitis, 
replicating the disease pathogenesis and ontogeny observed in 
human pregnancy (32, 33). Together, these and other studies have 
shown that robust intrauterine inflammation sufficient to cause 
preterm birth can be induced by Ureaplasma sp. colonization of 
the amniotic cavity (25). However, it is important to note that 
around half of all preterm deliveries with intra-amniotic infection 
contain bacteria other than the genital Mycoplasmataceae, and 
a large number of bacterial species have been associated with 
inflammation-driven preterm birth (14, 17, 18, 34).

A number of clinical trials of maternal antibiotic administra-
tion have been performed to attempt to prevent or treat intrauter-
ine infection with the aim of reducing the rates of preterm birth 
and associated neonatal morbidities. As discussed in detail in this 
series by Lamont (35), some recent meta-analyses have concluded 
that antibiotic treatment of BV does not prevent preterm birth or 
improve neonatal outcomes (36–41). Metronidazole and clinda-
mycin are the two most studied antibiotics. It should be noted 
here that conventional treatment of BV results in relatively high 
recurrence rates (42–44), and that the antibiotics commonly used 
to treat BV show only weak activity against Mycoplasma hominis 
(erythromycin, azithromycin, metronidazole) or Ureaplasma 
spp. (metronidazole, clindamycin) (14). High concentrations 
of these antibiotics may be required for efficacy that may not be 
achievable with standard oral doses due to their comparatively 
low oral bioavailability or adverse effects profile.

However, there are some studies that suggest that prophy-
lactic antibiotic administration can be effective – if given before 
20 weeks’ gestation (35). This is presumably because antimicrobial 
therapy is most effective and beneficial when administered prior 
to colonization of the amniotic cavity (45, 46). A retrospective 
study of clindamycin treatment of women with genital mycoplas-
mas at high risk of preterm birth found a small but significant 
reduction in preterm birth rates and neonatal complications (47). 
In addition to clindamycin, azithromycin may also be effective. 
In non-human primates, Grigsby and colleagues showed that 
10 days of high-dose maternal azithromycin treatment delays pre-
term labor induced by experimental intra-amniotic Ureaplasma 

spp. infection and prevents fetal inflammatory response (32). 
We recently showed in our ovine model that a 4-day course of 
azithromycin-delivered maternally (10  mg/kg i.v.) eradicated 
intra-amniotic Ureaplasma parvum infection (48). Surprisingly, 
there are only two clinical studies of macrolide treatment of 
vaginal Ureaplasma spp. colonization on pregnancy outcome, the 
results of which are inconclusive (49, 50).

In addition to difficulties surrounding diagnosis of infection 
and the appropriate selection of antibiotics, a fundamental reason 
for the lack of success of antibiotic trials for preterm birth preven-
tion may lie in the limitations of the antibiotics employed. While 
macrolide antibiotics, such as erythromycin and azithromycin, 
are considered effective in treating important microorganisms, 
such as Ureaplasma spp., and are generally free of serious 
maternal and fetal side effects, their potency against genital 
mycoplasmas is not high, and there is growing prevalence of 
antibiotic resistance in these organisms (23). Studies have shown 
that maternal erythromycin administration is largely ineffective 
in eradicating intrauterine infection (39, 51, 52). This is likely 
due to poor transplacental passage of macrolides, estimated to 
be only 2–4% (53, 54). We previously showed in our pregnant 
sheep model that maternal macrolide administration fails to 
deliver effective levels of antibiotic to either the fetal circulation 
or the amniotic cavity (55) and does not eradicate intra-amniotic 
Ureaplasma parvum infection (52). Human studies confirm that 
the degree of maternal-to-fetal (M:F) passage of macrolides, such 
as erythromycin and azithromycin, is low and variable (53, 54), 
while the extent of maternal-to-amniotic transfer is only mar-
ginally greater. Antibiotics with better maternal-amniotic-fetal 
transfer properties and enhanced potencies against key bacterial 
pathogens are required to eliminate intra-amniotic infection and 
prevent significant neonatal morbidity and mortality.

SOLiTHROMYCiN: PHARMACODYNAMiCS 
AND ANTiMiCROBiAL PROPeRTieS

Solithromycin, a fourth-generation macrolide derived from 
clarithromycin, is a novel fluoroketolide antibiotic being devel-
oped by Cempra Inc. (Chapel Hill, NC, USA) for the treatment 
of community-acquired pneumonia and a variety of other 
indications (56, 57). It exhibits broad-spectrum activity against 
Gram-positive and some Gram-negative organisms, including 
many that are resistant to other macrolide antibiotics (58–67). It 
is acid stable (63) and has excellent oral bioavailability (~70%), 
superior to the approved macrolides (68–70). Solithromycin 
also demonstrates excellent tissue uptake and accumulation, 
important when considering its activity in tissues infected with 
intracellular pathogens, such as Ureaplasma sp. (70, 71).

Like other macrolides, solithromycin contains a 14-atom 
lactone ring structure and selectively binds to the peptide exit 
tunnel of the bacterial ribosome, blocking subunit assembly, 
and mRNA translation and protein synthesis (72). It has three 
key structural features that distinguish it from first- and second-
generation macrolides: a keto group replacing the cladinose 
moiety (hence, the origin of the class name “ketolide”), a fluoro 
group at the C2 position of the lactone ring, and an aryl–aryl side 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TABLe 1 | Comparison of antimicrobial efficacy (MiC50 and MiC90 values) of solithromycin vs. four other relevant antibiotics against a range of important 
bacteria.

Organism (number of strains) Solithromycin Macrolidesa Levofloxacin Penicillinsb Doxycyclin Reference

MIC50 MIC90 MIC50 MIC90 MIC50 MIC90 MIC50 MIC90 MIC50 MIC90 #

Streptococcus pneumoniae (1363) <30 120 <250 >2,000(Er) 1,000 1,000 <30 2000(P) (67)

Streptococcus pyogenes (124) 60 500 8,000 >64,000(Az) 500 1000 15 15(AC) (76)

Streptococcus agalactiaec (GBS)R (62) 30 125 >8,000 >8,000(Az) (59)

Streptococcus agalactiaec (GBS)S (10) 8 15 <125 <125(Az) 32 47(P) (59)

Staphylococcus aureus (4729) 60 >4000 >2,000 >2,000(Er) <500 >4,000 1,000 >2,000(O) (67)

Coagulase-neg Staph. (CoNS) (862) 60 >4,000 >2,000 >2,000(Er) 4,000 >4,000 >2,000 >2,000(O) (67)

Haemophilus influenzae (150) 1,000 2,000 1,000 4,000(Az) <500 <500 <1,000 2,000(AC) (67)

Neisseria gonorrhoeae (246) 125 250 500 8,000(Az) 1,000 16,000(A) (65)

Chlamydia trachomatis (10) 250 250 125 125(Az) 60 60 (77)

Mycoplasma pneumoniae (38) 0.03 0.125 0.25 0.5(Az) 500 500 125 250 (74)

Mycoplasma hominis (13) 4 8 2,000 4,000(Az) 250 500 125 8,000 (74)

Mycoplasma genitalium (40) <1 1,000 8 >8,000(Az) 250 1,000 (61)

Ureaplasma urealyticumd (10) 8 31 2,000 4,000(Az) 500 1,000 1,000 16,000 (74)

Ureaplasma parvumd (10) 8 16 2,000 4,000(Az) 500 2,000 8,000 16,000 (74)

a(Er) erythromycin; (Az) azithromycin.
b(P) penicillin G; (AC) Amoxicillin–clavulanic acid; (O) oxacillin; (A) ampicillin.
cR, macrolide resistant; S, macrolide susceptible.
dMore recent data from the analysis of 100 strains of Ureaplasma spp. (U. parvum and U. Urealyticum combined) suggest that the solithromycin MIC90 is 125 ng/ml and 2000 ng/ml 
for azithromycin (75).
Solithromycin data are highlighted in the shaded text.
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chain at C11–C12. Deletion of the cladinose structure renders 
the molecule insensitive to methylation-dependent resistance. 
Hydrogen bonding via the amino-phenyl headgroup of the 
C11,C12 side chain is primarily responsible for solithromycin’s 
high-affinity bacterial ribosomal binding properties, while the 
fluoro group enhances binding in some macrolide-resistant 
strains. Ketolides are generally less susceptible than macrolides 
to bacterial efflux pumps, enhancing their efficacy in some  
species. In addition, there is some evidence that solithromycin 
selectively blocks translation of specific polypeptides, which 
confers additional antimicrobial efficacy over traditional  
macrolides (72).

Solithromycin has been shown to exhibit excellent activity 
against many of the microbial species known to be associated 
with infection-associated preterm delivery (Table  1), includ-
ing Ureaplasma spp., Mycoplasma spp., Group B streptococci, 
staphylococci, and Chlamydia trachomatis (59, 61, 65–67, 73, 
74). Indeed, although solithromycin has not yet been tested on 
all relevant microorganisms, from the established efficacy profile 
of its parent drug clarithromycin, it is likely that solithromycin 
will be effective against all bacteria known to be associated with 
intra-amniotic infection. We recently showed that its potency 
against Ureaplasma spp. is ~30 times greater than azithromycin 
in vitro (75). Importantly, no strains of Ureaplasma were resistant 
to solithromycin, and both Ureaplasma parvum and Ureaplasma 
urealyticum were susceptible, with overall MIC90 values 125 ng/ml 
(compared to 2000 ng/ml for azithromycin).

Solithromycin has been shown to be well tolerated and rela-
tively free of adverse effects, with the most frequent complaint 
being GI disturbance and nausea that has not been dose-limiting 
(57, 69, 78, 79). It is not extensively metabolized in humans 
and is eliminated essentially unchanged via biliary excretion; 

furthermore, its plasma pharmacokinetics are not altered in 
patients with mild and moderate renal impairment (80). Two 
large global Phase 3 trials in community-acquired bacterial 
pneumonia have recently been completed using both oral and 
intravenous solithromycin administration (57). The standard oral 
regimen for solithromycin is 800 mg on day 1 followed by 400 mg 
daily for 4 days (78). However, a recent clinical trial demonstrated 
that a single 1000 mg dose of solithromycin eradicates Neisseria 
gonorrhoeae infection at oral, rectal, and genital sites (79).

TRANSPLACeNTAL PHARMACOKiNeTiCS 
OF SOLiTHROMYCiN: SiGNiFiCANCe 
AND iMPLiCATiONS

Critically, unlike preexisting macrolides, there is strong evidence 
that the M:F passage of solithromycin is comparatively efficient. 
We have shown in an ex vivo perfusion model that solithromy-
cin readily crosses the human placenta and reaches effective 
concentrations in the fetal compartment (81). The M:F transfer 
ratio is around 0.4–0.6 for the human placenta, while in the 
pregnant sheep model the M:F transfer ratio of solithromycin 
was 0.3–0.5 – more than 10-fold greater than erythromycin and 
azithromycin at similar doses (5–10  mg/kg) (Figure  2) (82). 
Although ovine and human placentation differ, the similarity 
in apparent M:F transfer between the species (53) suggests that, 
in this case, the sheep is a good model to investigate biodistri-
bution of this and other macrolides. Our data would indicate 
that a daily oral regimen of around 10 mg/kg would maintain 
effective antimicrobial protection to the fetus, achieving fetal 
plasma concentrations of several hundred nanogram/milliliter 
(Figure  3A) (82). Levels are likely to increase further with 
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FiGURe 2 | Comparisons of maternal-to-fetal and maternal-to-
amniotic transfer efficiency of solithromycin vs. azithromycin in the 
pregnant sheep model (10 and 5 mg/kg, respectively). Data are 
mean ± SD; taken from Refs. (55, 82), respectively.

FiGURe 3 | (A) Biodistribution of solithromycin in pregnant sheep, showing concentrations in the maternal, fetal, and amniotic fluid (AF) compartments after 
maternal intravenous administration (10 mg/kg); (B) Plasma and AF concentration data in the same model after intra-amniotic injection (1.4 mg/kg fetal weight); 
azithromycin and solithromycin data taken from Ref (82).
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multiple doses, such that the standard dosing regimen is likely 
to achieve effective levels in the fetus and intra-amniotically, 
but this requires experimental confirmation. The key structural 
features responsible for solithromycin’s dramatically enhanced 
placental permeability are not known.

Importantly, we have also shown in sheep that significant 
solithromycin levels in the amniotic cavity (the primary site of 
infection in this context) are achieved after maternal administra-
tion (Figure  3A) (82); repeat daily dosing is likely to achieve 
even higher concentrations due to delayed clearance from AF, 
and thereby provide enhanced protection against less sensitive 

organisms (82). The pharmacokinetic profile in the group receiv-
ing an intra-amniotic bolus of solithromycin (Figure 3B) showed 
that high concentrations were achieved and maintained for over 
48 h, with a half-life estimate of 16.5 h. However, it should also 
be pointed out that this route of administration failed to achieve 
therapeutic levels in either the maternal or fetal circulation (82), 
highlighting the need for concurrent maternal administration.

RePRODUCTive AND DeveLOPMeNTAL 
TOXiCiTY ASPeCTS OF SOLiTHROMYCiN

Macrolides (clarithromycin being the exception due to evidence 
of teratogenic effects in animal studies) are considered safe to use 
in pregnancy and have been administered to pregnant women 
for decades. Two recent, large studies of pregnancies in Canada 
and Israel (each including more than 100,000 women studied 
over a 10-year timeframe) reported no evidence of congenital 
malformations (including cardiac abnormalities) associated with 
antenatal exposure to erythromycin, azithromycin, or clarithro-
mycin (first-, second-, and third-generation macrolides) (83, 
84). Exposure during the third trimester was not associated with 
increased risk of perinatal mortality, low birth weight, preterm 
birth, or low apgar scores (83). The Israeli study also found no 
evidence of increased risk of pyloric stenosis (83), a complication 
reported in several studies to be associated with perinatal and 
postnatal exposure of infants to macrolides during the first few 
weeks of life (85, 86). It is important to note that exposure to 
macrolides in pregnancy (excluding the peri-partum period) was 
not associated with a similar increased risk (83, 85). The topic was 
recently discussed by de Vries and Ludvigsson et al., who pointed 
out some potential causes of the disparities in the literature (87); 
the event is rare even if the association is correct (88).

A potential concern around increased risk of congenital heart 
disease and maternal erythromycin exposure (odds ratio 1.92, 
95% CI: 1.37–2.68) was raised in a study by Kallen (89), again 
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using data from the Swedish Birth Register. However, a later 
study of over 13,000 pregnancies (280 of which were exposed to 
macrolides) failed to find evidence to support such an associa-
tion (90). Subsequently, the risks of antenatal macrolide exposure 
on pyloric stenosis and congenital cardiac malformations were 
specifically examined in a study of almost 5000 infants born 
with major congenital defects over a 20-year period by Lin et al. 
(91). These investigators found no evidence of an association 
between incidence of these complications and macrolide expo-
sure, regardless of trimester of exposure, including exposure 
to erythromycin specifically (91). Collectively, these studies 
support the conclusion that macrolides are safe to administer in 
pregnancy and any risks to the mother and fetus are extremely 
low or non-existent.

Nevertheless, if solithromycin is to be administered in preg-
nancy, it needs an excellent safety profile, particularly in light 
of its ability to cross the placenta (unlike other macrolides) 
that could theoretically increase the potential for adverse fetal 
effects. Studies to date show that its tolerability is high and its 
side-effects profile is favorable compared to other antibiotics. A 
phase 2 comparator study in adults showed that at the standard 
oral dose the most common adverse event was diarrhea (4.7%) 
followed by flatulence and nausea (1.6% each); no cardiac or neu-
rological side effects were reported and the adverse event rate was 
significantly lower than in patients taking levofloxacin (78). In 
a series of phase 1 pharmacokinetic/safety studies, no clinically 
significant effects were seen, although transient increases in liver 
enzyme levels were observed in 40% of subjects receiving 600 mg 
daily over 5 days (68).

Available data suggest that the risks of developmental toxicity 
and/or teratogenesis with solithromycin are extremely low. The 
effects of orally administered solithromycin on male and female 
fertility and early embryonic development to implantation have 
been evaluated in rats and rabbits (Cempra Inc.: unpublished 
findings on file). No changes were noted in estrus cycles or 
sperm parameters in the Segment I study at the maximum dose 
tested (220 mg/kg). In Segment II studies, some maternal toxicity 
was observed at the highest dose (decreases in body weight and 
food consumption and treatment-related clinical signs). The “no 
observed adverse effect limit” for developmental toxicity was 
110–220 mg/kg. No evidence of a teratogenic effect on the fetuses 
was evident in any treatment group.

Solithromycin has also been evaluated in three in vitro genetic 
toxicology assays and was not mutagenic or clastogenic in any of 
these assays. In our recent sheep studies, solithromycin-treated 
animals exhibited no clear evidence of hepatotoxicity (48), 
although the studies were not designed to specifically address 
toxicity. Detailed, long-term safety studies have not been carried 
out in this model.

An emerging concern relating to the use of antibiotics during 
pregnancy relates to potential adverse effects mediated by per-
turbation of the maternal–neonatal microbiome by, among other 
things, antibiotics (92–95). There is now strong evidence that 
maternal antibiotic exposure can cause neonatal dysbiosis and 
influence perinatal microbiome development, with potentially 
significant effects on many developmental processes (96, 97). 
However, it remains to be seen how dose, timing, and duration 

of exposure, not to mention the nature of the antibiotic itself, 
impacts upon these effects. It will be important to assess the effects 
of maternal solithromycin treatment on both the maternal micro-
biome (gut, vagina, and other sites) and the infant microbiome 
and correlate these with developmental outcomes, growth, and 
the incidence of allergic (98) and metabolic disorders (99, 100). 
At this point in time, there are no data on solithromycin’s effects 
on the gut microbiome. However, due to its efficient absorption 
by the upper GI tract, it is expected that solithromycin’s effects 
on lower GI tract microflora (typically sampled for microbiome 
studies) will be markedly less than other macrolides. To address 
this question, and to assess the short-term and longer-term effects 
of solithromycin administration on maternal microbiota, a series 
of studies are planned for the near future.

ANTi-iNFLAMMATORY PROPeRTieS OF 
SOLiTHROMYCiN

It is now widely accepted that fetal and intra-amniotic inflam-
mation, which occurs as a consequence of intrauterine infec-
tion or exposure to non-infection inflammatory agents, must 
be prevented in order to protect the fetus and maximize the 
benefits of antenatal/perinatal antimicrobial treatment (4, 101, 
102). A number of pharmacological strategies have been evalu-
ated by different researchers in order to achieve this effectively 
and safely. We have focused on the use of cytokine suppressive 
anti-inflammatory drugs (CSAIDs), in particular agents that 
block inflammatory signaling via NF-κB and p38MAPK path-
ways; an overview of these studies is presented in a companion 
article in this series (101). A key issue of such approaches, 
however, is the mode of delivery and the prevention of side 
effects. When given maternally, the dose administered must be 
large enough to ensure that the drug achieves effective anti-
inflammatory concentrations in the amniotic cavity, but not 
sufficiently high to cause maternal toxicity or off-target side 
effects. To address this problem, and also overcome the lack 
of permeability of some agents across the human placenta, we 
have investigated intra-amniotic delivery of agents. We have 
been able to demonstrate benefits of this approach with several 
agents in animal and ex vivo models (103–105). However, while 
this mode of delivery has some clear benefits, including the 
ability to achieve quite high drug concentrations in the amni-
otic cavity without risk of significant maternal or fetal exposure 
(where fetal drug uptake is low), it also has drawbacks in that 
any maternal inflammation remains untreated. This limitation 
may represent a lost opportunity to improve pregnancy out-
comes in a sub-group of women.

In this context, solithromycin may provide additional phar-
macological benefits as it is also an effective anti- inflammatory 
agent. As it would be given maternally, and crosses the 
placenta relatively efficiently, solithromycin therapy may be 
able to achieve the benefits of inhibiting both maternal and 
intrauterine inflammation in addition to its antimicrobial 
actions – depending upon the dose administered. In a key pub-
lication, Kobayashi et  al. reported that solithromycin exhibits 
significant NF-κB-mediated anti-inflammatory effects (reduced 
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cytokine and matrix-metalloproteinase (MMP)-9 expression) 
in human monocytes and peripheral blood mononuclear cells 
at concentrations ~10–40 μM (106, 107). Importantly, the anti-
inflammatory effects were ≥10-fold more potent than erythro-
mycin, clarithromycin, or azithromycin. The structural features 
responsible for the anti-inflammatory properties of macrolides 
have not been identified, although the macrocyclic ring is likely 
to be crucial (106); the specific structural characteristics respon-
sible for solithromycin’s enhanced anti-inflammatory properties 
are unknown. In vivo suppression of neutrophilia and MMP-9 
activity in a mouse model was also achieved with solithromy-
cin treatment (100  mg/kg) after exposure to a non-infectious 
inflammatory stimulus (107). The mechanism of action appears 
to be, in part, a combination of effects on HDAC2 activity 
(enhanced) and Akt phosphorylation (inhibited), via increased 
protein phosphatase PP2A activity (106). Solithromycin also has 
significant effects on NF-κB activity, probably mediated through 
enhanced dissociation of IκBα from p65/RelA, as has been dem-
onstrated for other macrolides (107–110). These findings have 
stimulated interest in the use of solithromycin administration 
for treatment of chronic obstructive lung disease, asthma, and 
non-alcoholic steatohepatitis, with a series of investigational 
studies now underway.

In an in  vitro study of human placental tissues, we con-
firmed the anti-inflammatory properties of solithromycin in 
human placentas, reporting inhibition of pro-inflammatory 
cytokine production by the antibiotic; however, this effect was 
only observed at relatively high concentrations (≥33 μg/ml, or 
~40 μM) at which a decline in cell viability was observed in this 
model (81). Effects of a similar magnitude and potency were also 
observed in (maternal) decidual cells. Furthermore, data from 
the pregnant sheep model also support an anti-inflammatory 
effect of solithromycin in pregnancy. We previously reported that 
solithromycin, delivered maternally (10  mg/kg i.v.), decreases 
the levels of mRNA expression of IL-1beta, IL-6, IL-8, and 
MCP2 in fetal skin of Ureaplasma parvum-exposed animals 
(48). No significant effects on the inflammation scoring of lung 
or chorioamnion were observed in this study, although some 
non-significant trends were observed toward reductions in lung 
cytokine expression, inflammatory histology, and cord blood 
white blood cell count (48).

These findings raise questions as to whether a sufficiently high 
dose of the antibiotic can be given to achieve anti-inflammatory 
benefits without toxicity. Our studies, assuming that they can be 
extrapolated to the pregnant woman, would suggest that large 
amounts of solithromycin would need to be given maternally to 
suppress placental and intra-amniotic inflammation, running 
the risk of placental toxicity and possibly other adverse effects. 
Administration via the intra-amniotic route by ultrasound-
guided injection would be able to achieve the levels necessary 
to exert significant anti-inflammatory effects within the amniotic 
cavity without maternal or placental exposure. This may be an 
advantageous strategy in some clinical situations, in which the 
fetus is at risk and particularly rapid antimicrobial and anti-
inflammatory therapy is required. Appropriate randomized 
clinical trials in pregnancy would be required to ensure that the 
benefits outweigh the potential risks of the intervention.

CONCLUSiONS, APPLiCATiONS, AND 
FUTURe ReSeARCH DiReCTiONS

We believe solithromycin has exciting potential for the treatment 
of intrauterine infections, prevention of preterm birth, and also 
treatment of perinatal and postnatal infections. Its pharmacody-
namic and pharmacokinetic properties are ideally suited to these 
applications, and our data on transplacental passage and AF 
accumulation suggest that this antibiotic may represent a major 
advance in antimicrobial therapy in pregnancy.

There are three main obstetric scenarios where solithromycin 
therapy may be particularly beneficial. The first is in the prophy-
lactic treatment of asymptomatic women at high risk of preterm 
birth in the first half of pregnancy. The strategy requires the ability 
to identify women who are at risk of intrauterine infection and, 
thus, target them for solithromycin treatment (35). Prognostic 
indications, in addition to standard clinical risk factors, could be 
abnormal vaginal microbiota or presence of particular microbial 
profiles or species (15, 16, 111–113), or a short cervix with evi-
dence of inflammatory changes (114–116). The second situation 
is in women with PPROM. In these pregnancies, macrolides 
have been shown to have significant benefits in terms of neonatal 
outcomes (117); with its far superior efficacy profile and ability 
to treat the fetus in  utero, it is likely that solithromycin would 
be much more beneficial than erythromycin for this indication. 
Finally, solithromycin may be effective in improving neonatal 
outcomes in women presenting with preterm labor and intact 
membranes, providing both antimicrobial and anti-inflammatory 
benefits to the fetus prior to delivery. In all of these scenarios, co-
administration with a more potent anti-inflammatory agent may 
further improve outcomes. Clinical trials to explore all of these 
applications are warranted, once pharmacokinetic studies have 
been conducted to establish safe and effective dosing regimens in 
early, mid, and late pregnancy. Assessment of the short- and long-
term effects of antenatal solithromycin therapy on the vaginal, 
gastrointestinal, and neonatal microbiomes would also be war-
ranted prior to trials of its therapeutic effectiveness in pregnancy.
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