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Abstract
Genistein is effective against amyloid-β toxicity, but the underlying mechanisms are unclear. We hypothesized that genistein may protect 
neurons by inhibiting the mitochondrial apoptotic pathway, and thereby play a role in the prevention of Alzheimer’s disease. A rat model 
of Alzheimer’s disease was established by intraperitoneal injection of D-galactose and intracerebral injection of amyloid-β peptide (25–35). 
In the genistein treatment groups, a 7-day pretreatment with genistein (10, 30, 90 mg/kg) was given prior to establishing Alzheimer’s dis-
ease model, for 49 consecutive days. Terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling assay demonstrated a 
reduction in apoptosis in the hippocampus of rats treated with genistein. Western blot analysis showed that expression levels of capase-3, 
Bax and cytochrome c were decreased compared with the model group. Furthermore, immunohistochemical staining revealed reductions 
in cytochrome c and Bax immunoreactivity in these rats. Morris water maze revealed a substantial shortening of escape latency by genist-
ein in Alzheimer’s disease rats. These findings suggest that genistein decreases neuronal loss in the hippocampus, and improves learning 
and memory ability. The neuroprotective effects of genistein are associated with the inhibition of the mitochondrial apoptotic pathway, as 
shown by its ability to reduce levels of caspase-3, Bax and cytochrome c.
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Graphical Abstract

Genistein affects mitochondrial apoptotic pathway in the hippocampi of rats with Alzheimer’s disease

Introduction
Alzheimer’s disease (AD) is a deadly progressive neurode-
generative disease, the clinical symptoms of which include 
poor perception and memory abilities, and a progressive de-
cline in the quality of daily living associated with neurolog-
ical and behavioral dysfunction (Bhattacharya and Montag, 
2015). The pathological changes in AD include a reduction 
in neuronal numbers, and the appearance of senile plaques 
and neurofibrillary tangles (Baruch et al., 2015; Calafate et 
al., 2015).

Although estrogen therapy plays an important role in AD 
prevention, additional drugs are needed for a cure. Genistein 
(GS; 4′,5,7-trihydroxyisoflavone) is an isoflavone compound 
rich in soybean, oat, rye and maize. GS has therapeutic effects 
against cancer, cardiovascular disease and osteoporosis, likely 
through its ability to modulate the immune system (Ma et 
al., 2010; Rahman et al., 2012; Behloul et al., 2013; Tae et al., 
2013; Kinoshita et al., 2014). It has been reported that GS re-
duces apoptosis of hippocampal and cortical neurons in vitro, 
and that it crosses the blood-brain barrier to influence brain 
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morphology and reduce amyloid-β (Aβ) toxicity in the brain 
(Liu et al., 2008; Liao et al., 2013; Wang et al., 2014; Aras et al., 
2015). GS also has phytoestrogen-like properties, and it can 
prevent the severe side effects caused by estrogen replacement 
therapy (Reiter et al., 2009). However, the underlying mecha-
nisms of action of GS are not well understood.

Apoptosis is in large part responsible for the massive loss 
of neurons in AD patients (Wu et al., 2013; Obulesu et al., 
2014). Therefore, reducing neuronal apoptosis should im-
prove the symptoms of AD.

There are two major pathways of  apoptosis, i .e . , 
caspase-dependent apoptosis and caspase-independent 
apoptosis. Caspase-dependent apoptosis can be divided into 
the exogenous pathway initiated by death receptors and the 
endogenous mitochondrial pathway. In the endogenous 
pathway, under the action of various apoptosis stimulating 
factors, the integrity of mitochondria was damaged and the 
permeability of mitochondria was increased. Mitochondria 
release cytochrome c and other apoptotic factors after re-
ceiving apoptotic signals. Cytochrome c forms an apoptotic 
complex with Apaf-1 and caspase-9 precursor. Caspase-9, 
caspase-3 and caspase-7 are successively activated, inducing 
apoptosis. The release of apoptotic factors is closely associ-
ated with mitochondrial membrane permeability, which is 
regulated mainly by Bcl-2 and Bax, which are members of 
the Bcl-2 family of proteins. Bcl-2 inhibits apoptosis, while 
Bax promotes apoptosis (Tan et al., 2006; Fennell et al., 2008; 
Malla et al., 2010; Zhao et al., 2014).

In this study, we investigate the effect of GS on apoptosis 
in hippocampal neurons in a rat model of AD, and we ex-
amine the underlying mechanisms of action. We focus on 
whether the neuroprotective effects of GS are associated with 
inhibition of the mitochondrial apoptotic pathway.

Materials and Methods
Animals
A total of 120 healthy female Sprague-Dawley rats, 10 
months old and weighing 250–350 g, were provided by the 
Animal Experiment Center of Anhui Medical University in 
China (certification No. SXCK (Wan) 2011-002). This exper-
iment was approved by the Center of Scientific Research of 
Anhui University of Chinese Medicine.

The rats were randomly allocated to the following six 
groups: sham-operated (sham group), AD (model group), 
GS-low (GS-L group; 10 mg/kg), GS-moderate (GS-M 
group; 30 mg/kg), GS-high  (GS-H group; 90 mg/kg), and 
estradiol valerate (EV group; 0.3 mg/kg).

Establishment of a rat model of AD and drug treatment
For the establishment of AD model, 2 mg/mL Aβ25–35 (Sig-
ma, St. Louis, MO, USA) was prepared using sterile normal 
saline and incubated at 37°C for 7 days. Except for the sham 
group, the rats in the other five groups were intraperitoneal-
ly injected with 100 mg/kg D-galactose (Sinopharm Chem-
ical Reagent, Shanghai, China) once per day for 42 days. On 
the twenty-first day of the injection with D-galactose, rats 
were then intraperitoneally administered 10% chloral hy-

drate (380 mg/kg) and immobilized on a brain stereotaxic 
apparatus (Stoelting, Wood Dale, IL, USA). The center of 
the vertex was cut to expose the bregma, and then a hole was 
drilled in the skull, 4.4 mm posterior and 2.2 mm lateral to 
the bregma. The needle was inserted 3.0 mm deep from the 
brain surface into the hippocampus. 5 µL Aβ25–35 (10 µg) 
was injected slowly using a microsyringe over a period of 5 
minutes, and maintained in place for 5 minutes. The injec-
tion was performed bilaterally. Rats in the sham group were 
injected with the same volume of normal saline (5 µL). After 
needle withdrawal, the incision was coated lightly with pen-
icillin sodium powder, sutured, and sterilized with iodine. 
Penicillin sodium was injected in the abdominal cavity to 
prevent infection for 3 days postoperatively. Morris water 
maze test indicted that the rat model of AD was established 
successfully (Fine et al., 1985; Irie et al., 1996; Sigurdsson et 
al., 1996).

Drug treatment was started on pre-operative day 7, and 
was given for 49 consecutive days. GS (Sigma) was prepared 
at concentrations of 1 mg/mL (GS-L group), 3 mg/mL 
(GS-M group) and 9 mg/mL (GS-H group) in 0.5% car-
boxymethyl cellulose sodium. EV (Delpharm Lille SAS, ZI de 
Roubaix-Est, France) was prepared to a final concentration 
of 0.03 mg/mL in distilled water. The three GS groups and 
EV group were intragastrically administered the respective 
drug after weighing (1 mL/100 g), once a day. The rats in 
the model group were given the same amount of 0.5% car-
boxymethyl cellulose sodium, and those in the sham group 
were given normal feed.

Sample preparation
After drug treatment, 10 rats from each group were anesthe-
tized by intraperitoneal injection of 10% chloral hydrate (380 
mg/kg) and decapitated. The brain tissues were taken out 
on ice and washed with 4°C normal saline to clear the tissue 
of blood. The hippocampi were dissected out and stored at 
−80°C to detect caspase-3, Bax and cytochrome c by western 
blot assay. The remaining 10 rats in each group were subject-
ed to cardiac perfusion and fixation. The rats were anesthe-
tized as above and perfused through the heart with 100–200 
mL normal saline, followed by 300–350 mL 4% paraformal-
dehyde, until the body was stiff. Each rat was decapitated, 
and the brain removed and fixed in 4% paraformaldehyde 
for observation of apoptosis by terminal deoxyribonucleoti-
dyl transferase-mediated dUTP nick end labeling (TUNEL) 
assay and for assessing Bax and cytochrome c expression by 
immunohistochemistry.

Morris water maze test
Morris water maze test was carried out on day 33 postopera-
tively to evaluate learning and memory ability. The rats were 
tested once a day for 6 days. In the test, the rats were put into 
the water facing the pool wall. The time for searching and 
climbing the platform (escape latency) was recorded. If the 
rat did not find the platform within 120 seconds, it was led 
to the platform, and the escape latency was recorded as 120 
seconds. The temperature of the water was kept at 26 ± 1°C. 
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The escape latency was monitored and analyzed with the 
Morris water maze image automatic monitoring and pro-
cessing system (ZH, Huaibei, Anhui Province, China).

TUNEL assay for apoptosis in hippocampal cells
The fixed brain tissue was dehydrated, embedded, sectioned, 
dewaxed, and stained by TUNEL according to the manufac-
turer’s instructions (Roche, Basel, Switzerland). One 400× 
field was randomly chosen for observing the CA1 region of 
the hippocampus with a microscope (BX51; Olympus, To-
kyo, Japan). A cell clearly displaying tan-colored particles in 
the nucleus was defined as a TUNEL-positive cell.

Western blot assay
Caspase-3, Bax and cytochrome c were detected by western 
blot assay in rat hippocampal homogenates. Protein samples 
were separated by 10% sodium dodecylsulfate-polyacryl-
amide gel electrophoresis. The separated proteins were then 
transferred from the gel onto a nitrocellulose membrane. 
The membranes were blocked in 5% fat-free milk prepared 
in phosphate-buffered saline/Tween-20 (PBST) buffer for 1 
hour, and incubated with rabbit primary antibodies against 
activated caspase-3, Bax and cytochrome c (1:500; Santa 
Cruz Biotechnology, Dallas, TX, USA) overnight at 4°C. The 
membranes were washed three times with PBST, and then 
incubated with goat anti-rabbit IgG (1:20,000; ZSGB-BIO, 
Beijing, China) for 2 hours at room temperature. Blots were 
developed using a 3,3′-diaminobenzidine kit (ZSGB-BIO). 
Semiquantitative analysis of the blots was performed with a 
FM 0442 gel imaging system (ProteinSimple, Hercules, CA, 
USA). Each experiment was performed in triplicate. The fi-
nal optical density value was the average of the three separate 
analyses. Protein levels were expressed as the optical density 
ratio of the target protein to β-actin (reference).

Evaluation of Bax and cytochrome c levels by 
immunohistochemistry
Both Bax and cytochrome c were evaluated by immunohis-
tochemistry in the rat hippocampus. Citrate solution (0.01 
M, pH 6.0) was used for antigen retrieval in a microwave. 
After cooling to room temperature, the tissue was washed 
three times with PBS, incubated in 3% H2O2 for 10 minutes, 
and blocked in goat serum. The tissue section was then in-
cubated with 50 µL of primary antibody (rabbit anti-Bax 
and cytochrome c antibodies; Santa Cruz Biotechnology; 
1:150) overnight at 4°C, washed three times with PBS, and 
incubated with 50 µL secondary antibody (goat anti-rabbit 
IgG; ZSGB-BIO) at 37°C for 30 minutes. The sample was 
treated with 50 µL streptavidin-horseradish peroxidase, 
developed with 3,3′-diaminobenzidine, counterstained with 
hematoxylin for 1 minute, differentiated with hydrochloric 
acid and alcohol for a few seconds, mounted, and baked in 
neutral resin. Each section was observed under a micro-
scope (Olympus) to photograph CA1 regions of the hippo-
campus after randomly selecting fields. Brown staining of 
the neuronal cytoplasm and processes indicates positive ex-
pression. The JEDA 801D image collection and processing 

system (Jieda, Jiangsu Province, China) was used to assess 
mean optical density.

Statistical analysis
The data, presented as the mean ± SD, were analyzed with 
SPSS 13.0 software (SPSS, Chicago, IL, USA). Data were test-
ed for homogeneity of variances. Differences among groups 
were assessed by one-way analysis of variance and the least 
significant difference test. A value of P < 0.05 was considered 
statistically significant.

Results
GS improved learning and memory abilities in AD rats
Learning and memory abilities were evaluated with the Mor-
ris water maze. Compared with the sham group, the escape 
latency was remarkably longer in the model group (P < 0.01). 
In comparison with the model group, the escape latencies 
were shortened dramatically in the GS-M, GS-H and EV 
groups (Figure 1).

GS reduced cell apoptosis in the hippocampus of AD rats
TUNEL assay was used to observe changes in cell apoptosis 
in the hippocampus of AD rats. Compared with the sham 
group, the number of apoptotic cells was increased in the 
model group. The number of apoptotic cells was substantial-
ly reduced in the GS-L, GS-M, GS-H and EV groups, com-
pared with the model group (Figure 2).

GS reduced cytochrome c, Bax and caspase-3 expression in 
the hippocampus of AD rats
Expression levels of caspase-3, Bax and cytochrome c were 
assessed by western blot assay. Caspase-3 expression was 
highest in the model group, and was significantly higher than 
in the sham group. Caspase-3 expression was significantly 
reduced in the GS-M, GS-H and EV groups, compared with 
the model group (Figure 3A).

Bax expression was highest in the model group, and was 
significantly higher than in the sham group. Bax expression 
was significantly reduced in the GS-M, GS-H and EV groups, 
compared with the model group (Figure 3B).

Cytochrome c expression was highest in the model group, 
and was significantly higher than in the sham group. Cyto-
chrome c expression was significantly reduced in the GS-M 
and GS-H groups, compared with the model group (Figure 
3C).

GS reduced cytochrome c and Bax immunoreactivity in 
the hippocampus of AD rats
Bax and cytochrome c immunoreactivities were evaluated by 
immunohistochemistry. Bax immunoreactivity was highest 
in the model group, and the mean optical density for Bax was 
higher in the model group than in the sham group (P < 0.01). 
Bax immunoreactivity was significantly reduced in the GS-
L, GS-M, GS-H and EV groups, compared with the model 
group. The mean optical density for Bax was significantly 
lower in the GS-H group than in the model group (P < 0.01; 
Figure 4).
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Cytochrome c immunoreactivity was highest in the model 
group, and the mean optical density for cytochrome c was 
higher in the model group than in the sham group (P < 0.01). 
Cytochrome c immunoreactivity was significantly reduced 
in the GS-L, GS-M, GS-H and EV groups, compared with 
the model group. The mean optical density for cytochrome c 
was significantly lower in the GS-H group than in the model 
group (P < 0.01; Figure 4).

Discussion
AD, also called senile dementia, has a relatively high incidence 
in China (Chan et al., 2013). The pathological features of 
AD include Aβ deposits, neurofibrillary tangles consisting of 
aggregated abnormally phosphorylated tau protein, and the 
loss of neuronal cells in the cortex and hippocampus (Liu et 
al., 2014; Bass et al., 2015). The main cause of neuronal death 
appears to be an abnormal increase and accumulation of Aβ 
in brain tissue (Huang and Jiang 2008; Duyckaerts et al., 2009; 
Rugarli and Langer 2012).

There are several rat models of AD, including the APP 
transgenic rat model, D-galactose-induced rat AD model 
and the Aβ-induced rat AD model (Alkadhi et al., 2012; 

Figure 2 Effect of GS on celll apoptosis in the 
hippocampal CA1 region in AD rats (TUNEL 
staining, × 400).
(A) Sham group; (B) model group; (C) GS-L group; 
(D) GS-M group; (E) GS-H group; (F) estradiol val-
erate group. The number of apoptotic cells (arrows) 
was decreased in the GS-L, GS-M, GS-H and estradiol 
valerate groups, compared with the model group. 
Sham: Sham-operated group (injected with normal 
saline, given normal feed); Model: the AD group (in-
traperitoneal injection of D-galactose and intracerebral 
injection of β-amyloid, given 0.5% carboxymethyl 
cellulose sodium); GS-L, GS-M, GS-H: the genistein-
low, genistein-moderate, genistein-high groups, re-
spectively (AD model, given 10, 30, 90 mg/kg genistein, 
respectively). AD: Alzheimer’s disease; GS: genistein; 
TUNEL: terminal deoxyribonucleotidyl transfer-
ase-mediated dUTP nick end labeling.

Figure 3 Effect of GS on the expression levels of caspase-3, Bax and Cyt c in AD rats.
Western blot assay was used to assess expression. (A) Caspase-3; (B) Bax; (C) Cyt c. Results are the optical density ratios of caspase-3 to β-actin, Bax 
to β-actin, and Cyt c to β-actin. *P < 0.01, vs. sham group; #P < 0.05, ##P < 0.01, vs. model group. Data are expressed as the mean ± SD (one-way 
analysis of variance and the least significant difference test). The number of samples in each group was three. Sham: Sham-operated group (injected 
with normal saline, given normal feed); Model: the AD group (intraperitoneal injection of D-galactose and intracerebral injection of β-amyloid, 
given 0.5% carboxymethyl cellulose sodium); GS-L, GS-M, GS-H: the genistein-low, genistein-moderate, genistein-high groups, respectively (AD 
model, given 10, 30, 90 mg/kg genistein, respectively). Cyt c: Cytochrome c; AD: Alzheimer’s disease; GS: genistein; EV: estradiol valerate.

Figure 1 Effect of GS on learning and memory abilities in AD rats.
Morris water maze test was carried out on day 33 postoperatively. *P 
< 0.01, vs. sham group; #P < 0.01, vs. model group. Data are expressed 
as the mean ± SD (n = 20; one-way analysis of variance and the least 
significant difference test). Sham: Sham-operated group (injected with 
normal saline, given normal feed); Model: AD group (intraperitone-
al injection of D-galactose and intracerebral injection of β-amyloid, 
given 0.5% carboxymethyl cellulose sodium); GS-L, GS-M, GS-H: the 
genistein-low, genistein-moderate, genistein-high groups, respectively 
(AD model given 10, 30, 90 mg/kg GS, respectively). AD: Alzheimer’s 
disease; GS: genistein; EV: estradiol valerate.
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Figure 4 Effect of GS on Bax and Cyt c immunoreactivity in AD rats (immunohistochemical staining, ×400).
Immunohistochemical staining was used to detect immunoreactivity for Bax (A) and Cyt c (B) in the hippocampus of AD rats. Brown staining 
in the neuronal cytoplasm and processes indicates positive expression of Bax and Cyt c. The number of samples in each group was six. *P < 0.01, 
vs. sham group; #P < 0.01, vs. model group. Data are expressed as the mean ± SD (one-way analysis of variance and the least significant differ-
ence test). (a) Sham: Sham-operated group (injected with normal saline, given normal feed). (b) Model: AD group (intraperitoneal injection of 
D-galactose and intracerebral injection of β-amyloid, given 0.5% carboxymethyl cellulose sodium). (c–e) GS-L, GS-M, GS-H: the genistein-low, 
genistein-moderate, genistein-high groups, respectively (AD model, given 10, 30, 90 mg/kg genistein, respectively). (f) EV: Estradiol valerate group. 
MOD: Mean optical density; AD: Alzheimer’s disease; Cyt c: cytochrome c; GS: genistein.

Hanzel et al., 2014; Gao et al., 2015). At present, the intrace-
rebral Aβ25–35 injection-induced AD model is very popular. 
However, this model is complicated by self-healing, which 
might affect the experimental results. Therefore, in the pres-
ent study, a rat model of AD was established by intraperito-
neal injection of D-galactose combined with intracerebral 
injection of Aβ25–35.

Caspase-3, Bax and cytochrome c are key components of 
the mitochondrial apoptotic pathway (Huttemann et al., 
2011; Stevens, 2011). In our rat AD model, neurons in the 
hippocampus exhibited increased apoptosis, and the expres-
sion levels of caspase-3, Bax and cytochrome c were signifi-
cantly elevated. After treatment with GS, hippocampal neu-
ronal apoptosis was significantly reduced, and the expression 
levels of caspase-3, Bax and cytochrome c were significantly 
decreased. Both western blot assay and immunohistochemi-
cal staining were performed in this study, with each method 
confirming the results of the other, thereby enhancing the 
validity of the findings.

Our findings provide novel insight into the effectiveness 
and mechanisms of action of GS for the treatment of AD. 
Future studies should focus on the neuroprotective mecha-
nisms of GS, and on processes upstream of the mitochondri-

al apoptotic pathway, such as endoplasmic reticulum stress.
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