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A Multi-omic Integrative Scheme Characterizes Tissues
of Action at Loci Associated with Type 2 Diabetes
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Summary
Resolving themolecular processes that mediate genetic risk remains a challenge becausemost disease-associated variants are non-coding

and functional characterization of these signals requires knowledge of the specific tissues and cell-types in which they operate. To

address this challenge, we developed a framework for integrating tissue-specific gene expression and epigenomic maps to obtain ‘‘tis-

sue-of-action’’ (TOA) scores for each association signal by systematically partitioning posterior probabilities from Bayesian fine-mapping.

We applied this scheme to credible set variants for 380 association signals from a recent GWAS meta-analysis of type 2 diabetes (T2D) in

Europeans. The resulting tissue profiles underscored a predominant role for pancreatic islets and, to a lesser extent, adipose and liver,

particularly among signals with greater fine-mapping resolution. We incorporated resulting TOA scores into a rule-based classifier

and validated the tissue assignments through comparison with data from cis-eQTL enrichment, functional fine-mapping, RNA co-

expression, and patterns of physiological association. In addition to implicating signals with a single TOA, we found evidence for signals

with shared effects inmultiple tissues as well as distinct tissue profiles between independent signals within heterogeneous loci. Lastly, we

demonstrated that TOA scores can be directly coupled with eQTL colocalization to further resolve effector transcripts at T2D signals. This

framework guides mechanistic inference by directing functional validation studies to the most relevant tissues and can gain power as

fine-mapping resolution and cell-specific annotations become richer. This method is generalizable to all complex traits with relevant

annotation data and is made available as an R package.
Introduction

The scale of genetic studies of type 2 diabetes (T2D [MIM:

125853]) has dramatically expanded in recent years to

encompass hundreds of thousands of individuals and

tens of millions of variants, culminating in the discovery

of over 400 independent genetic associations that influ-

ence disease susceptibility.1–4 However, as with other com-

plex traits, the majority of T2D-associated variants are

non-coding and are presumed to mediate risk by affecting

genetic regulatory mechanisms.5 Characterization of the

processes mediating genetic risk requires definition of the

regulatory elements perturbed by these variants, along

with the downstream consequences on gene expression

and molecular pathways. Such regulatory insights have

been typically gleaned through genome-wide approaches

that integrate genetic data with information from expres-

sion quantitative trait loci (eQTL) analyses, chromatin

accessibility and interaction mapping, and functional

screening.6–11

A major challenge to these approaches is that the

molecular processes that underpin disease risk are often
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tissue specific. Although the methods mentioned above

can inform a genome-wide view of the tissues most prom-

inently involved in disease (e.g., through patterns of

genome-wide enrichment), they do not necessarily iden-

tify the most relevant tissue at any given association

signal. For example, although several studies have shown

strong enrichment of T2D-associated SNPs among regula-

tory elements in pancreatic islet tissue, there are clearly

some signals that exert their impact on disease risk in pe-

ripheral tissues such as adipose, skeletal muscle, and

liver.12–15 Basing functional interpretation on the wrong

tissue for a given variant (e.g., relying on islet data for a

signal that operates in the liver) is likely to give rise to

misleading inference and misdirected efforts at subse-

quent experimental characterization. Furthermore, as

more detailed maps of regulatory elements and functional

data in tissues and cell types relevant to disease become

available, the need to formulate principled strategies for

integrating these features across datasets becomes more

important because the ever-expanding scope of epige-

nomic and transcriptomic reference data can otherwise

complicate variant interpretation.
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sco, CA 94080, USA

(M.I.M.)

nal of Human Genetics 107, 1011–1028, December 3, 2020 1011

ttp://creativecommons.org/licenses/by/4.0/).

mailto:anubha@well.ox.ac.uk
mailto:mark.mccarthy@drl.ox.ac.uk
https://doi.org/10.1016/j.ajhg.2020.10.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2020.10.009&domain=pdf
http://creativecommons.org/licenses/by/4.0/


To address the challenge of determining most likely ‘‘tis-

sues-of-action’’ at loci associated with complex traits such

as T2D, we developed a framework for jointly integrating

genetic fine-mapping, gene expression, and epigenome

maps across multiple disease-relevant tissues. As an illus-

tration, we show how this scheme enabled a scalable

approach for comparing the relative contributions of the

key tissues involved in T2D pathogenesis (i.e., those con-

trolling insulin secretion and action) by allowing us to

delineate probabilistic tissue scores at individual genetic

signals (deemed ‘‘tissue-of-action’’ or TOA scores). We

explored the utility of this approach by applying it to a

set of fine-mapped genetic associations from a recent

large-scale meta-analysis of T2D and assessed the extent

to which assigned tissues from a score-based classifier

were corroborated by orthogonal datasets. We present re-

sults from these analyses along with new insights gleaned

from specific loci that show, collectively, that this system-

atic approach to integrating disparate sources of informa-

tion effectively resolves relevant tissues at genome-wide as-

sociation study (GWAS) loci.
Material and Methods

Genetic Data
Genome-wide association summary statistics from a meta-analysis

of T2D GWASs corresponding to 32 studies of European ancestry

(74,124 affected individuals and 824,006 controls),4 conducted by

the DIAMANTE consortium, are available on the Diabetes Genetics

Replication and Meta-analysis (DIAGRAM) consortium website.

To conduct annotation enrichment analyses (see below), we

usedGWAS summary statistics from the inverse-variance weighted

fixed-effects meta-analysis of T2D unadjusted for BMI that was

corrected for residual inflation (accounting for structure between

studies) with genomic control.4 Of the 403 conditionally indepen-

dent GWAS signals reported in Mahajan et al., 2018b, 380 signals

were amenable to fine-mapping after excluding rare variants (e.g.,

minor allele frequency (MAF) < 0.25%) and a signal mapping to

the major histocompatibility complex (MHC) locus.4 Further-

more, 41 of the 403 signals showed heterogeneity in effect

estimates between BMI-adjusted and BMI-unadjusted analyses.

Fine-mapping of these signals incorporated summary statistics

from the appropriate GWASmeta-analysis (i.e., summary statistics

from the BMI-unadjusted analysis were used to fine-map signals

that were only significant in the BMI-unadjusted analysis).4 The

99% genetic credible sets that corresponded to each signal and

comprised SNPs that were each assigned a posterior probability

of association (PPA)—summarizing the causal evidence for each

SNP16,17—were also downloaded from the DIAGRAM website.

Gene Expression Data
Gene expression data for 53 tissues—including liver (n ¼ 175),

skeletal muscle (n ¼ 564), and subcutaneous adipose tissue (n ¼
442)—were downloaded from the Genotype-Tissue Expression

Project (GTEx) Portal website. Data correspond to GTEx version

7 (dbGaP accession phs000424.v7.p2) and represent RNA

sequencing reads mapped to GENCODE (v19) genes.18

Gene expression data for pancreatic islets (n ¼ 114) were ac-

cessed from a previous study6 that involved sequencing stranded
1012 The American Journal of Human Genetics 107, 1011–1028, Dec
and unstranded RNA library preparations at the Oxford Genomics

Centre. We used this set of islet samples to calculate expression

specificity scores and perform co-expression analysis (see below

and in Gene Co-expression). An additional set of 60 islet samples

available to us in-house was also used for eQTL mapping and

enrichment analysis. All 174 islet samples were included in a

subsequent analysis19 performed by the Integrated Network for

Systemic Analysis of Pancreatic Islet RNA Expression (InsPIRE)

consortium. RNA-sequencing reads of all islet samples were also

mapped to gene annotations in GENCODE (v19), in line with

GTEx accessed data, with Spliced Transcripts Alignment to a

Reference (STAR; v020201) and quantified with featureCounts

(v1.50.0-p2).

Gene read counts for each tissue were transcript per million

(TPM) normalized to correct for differences in gene length and

library depth across samples. The tissue specificity of TPM-normal-

ized gene expression was measured with expression specificity

scores (ESSs) obtained with the following formula:

εg;t ¼
med expressiong;t

� �
P

x˛Tmed expressiong;x

� �;

where εg;t is the ESS for gene g in tissue t, and T is the set of eval-

uated tissues.

Partitioning Chromatin States
Chromatin state maps from a previous study20 based on a 13-state

ChromHMM21 model trained from ChIP-seq input for histone

modifications (H3K27ac, H3K27me3, H3K36me3, H3K4me1,

and H3K4me3) were downloaded from the Parker lab website.

Chromatin state maps for liver, pancreatic islet, skeletal muscle,

and adipose tissue (nuclei from crude preps of abdominal fat de-

pots22) were used for the present study. Partitioned chromatin

state maps used for generating TOA scores (see Deriving TOA

Scores) were obtained in the R statistical environment (v3.6.0)

with the Genomic Ranges (v1.36.1) library. For each chromatin

state annotation, we used the disjoin function (Genomic Ranges)

to delineate non-overlapping segments across each of the four tis-

sues. These segments were then compared with the annotation

sets corresponding to each tissue to determine segments that

were (1) tissue specific, (2) shared across all tissues, or (3) shared

in a combination of two or more (but not all) tissues.

Annotation Enrichment Analysis
To obtain fold enrichment values to use as annotation weights, we

performed genome-wide enrichment analysis by using the pro-

gram fgwas23 (v0.3.6). For this analyis, we used summary statistics

(i.e., Z scores, p values) from the DIAMANTE European BMI-unad-

justed meta-analysis of T2D GWASs.4 Enrichment of T2D-associ-

ated SNPs was assessed for coding sequence (CDS) and 13 chro-

matin state annotations mapped in human islet, liver, skeletal

muscle, and adipose tissue from the Varshney et al. study.20 To es-

timate log2-fold enrichment values, we used the –cc flag (speci-

fying GWAS input from a case-control study) and applied default

distance parameters (i.e., genome partitioned ‘‘blocks’’ of 5,000

SNPs). Weights were obtained by exponentiating the mean log2-

fold enrichment values for each tissue-level annotation.

Deriving TOA Scores
In order to obtain TOA scores for each of the 380 conditionally in-

dependent genetic association signals, we partitioned the corre-

sponding PPA values of the 99% genetic credible set SNPs. For
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each SNP j in the 99% credible set, we obtain a vector sj;a for each

annotation a among the set of coding sequence and chromatin

state annotations in set A. Each element in sj;a corresponds to a tis-

sue t in the set T comprising all evaluated tissues and is given by

the equation,

sj;a;t ¼ wa;tP
i˛T1ðj; a; iÞ

1ðj; a; tÞ;

where wa;t is the weight of annotation a in tissue t and 1 is a SNP-

mapping function defined as

1ðj; a; tÞ : ¼

8<
:

1 if SNP j overlaps chromatin state annotation
a in tissue t

εg;t if SNP j overlaps coding sequence annotation
a for gene g

0 otherwise

;

where εg;t is the ESS value for gene g in tissue t. Note that this func-

tion serves as an indicator function for binary annotations (e.g.,

chromatin states), whereas in the special case of coding SNPs,

continuous values on the interval [0,1] (i.e., ESS values) are used

to indicate the relative expression levels of the corresponding

gene and can be used to inform tissue-level relevance for each

coding SNP. If the SNP j does notmap to annotation a in any tissue

t˛T, the value of sj;a;t is set to 0. The vector sj is thus given by the

following equation:

sj ¼
X
a˛A

sj;a;

where the elements in sj correspond to each tissue t˛ T and can be

interpreted as tissue-specific annotation weights obtained from a

linear combination of partitioned genome-wide fold enrichment

values for each tissue-level annotation. The vector tc that com-

prises TOA scores for each tissue t˛T and corresponds to 99% ge-

netic credible set c is given by the following equation:

tc ¼
X
j˛J

PjsjP
t˛Tsj;t

;

where J is the set of SNPs in the 99% genetic credible set c.

Lastly, an unclassified score Uc is defined for each 99% genetic

credible set c:

Uc ¼
X
j˛J

Pj �
Xn
i¼1

tc;i;

where tc;i is the TOA score of tissue i for credible set c and n is the

number of evaluated tissues. This term indicates the cumulative

PPA in c that is attributable to credible SNPs that do not map to

any of the evaluated tissue-level annotations.

To evaluate the robustness of TOA score-based estimates of over-

all tissue contributions to T2D risk against the effect of GWAS as-

sociation strength, we constructed weighted TOA scores:

uc ¼ tc
jbj
SE

;

where b and SE are the effect size and standard error for the condi-

tionally independent SNP upon which the 99% credible set c was

mapped.
Profiling Tissue Specificity
The sum of squared distances (SSD) between TOA scores in tc for

each c ˛ C (where C is the set of 99% genetic credible sets) was
The American Jour
used as ameasure of tissue specificity. To gauge the relationship be-

tween fine-mapping resolution and tissue specificity, we used uni-

variate linear models to estimate b coefficients corresponding to

the regression of the SSD on either the maximum 99% genetic

credible set PPA or the log10 number of SNPs in the 99% genetic

credible sets. Signals were designated as ‘‘shared’’ if the difference

between the top two TOA scores was%0.10. ‘‘Shared’’ signals were

then tiered on the basis of fine-mapping resolution: (1) signals cor-

responded to 99% genetic credible sets comprised of a single cred-

ible SNP; (2) signals corresponded to 99% genetic credible sets

where the maximum PPA R 0.50 (i.e., where a single SNP ex-

plained most of the cumulative PPA); or (3) signals corresponded

to 99% genetic credible sets where the maximum PPA < 0.50.

The relationship between the SSD and fine-mapping resolution

(i.e., maximum credible set PPA and number of credible SNPs)

was visualized with the scatterpie library (v0.1.4) in the R statisti-

cal environment (v3.6.0).
Rule-Based Classifier
A rule-based classifier for assigning each genetic signal (i.e., 99%

genetic credible set) to a tissue was derived by assigning each ge-

netic signal c to a tissue t if the corresponding TOA score in tc

had the maximum value and exceeded a specified threshold.

Sets of tissue-assigned signals were constructed for each stringency

threshold within the set (0.0, 0.2, 0.5, 0.8). The classifier also al-

lowed for a ‘‘shared’’ designation with the criteria described in

the previous section (i.e., difference between the top two TOA

scores was %0.10).
eQTL Mapping and Tissue-Specific eQTL Enrichment
eQTLs for human liver (n ¼ 153), skeletal muscle (n ¼ 491), and

subcutaneous adipose tissue (n ¼ 385) were accessed from the

GTEx Portal website and corresponded to GTEx version 7

(dbGaP accession phs000424.v7.p2). For human islet tissue,

we used 174 samples (described in Gene Expression Data) and

performed eQTL mapping by using FastQTL (v2.0) with a nom-

inal pass with the –normal flag (to fit TPM-normalized read

counts to a normal distribution). Gender and the first 15 PEER

factors24 were used as covariates. For each tissue, q values

were calculated from nominal p values and a false discovery

rate threshold of %0.05 was applied to identify significant

eQTLs.

To obtain sets of tissue-specific eQTLs, we first took the union of

all eQTLs for tissues in set T, given by the following equation:

M ¼W
t˛T

St ;

where St is the set of eQTLs in tissue t. We defined the set of tissue-

specific eQTLs for each tissue as the list of significant eQTLs that

were significant in only that tissue.

Enrichment analysis was performed by taking the set of signals

assigned to each tissue t ˛ T at each stringency threshold. Each

tissue-assigned signal (i.e., 99% genetic credible set) was then

mapped to the corresponding GWAS index SNP reported in

Mahajan et al., 2018b.,4 yielding a set of index SNPs for each

tissue t.

For each tissue t, fold enrichments were estimated by taking the

observed number of tissue-specific eQTLs among the set of tissue-

assigned signals for tissue t divided by the mean number of over-

lapping signals across the 1,000 permuted sets of matched SNPs

corresponding to the set of signals (i.e., mapped index SNPs)
nal of Human Genetics 107, 1011–1028, December 3, 2020 1013



assigned to tissue t. Empirical p values were calculated by the

following equation:

pemp ¼nnullRobs þ 1

N þ 1
;

where nnullRobs is the number of instances where the number of

overlapping tissue-specific eQTLs among a null set of matched

SNPs was greater than or equal to the number observed among

the set of tissue-assigned signals and N is the total number of

permutations.
Functional Fine-Mapping
A set of comparative functional fine-mapping analyses were per-

formed with the program fgwas (v0.3.6) and the summary statis-

tics from the GWAS meta-analysis for T2D unadjusted for BMI4

and three annotation schemes: (1) ‘‘null’’ analysis without any

genomic annotations; (2) ‘‘multi-tissue’’ combined analysis using

13-state chromatin state maps for islet, liver, skeletal muscle, and

adipose tissue from Varshney et al.20 (described in Partitioning

Chromatin States); and (3) ‘‘deep islet’’ analysis based on 15-state

chromatin segmentation maps for human islet from Thurner

et al.,25 and notably, these states were based on a richer set of input

features assayed in islets that included ATAC-seq and whole-

genome bisulfite sequencing, in addition to histone ChIP-seq.

For both the multi-tissue and deep islet analyses, we used fgwas

to obtain a ‘‘full model’’ by first seeding a model with the single

annotation that yielded the greatest model likelihood in a single

annotation analysis. This model was extended by iteratively add-

ing annotations—in descending order on the basis of their model

likelihoods—until the incorporation of additional annotations no

longer increased the model likelihood of the joint model. The

‘‘full’’ model resulting from this procedure was then reduced by

iteratively dropping annotations that yielded an increased cross-

validated likelihood upon their exclusion from the joint model.

The ‘‘best joint model’’ was obtained when this process no longer

improved the cross-validated likelihood. The annotations remain-

ing in the ‘‘best joint model’’ were then carried forward for func-

tional fine-mapping.

In the next step, a locus-partitioned analysis was performed

with the set of annotations from the ‘‘best joint model’’ for the

multi-tissue and deep islet analyses or no annotations for the

null analysis. The default behavior of fgwas involves partitioning

the genome into ‘‘blocks’’ of 5,000 SNPs and assuming no more

than one causal variant per block. To account for allelic heteroge-

neity at loci with conditionally independent signals and to facili-

tate a comparison with the 99% genetic credible sets (which were

constructed with conditionally deconvoluted credible sets), the

genome was partitioned into 1 Mb windows centered about each

index variant (specified using the –bed command) and fgwas

was run with the appropriate set of input annotations for each

of the three analytic schemes. Windows involving multiple inde-

pendent signals required separate fgwas runs, each corresponding

to the appropriate set of approximate conditioned summary statis-

tics (i.e., conditioning on the effect of one or more additional

signals at a locus).4 The resulting PPA values for each SNP in

each partitioned ‘‘block’’ was used to construct 99% functional

credible sets by ranking SNP by PPA in descending order and re-

taining those that yielded a cumulative PPA R 0.99.

To compare the differences in fine-mapping resolution between

the multi-tissue and deep islet schemes, at each signal, we ob-

tained the difference between maximum 99% functional credible
1014 The American Journal of Human Genetics 107, 1011–1028, Dec
set PPA for each scheme with that resulting from the null analysis

as a baseline. These differentials over the null were then compared

between the multi-tissue and deep islet schemes, and significance

was assessed with the Wilcoxon rank-sum test. Comparative tests

were performed for each set of tissue-assigned signals across the

four stringency thresholds.
Gene Co-expression
Genes with TPM counts < 0.1 in >50% of samples per tissue were

excluded, and the remaining genes were ranked on the basis of

their mean expression across all tissues. For each set of tissue-as-

signed genetic signals, at each specified classifier threshold, a set

of genes was determined on the basis of nearest proximity to the

index SNP for each signal. Signals that corresponded to 99% ge-

netic credible sets where coding variants accounted for a cumula-

tive PPA R 0.1 were excluded from the analysis. A ‘‘background’’

set of genes was then obtained by including all genes with rank

values 5 150 about the rank values of each gene in the filtered

set. Null sets of genes were then delineated by sampling genes

from the background set that had rank values within 100 of those

for each gene in the gene set. We repeated this last step to generate

1,000 sets of null genes. To assess expression similarity in each of

the 54 tissues, the rank sum of the genes in the set was recorded

and compared with the mean rank sum across the 1,000 sets of

null genes separately for each tissue. An empirical p value was

determined with the following equation:

pemp ¼nnull%obs þ 1

N þ 1
;

where nnull%obs is the number of instances when the rank sum of

genes in a null set was less than or equal to the observed rank

sum in a given tissue and N is the number of permutations. To

gauge the magnitude of similarity of gene expression levels, an

enrichment factor was defined by taking the mean rank sum

across the null sets divided by the observed rank sum. This proced-

ure was repeated for sets of the second and third nearest genes to

each index SNP corresponding to tissue-assigned signals across

classifier thresholds.

Gene co-expression was assessed through a correlation-based

test wherein, for each set of proximal genes corresponding to tis-

sue-assigned signals described above, pairwise Spearman correla-

tions of gene expression in each of the four T2D-relevant tissues

were calculated. The observed mean squared r (msr) for each set

was compared against a null distribution ascertained from

10,000 random samples of proximal genes with respect to the

380 T2D signals.
Physiological Cluster Enrichment
A set of T2D-associated SNPs that were clustered into physiology

groups were obtained from a recent study.3 As previously

described, summary statistics (Z scores) for a range T2D-relevant

metabolic traits (e.g., anthropometric, lipid, and glycemic) were

used to cluster 94 coding and non-coding SNPs associated with

T2D via ‘‘fuzzy’’ C-means clustering of Euclidean measures.3 An

additional, and partially overlapping, set of 94 T2D-associated

SNPs was also accessed and was previously clustered into physi-

ology groups via an input set of sample size-adjusted Z scores cor-

responding to 47 T2D-related traits and nonnegative matrix

factorization (bNMF) clustering.26 Because not all of the physio-

logically clustered SNPs were present among the set of index

SNPs corresponding to the 380 fine-mapped genetic association
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signals, pairwise linkage disequilibrium (LD) was measured be-

tween all SNPs in these sets with the LDproxy tool on the LD

Link website and all European populations from the 1000 Ge-

nomes Project (phase 3) as a reference. Physiologically clustered

SNPs were assigned to fine-mapping index SNPs on the basis of

maximum pairwise LD where r2 > 0.3. From this approach, 82/

94 SNPs and 63/94 SNPs from the two sets of physiologically clus-

tered signals (from Mahajan et al., 2018a3 and Udler et al.,26

respectively) were mapped to fine-mapped signals in Mahajan

et al., 2018b.4 For each set of tissue-assigned signals with n signals,

assigned at each classifier threshold, null SNP sets were generated

by randomly sampling n signals from the set of 380 fine-mapped

signals. A null distribution was obtained by generating 10,000

null sets and recording the overlap of null signals with each of

the physiologically-clustered signals. An empirical p value was

obtained with the following equation:

pemp ¼nnullRobs þ 1

N þ 1
;

where nnullRobs is the number of instances where the observed

overlap between a null set and a reference set of physiologically as-

signed signals was greater than or equal to the observed value for

the query set of tissue-assigned signals andN is the total number of

null sets (i.e., 10,000). An enrichment factor was obtained by tak-

ing the observed overlap divided by the mean of the null overlap

values.
Enrichment for Trait-Associated SNPs from GWASs
GWAS summary statistics for all available traits and diseases were

downloaded from the NHGRI-EBI GWAS catalog (v1.0; accessed

August 23, 2019). Coordinates for all trait-associated SNPs in

the catalog were mapped to genome build GRCh38. GRCh38 co-

ordinates for index SNPs corresponding to each of the 99% ge-

netic credible sets were obtained from the Ensembl website by

querying with reference SNP ID number. We determined proxy

SNPs for each SNP in the set of index SNPs corresponding to

the 99% genetic credible sets by using the –show-tags function

in PLINK (v1.90b3) to identify SNP proxies with LD r2 R 0.8

among a reference panel of European individuals from the 1000

Genomes Project (phase 3). VCF files for SNPs from the 1000 Ge-

nomes Project mapped to genome build GRCh38 were down-

loaded from the project website. For each set of tissue-assigned

signals, enrichment was assessed across each of the 3,616 diseases

or traits in the GWAS catalog. The observed number of SNPs over-

lapping the set of index and proxy SNPs corresponding to the tis-

sue-assigned signals and the set of trait-associated SNPs for a

given GWAS was recorded. To obviate bias due to local LD, mul-

tiple SNPs (i.e., index and proxies) corresponding to a single

signal that was shared with the set of GWAS SNPs were recorded

as a single overlap for that signal. A null distribution of SNP over-

laps was obtained through 10,000 rounds of random sampling

from the set of index SNPs corresponding to each of the 380

fine-mapped credible sets. An empirical p value was obtained

with the following formula:

pemp ¼nnullRobs þ 1

N þ 1
;

where nnullRobs is the number of instances where the number of

SNP overlaps between a null and GWAS SNP set exceeded the

observed overlap for the set of tissue-assigned signals. The

magnitude of enrichment was measured by the number of
The American Jour
observed overlaps divided by the mean of the overlaps across

the null sets.
Results

An Integrative Approach for Obtaining TOA Scores at

Trait-Associated Loci

We set out to quantify, in the form of TOA scores, the

contribution of disease-relevant tissues to each genetic as-

sociation signal from a recent GWASmeta-analysis of T2D4

by integrating genetic, genomic, and transcriptomic data.

To do this, we developed a scheme that derived, for each

GWAS signal, a measure of overlap with tissue-specific reg-

ulatory annotations. We then combined these by using

weights obtained from both genetic fine-mapping and

genome-wide enrichment of tissue- and annotation-spe-

cific annotations (Figure 1). The rationale for this approach

acknowledged that our confidence in the identity of causal

SNPs varies considerably across GWAS association signals,

and evidence supporting causality for each candidate

SNP should be explicitly taken into consideration. More-

over, as we aimed to compare evidence supporting the

involvement of candidate tissues at each genetic signal,

we focused our analysis on sets of epigenomic annotations

of a common data type that could be systematically refer-

enced when profiling trait-associated SNPs.

To obtain tissue scores at each genetic signal, we first

delineated a set of annotation vectors on the basis of the

physical position of each SNP in the corresponding 99%

genetic credible set (from Bayesian fine-mapping) with

respect to the panel of tissue-specific chromatin states

(Figure 1). We used chromatin states from a recent

study20 to form a reference set of epigenomic annotations

focusing on tissues involved in insulin secretion (pancre-

atic islets) and insulin-response (skeletal muscle, adipose,

and liver) that play central roles in the pathophysiology

of T2D. There is support for the role of these tissues from

patterns of overall genome-wide enrichment of tissue-spe-

cific regulatory features and from the known effects at the

subset of T2D association signals for which causal mecha-

nisms have been established.14,15,20,25,27 For non-coding

SNPs, binary values were used to encode genome mapping

(i.e., whether or not a SNP maps to a regulatory region in a

given tissue as shown in step 1A in Figure 1). For the mi-

nority of credible set SNPs that map to coding sequence,

quantification focused on measures of tissue-specific RNA

expression for the genes concerned to further inform the

relative importance of the evaluated tissues (see Methods)

(Figure 1, step 1B).

Next, we combined and scaled the annotation vectors to

yield a vector of tissue scores that were used to partition the

PPA of each credible SNP (Figure 1, step 2). To facilitate this

partitioning and to account for the relative importance

of relevant tissues with respect to overall T2D pathogen-

esis, we first estimated genome-wide enrichment of T2D-

associated SNPs across a set of tissue-specific genomic
nal of Human Genetics 107, 1011–1028, December 3, 2020 1015



Figure 1. Systematic Approach for Obtaining Tissue-of-Action Scores
Fine-mapping of conditionally-independent GWAS signals results in a set of credible variants, each with a posterior probability of
association (PPA). The illustrated example shows a signal with five SNPs in its credible set with SNP3 as the variant with the maximum
PPA. Each credible SNP is then mapped to a panel of chromatin state annotations across four disease-relevant tissues to obtain a set of
annotation vectors (step 1A). An additional annotation vector for SNPs mapping to coding sequence (CDS) is obtained from expression
specificity scores (ESSs) calculated from gene expression levels across the four tissues (step 1B). The set of annotation vectors for each SNP
are then summed and scaled, yielding a vector used to partition the PPA value (step 2). The resultant vectors for each SNP in a genetic
credible set are then summed and scaled to yield a tissue-of-action (TOA) score for each tissue at the GWAS signal corresponding to
the credible set (step 3). Any residual PPA values from SNPs not mapping to any of the evaluated tissue annotations are allocated to
an ‘‘unclassified’’ score (gray column in matrix).
annotations. We used the enrichment values as weights to

adjust the relative tissue contributions of SNPs mapping to

distinct functional annotations or to functional annota-

tions shared inmore than one tissue (seeMethods) (Figures

S1A–S1C). This allowed us, for example, to upweight the

islet contribution, relative to that for skeletal muscle, for

SNPs mapping to enhancers shared between these tissues

to account for the different genome-wide enrichment

priors observed for these tissues.

Across all tissues, we found that the active transcription

start site (TSS) annotation, distinguished by a strong ChIP-

seq signal for H3K27ac and H3K4me1 histone modifica-

tions, was the most consistently enriched feature (log2
fold enrichment from 2.46 to 2.79) (Figures S1A and

S1B). However, the most highly enriched single annota-

tion detected involved type 1 active enhancers in human

islets (as characterized by H3K27ac and H3K4me3) (log2
fold enrichment (FE) ¼ 2.84, 95% CI ¼ 1.48–3.62). Coding

sequence was also highly enriched for T2D-associated var-

iants (log2 FE ¼ 2.59, 95% CI ¼ 2.08–3.01) (Figure S1B).

In the final step, the tissue-partitioned PPA values were

combined across all SNPs in the credible set to yield a set
1016 The American Journal of Human Genetics 107, 1011–1028, Dec
of TOA scores for each association signal, which pre-

serves the information captured by the fine-mapping

(Figure 1, step 3). PPA values corresponding to SNPs

not mapping to active regulatory annotations in any of

the four evaluated tissues (e.g., repressed or quiescent

regions) were allocated to an ‘‘unclassified’’ score (see

Methods). The resulting set of TOA scores for each ge-

netic signal captures the strength of genetic, genomic,

and transcriptomic evidence that the signal acts through

each of the evaluated tissues. Using this framework, we

calculated TOA scores for each of the 380 fine-mapped

T2D signals (Table S1).

TOA Scores Support a Key Role for Strong Enhancers in

Human Islets

By combining TOA scores across all 380 signals, we esti-

mated the relative contribution of each tissue to the overall

genetic risk of T2D reflected across fine-mapped loci. Islet

accounted for the largest share of the cumulative TOA

score (29%) with markedly lower contributions from liver,

adipose, and skeletal muscle (Figure 2A, inset). Across the

380 loci, 80% of the cumulative TOA score was attributable
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Figure 2. The Profile of Tissue-of-Action Scores across T2D Signals
(A–C) The proportion of total PPA summed across all 380 signals is shown for each tissue (inset). The proportion of total PPA is also
shown for each annotation group (outset). Proportions are also exhibited for the subset of signals with maximum credible set PPA >
0.5 in (B) and for the subset of signals with maximum PPA > 0.9 in (C).
(D) The profile of TOA scores is shown for the top 20 signals ranked for each tissue. The locus name and rs accession number for the index
SNP is indicated for each signal. Signals at loci with multiple conditionally independent signals are indicated by parenthetical numbers
(i.e., one is primary signal, two is secondary signal, etc.). Signals in this plot have maximum credible set PPA > 0.5.
(E) Relationship between fine-mapping resolution and TOA score diversity. Log2 of the number of credible SNPs for each fine-mapped
signal is shown on the x axis and the log2 value of the sum of square differences between TOA scores for each signal is shown on the y
axis (i.e., higher values on the y axis correspond to greater tissue ‘‘specificity’’). The profiles of TOA scores are indicated within pie charts
where the diameter of each circle corresponds to the maximum PPA for the credible set. The line thickness for each circle indicates a
coding score for each credible set (i.e., the proportion of cumulative PPA attributable to coding variants). The left panel shows all credible
sets with unclassified scores<0.10 (n ¼ 259), and the right panel highlights the subset of ‘‘tissue-specific’’ signals with TOA scoresR0.8.
The ten ‘‘tissue-specific’’ signals with the highest maximum credible set PPA are labeled in the right panel.
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to SNPs mapping to coding regions or to active chromatin

states in these four tissues (Figure 2A). Within this fraction,

SNPs mapping to weakly transcribed regions accounted for

the largest share (51%) relative to those mapping to coding

and other regulatory annotations (Figure 2A). Overall,

weakly transcribed regions account for 23% of the genome

(ranging from 22% in skeletal muscle to 26% in islet) and

are generally located near other more active annotations

(Figure S1D).

Crucially, credible sets vary markedly in their fine-map-

ping resolution (median credible set size, 42 SNPs; range,

1–3,997 SNPs; median maximum PPA value, 0.24; range

0.01–1.0). We reasoned that the estimates for weakly tran-

scribed regions (and for annotations to tissues outside the

four most relevant to diabetes) were most likely inflated

by incomplete fine-mapping: less resolved credible sets

involving multiple SNPs are likely to map to disparate

annotations across tissues. When we evaluated the 101 sig-

nals with maximum PPA > 0.5, the TOA score proportions

attributed to weak transcription and unclassified propor-

tions decreased to 40% and 14%, respectively (Figure 2B).

These proportions further decreased among the 41 signals

with maximum PPA > 0.9 (31% and 5% respectively)

(Figure 2C). In contrast, the relative contribution of SNPs

mapping to strong enhancers increased with greater fine-

mapping resolution (from 18% to 26%) (Figures 2A–2C).

In particular, the contribution for strong enhancers in is-

lets was disproportionately high among the most finely-

mapped signals and underscores a prominent role for these

regulatory regions in T2D risk (Figure 2C).

Although the relative TOA score proportions varied

with fine-mapping resolution, the contribution from islet

was consistently greater than that for liver, adipose, or

muscle (by a factor of z1.5) (Figures 2A–2C, inset).

Notably, for credible SNP mapping to strong enhancers,

the relative TOA proportions were considerably higher

for islets (57%–63%) than for adipose (18%–24%), liver

(14%), and skeletal muscle (5%–6%). Increasing fine-map-

ping resolution tracked with increasing evidence that

causal variants were disproportionately concentrated in

islet strong enhancers (Figures 2A–2C, outset). When we

additionally weighted TOA scores by the adjusted GWAS

effect size for each signal (see Methods), the overall islet

contribution increased further, albeit slightly, from 29%

to 31% across all signals (Figures S2D–S2F). Overall, the

profile of TOA scores (particularly across more signals

with greater fine-mapping resolution) recapitulates the

epigenomic architecture of T2D derived from earlier

studies,12,13,28 which have indicated that regulatory anno-

tations in islets—and strong enhancers in particular—are

important (Figures 2B and 2C).

Distinct TOA Profiles Indicate Pleiotropic Effects in

Multiple Tissues

The prime motivation for generating TOA scores was to

identify the tissues that most likely mediate disease risk at

eachgenetic signal.Wefirst sought to identify signalswhere
1018 The American Journal of Human Genetics 107, 1011–1028, Dec
only a single tissue was likely relevant to disease risk. We

found that z10% (39/380) of signals had profiles where

the TOA score for one of the four tissues exceeded a

threshold of 0.8, consistent with predominant action in a

single tissue: 21 of these involved primary or unique signals

at their respective loci,whereas the remaining18arose from

secondary signals at loci withmultiple independent signals

(Table S1). Among the primary signals, 14 mapped to islet

(including signals at MTNR1B [MIM: 600804], SLC30A8

[MIM: 611145], CDKN2A/B [MIM: 600161, 600431] loci),

five to liver (e.g., AOC1 [MIM: 104610], WDR72 [MIM:

613214]), and two to adipose (EYA2 [MIM: 601654],

GLP2R [MIM:603659]) (Figure 2E andTable S1).Noprimary

signal met this criterion for skeletal muscle: the signal with

the highest TOA score for skeletal muscle (0.88) corre-

sponded to a secondary signal (rs148766658) at the ANK1

(MIM: 612641) locus (Figure 2D). The proportion of signals

with TOA profiles consistent with a single TOA increased

with greater fine-mapping resolution (17/101 or z16% of

signals with maximum PPA R 0.5) (Table S1).

Aside from these 39 signals, calculated TOA scores for

most T2D signals revealed substantial contributions from

multiple tissues. We reasoned that this apparent ‘‘tissue

sharing’’ could have arisen for two main reasons. The first

involves a highly resolved signal from genetic fine-map-

ping at which the causal variantmaps to a single regulatory

element active inmultiple tissues. The second occurs when

a lower resolution signal encompasses many credible set

variants that map to distinct regulatory elements with

different patterns of tissue specificity. There was some evi-

dence in favor of the latter: maximum credible set PPA

values positively correlated with the SSD between TOA

scores (i.e., more refined credible sets corresponded to

higher measures of tissue specificity) (adjusted R2 ¼ 0.04,

p value ¼ 9.8 3 10�5, Figure S3). However, the magnitude

of the effect of fine-mapping resolution on tissue speci-

ficity was small (the beta coefficient for the regression of

SSD on maximum PPA was 0.17). We conclude that differ-

ences in fine-mapping resolution alone do not account for

the extent of ‘‘tissue-sharing’’ observed across T2D signals,

implying that many signals involved regulatory elements

shared across tissues.

To explore this further, we considered signals likely to

involve shared effects across tissues on the basis that the

difference between the two highest TOA scores was

<0.10 (Table S2). The resulting set of ‘‘shared’’ signals

conspicuously spanned the range of mapping resolution,

as indicated by the number of credible SNPs andmaximum

PPA for each signal (Figure 2E). There were eight signals

that were fine-mapped to a single credible SNP (i.e.,

maximum PPA > 0.99) and most clearly demonstrated tis-

sue-shared regulation. This included the primary, non-cod-

ing signal at the PROX1 (MIM: 601546) locus (rs340874)

with effects in both islet (TOA ¼ 0.50) and liver (TOA ¼
0.49): the index SNP at this signal (PPA ¼ 1.0) mapped to

a common active TSS in these tissues (Figure S4A, Table

S2). This set also included primary signals at the RREB1
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Figure 3. Enrichment of Tissue-Specific Epigenomic and Physiological Features among Classified Signals
(A) Number of signals assigned to each tissue by the classifier for each of the four TOA score thresholds: 0.0, 0.2, 0.5, and 0.8 (left panel).
Signal counts are shown across thresholds with a classifier that assigns signals with two or more TOA scores within 0.1 of each other as
‘‘shared’’ signals (right panel).
(B) PCA plots of the decomposition of the TOA score matrix comprising the 306 signals with ‘‘unclassified’’ scores % 0.5. Each point
corresponds to a signal where the size indicates the maximum credible set PPA and the color indicates the assigned tissue at the TOA
score threshold R 0.2 via the classifier that included a ‘‘shared’’ designation.
(C) Selective enrichment of tissue-specific eQTLs among credible sets for signals assigned to subcutaneous adipose, islet, liver, and skel-
etal muscle tissue. Color indicates significance of enrichment (�log10 p value) from permutation tests.
(D) Selective improvement in fine-mapping resolution at islet-assigned signals when richer islet chromatin states are deployed. Compar-
ison of functional fine-mapping resolution via a panel of chromatin state annotations based on histone ChIP-seq across the four T2D
relevant tissues versus chromatin states based on islet ChIP-seq, ATAC-seq, and DNA methylation (WGBS). p values correspond to Wil-
coxon rank-sum test.
(E) Expression similarity of nearest genes annotated to sets of tissue-assigned signals across stringency thresholds. Shape indicates the
tissue to which the set of signals were assigned and color shows significance of enrichment (�log10 p value) from permutation tests

(legend continued on next page)
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(MIM: 602209) (rs9379084; islet TOA ¼ 0.31; adipose TOA

¼ 0.27; muscle TOA ¼ 0.22), CCND2 (MIM: 123833)

(rs76895963; islet TOA ¼ 0.53; adipose TOA ¼ 0.47), and

BCL2 (MIM: 151430) (rs12454712; muscle TOA¼ 0.52; ad-

ipose TOA ¼ 0.48) loci (Figure S4A, Table S2). There were

an additional 33 signals with apparent tissue-sharing

where the fine-mapping resolution was somewhat less pre-

cise (maximum PPA R 0.5). These included the primary

signal at the TCF7L2 (MIM: 602228) locus (rs7903146; ad-

ipose TOA ¼ 0.37; islet TOA ¼ 0.31) and secondary signals

at HNF4A (MIM: 600281) (rs191830490 [liver TOA ¼ 0.40,

islet TOA ¼ 0.31] and rs76811102 [islet TOA ¼ 0.32, mus-

cle TOA ¼ 0.25, liver TOA ¼ 0.24]) (Figure S4B, Table S2).

Among the total of 101 signals at which the fine-mapping

resolution was such as to identify a lead SNP with PPA

exceeding 0.5, 41% had evidence that they might involve

regulatory effects in two or more tissues.

A Rule-Based Classifier for Assigning Fine-Mapped

Signals to Tissues

Because TOA scores appeared to distinguish specific from

shared signals (Figures 2D and 2E), we implemented a

rule-based classifier that assigns signals to tissues according

to their TOA scores across a range of stringencies. A GWAS

signal was assigned to a tissue if that tissue had the highest

TOA score and exceeded a specified TOA threshold

(ranging from permissive thresholds of zero and 0.2 to

more stringent thresholds of 0.5 and 0.8). Consistent

with the observation that islet accounted for most of the

cumulative PPA across loci (Figures 2A–2C), more signals

were assigned to islet than to liver, muscle, or adipose tis-

sue across all TOA thresholds. For example, at a TOA

threshold of 0.2, 178 signals (47%) were classified as islet,

whereas a total of 137 signals (36%) were assigned to insu-

lin-responsive peripheral tissues (58 adipose, 49 liver, 30

muscle) (Figure 3A, left panel). Given the extent of tissue

sharing observed across signals, we adapted the classifier

scheme to allow for a shared category (defined as above):

at the same TOA threshold, this yielded 110 islet, 33 liver,

27 adipose, and 8 muscle signals, plus 137 shared signals

(Figure 3A, right panel). These proportional differences be-

tween islet, muscle, adipose, and liver were maintained

across TOA thresholds (Figure 2D). For example, the distri-

bution of the 39 signals classified at the 0.8 threshold

included 22, 10, 6, and 1 signals classified as islet, liver, ad-

ipose, and muscle, respectively (Figure 2D).

Principal-component analysis of these data revealed that

most variation in TOA scores (50%) distinguished islet

signals from those assigned by the classifier to insulin-

responsive peripheral tissues, consistent with the distinct

functions of these tissues in regulating glucose homeosta-

sis (Figure 3B). The distinction between liver and adipose
(F) Selective TOA score enrichment within relevant sets of physiology
in each physiology group and color shows significance of enrichmen
(G) Tile plot of TOA scores for physiologically assigned signals. Signa
locus is shown.
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signals accounted for a further 31% of variation. Signals

classified as shared mapped between the clusters of tis-

sue-assigned signals (Figure 3B). For example, three of the

six conditionally independent signals at the CCND2 locus

(including the primary signal at rs76895963; PPA ¼ 1.0)

classified as ‘‘shared’’ and mapped equidistant between

adipose and islet clusters (Figure 3B, Table S1). Other clear

examples include the primary signals at the PROX1 and

BCL2 loci described above that exhibit profiles with

sharing between islet and liver and muscle and adipose,

respectively (Figure 3B).

Despite incorporating data from the four tissues most

relevant to T2D pathogenesis, a considerable number of

signals remained unclassified across stringency thresholds

(e.g., 65 signals at the 0.2 threshold), reflecting the appre-

ciable proportion of cumulative PPA at these signals attrib-

utable to credible set SNPs that did not map to active

regulatory regions in any of these tissues. This can, in

part, be explained by the poorer fine-map resolution of

these signals compared to classified signals (median cred-

ible set size, 57 versus 36 SNPs; median maximum PPA,

0.20 versus 0.25). However, it is possible that some of the

unclassified signals involve tissues or cell types not explic-

itly included in our analysis. Indeed, signals that remained

unclassified at the TOA score R 0.2 threshold were more

likely to map to regions that were actively repressed or

quiescent (i.e., low signal) in the four evaluated tissues

(Table S3).

Given that a subset of T2D signals are driven by

adiposity and presumed to act through central mecha-

nisms,4 one obvious omission from the tissues considered

in our primary analysis was brain (or, more specifically, hy-

pothalamus). For example, T2D-associated variants at the

obesity-associated MC4R locus (encoding the melanocor-

tin 4 receptor [MIM: 155541]) were assigned as unclassified

in our analyses.4,29–32 However, using chromatin state

maps from multiple brain regions, we found a deficit,

rather than an excess, of PPA enrichment among active

enhancers (0.032 versus 0.147; p value ¼ 7.5 3 10�5) and

promoters (0.007 versus 0.043; p value ¼ 0.0054) for un-

classified signals (as compared to classified) (Table S3).

The data available did not, however, include chromatin

state maps for the hypothalamus. Overall, it is to be ex-

pected that classification of currently unclassified signals

will improve with increased fine-mapping resolution and

the availability of detailed chromatin annotations from

additional tissue and cell types.

Tissue-Assigned Signals Are Validated by Orthogonal

Tissue-Specific Features

We sought to validate the performance of the classifier by

evaluating how assignments from the TOA classifier
-assigned signals. Size corresponds to the number-assigned signals
t (�log10 p value) from permutation tests.
ls are ordered by physiology group and the corresponding GWAS

ember 3, 2020



matched tissue-specific information from three orthogonal

sources: tissue-specific eQTL enrichment, ‘‘functional’’

fine-mapping, and proximity-based gene coexpression

analysis of non-coding signals. For these evaluations, we

used the version of the classifier that allows for a shared

designation.

To determine whether tissue-assigned signals were

matched to tissue-specific eQTLs, we assembled cis-eQTLs

for liver, skeletal muscle, subcutaneous adipose tissue (all

GTEx v7) and human islets6 and defined sets of tissue-spe-

cific eQTLs (see Methods). The set of signals assigned by

the TOA classifier to islets was significantly, and selectively,

enriched for islet-specific eQTLs across all TOA thresholds

(ranging from 11-fold to 31-fold enrichment [p values <

0.001]) as compared to matched sets of SNPs (see Methods)

(Figure 3C). Similarly, the set of signals assigned by the

TOA classifier to liver showed marked, selective enrich-

ment for liver-specific eQTLs across TOA thresholds

(Figure 3C). Overall, the more confidently assigned genetic

signals retained at more stringent TOA thresholds tended

to have larger point effect estimates, though the reduced

number of signals meeting the more stringent thresholds

led to wider confidence intervals and some reduction in

the statistical significance of the enrichments. Relatively

few signals were assigned to adipose and skeletal muscle

at higher thresholds (Figure 3A): nonetheless, adipose-as-

signed signals were the most enriched for adipose-specific

eQTLs at lower stringency (e.g., 6-fold enrichment, p value

¼ 0.009, at the 0.2 threshold [Figure 3C]). In contrast,

although sets of signals classified as shared showed some

enrichment for tissue-specific eQTLs at less stringent

thresholds, these enrichments were generally lower than

those for signals assigned to the corresponding tissues

(Figure 3C). These data indicate that the tissue assignments

made by the classifier are consistent with the information

from cis-eQTL analyses in corresponding tissues.

The second validation analysis was motivated by the use

of high-resolution epigenomic maps to improve genetic

fine-mapping. For the present study, we had derived TOA

scores by using chromatin states based solely on ChIP-

seq data:20 this was a conscious decision designed to

minimize technical differences in the depth of annotation

available between tissues given that chromatin accessi-

bility and DNA methylation data were not as widely

available. However, we had previously shown that islet

enhancer chromatin states obtained from a segmentation

analysis that incorporated information from DNA methyl-

ation, ATAC-seq, and histone ChIP-seq data yielded higher

enrichment of T2D-associated SNPs than enhancer states

delineated from ChIP-seq data alone.25 We reasoned that

accurate assignment of islet signals by the TOA classifier

would identify signals that would consiberably improve

in fine-mapping resolution with the inclusion of more

fine-grained islet functional information. To test this hy-

pothesis, we performed a comparative ‘‘functional’’ fine-

mapping analysis (seeMethods) using this richer set of islet

annotations25 and found that the mean maximum cred-
The American Jour
ible set PPA significantly increased for islet-assigned signals

relative to the corresponding value from a joint analysis

based on ChIP-seq data alone (e.g., mean PPA increase ¼
0.064; p value ¼ 0.0027 at the 0.2 threshold) (Figure 3D).

This was true across all TOA thresholds. In contrast,

credible sets for signals assigned to insulin-responsive pe-

ripheral tissues showed no improvement in fine-mapping

resolution with the richer islet annotations (Figure 3D).

These data indicate that the tissue assignments made by

the TOA classifier are consistent with the information

from more detailed functional annotations in relevant

tissues.

The third validation approach involved assessing genes

for expression similarity and overlapping coexpression.33

Although the genes lying closest to the lead regulatory var-

iants at GWAS signals are not guaranteed to be the causal

transcript, the set of ‘‘nearest genes’’ is, nonetheless, likely

to be enriched for the genes responsible for mediating such

associations.34 As such, we reasoned that performance of

the classifier would be reflected in the extent to which

genes near non-coding signals were expressed in the corre-

sponding tissue as compared to more distal genes. We as-

signed a single (nearest) gene to each tissue-classified signal

and found that the set of genes nearest to islet-assigned sig-

nals showed the most pronounced similarity in expression

levels in human islet tissue across all TOA thresholds (e.g.,

p value¼ 0.0003 at threshold 0.8) (Figure 3E) and across an

expanded set of tissues, including 53 tissues from the GTEx

Project (Figure S5A). This expression signal was lost for the

sets of second- and third-nearest genes (Figures S5B and

S5C). Similar results were observed for liver, muscle, and

adipose (Figure 3E). In contrast to the sets of nearest genes

annotated to signals assigned to specific tissues, gene

sets annotated to signals classified as either ‘‘shared’’ or

‘‘unclassified’’ did not show pronounced similarity in

expression levels in any of the evaluated tissues

(Figure 3E, Figure S5A). We next evaluated co-expression

by measuring pairwise Spearman correlations of gene

expression within each of the four T2D-relevant tissues.

At the 0.2 threshold, we found that genes proximal to

islet-assigned signals were significantly correlated in hu-

man islet (p value ¼ 0.0037), whereas genes proximal to

‘‘shared’’ signals were significantly correlated across all tis-

sues (the extent of correlation is greater in adipose, liver,

and skeletal muscle) (Figure S6). These data indicate that

the tissue assignments made by the classifier are consistent

with the information from co-expression analyses in corre-

sponding tissues. Collectively, the data from these three

analyses further supports the validity of the TOA scores

generated by our approach.

Tissue-Assigned Signals Are Supported by Physiological

Clustering

It is possible to assign T2D risk alleles with respect to phys-

iological impact on the basis of patterns of genetic associ-

ation with related quantitative traits such as fasting

glucose and insulin levels, circulating lipid levels, and
nal of Human Genetics 107, 1011–1028, December 3, 2020 1021



anthropometric traits.2,3,26,35,36 At the same time, those

same physiological processes map to specific tissues (e.g.,

insulin secretion from pancreatic islets). We asked, there-

fore, whether the tissue assignment of signals by the

TOA classifier (based on tissue-specific molecular data)

was consistent with the assignments made on the basis

of whole-body physiology. We focused on a set of 82

T2D-associated variants that had previously been parti-

tioned via a ‘‘fuzzy’’ clustering algorithm3 to six physiolog-

ical clusters and were in LD with lead variants from the set

of 380 fine-mapped credible sets (see Methods).

We first asked whether these signals assigned to these

six physiological clusters differed with respect to their

TOA score distributions. Variants assigned to the two ‘‘in-

sulin secretion’’ clusters (characterized by associations

with reduced fasting glucose and HOMA-B levels but

differing with respect to effects on proinsulin and HDL

cholesterol levels) had higher islet TOA scores than vari-

ants in the other physiological clusters (enrichment ¼
1.5, 1.7 [p ¼ 0.006, 0.03] for the type 2 and type 1 insulin

secretion cluster, respectively) (Figures 3F and 3G). Vari-

ants assigned to the ‘‘insulin action’’ and ‘‘dyslipidemia’’

clusters corresponded to signals with significantly higher

adipose (1.5-fold, p ¼ 0.034) and liver scores (2.9-fold,

p ¼ 0.009), respectively (Figures 3F and 3G). Reciprocally,

sets of TOA classifier tissue-assigned signals were signifi-

cantly enriched for SNPs from relevant physiology sets

(Figure S7A). Similar results were obtained from a different

(but overlapping) set of physiological clusters derived

with an alternative clustering scheme26 (Figures S7B and

S7C).

These patterns were confirmed by evaluating enrich-

ment across all phenotypes present in the NHGRI-EBI

GWAS catalog. For example, T2D signals assigned to

adipose by the TOA classifier were enriched for variants

associated with traits relevant to fat distribution (e.g.,

waist-to-hip ratio adjusted for BMI, 3.5-fold, p value <

0.0001), whereas signals assigned to liver and islet were en-

riched for SNPs associated with total cholesterol levels

(3.3-fold, p value ¼ 0.0011) and acute insulin response

(2.3-fold, p value ¼ 0.009), respectively (Figure S8). Collec-

tively, these results indicate that tissue assignments based

on TOA scores derived from molecular data are consistent

with inference based on in vivo physiology.

Epigenomic Clustering Implicates Multiple Tissues at

Loci with Independent Signals

The 380 fine-mapped genetic credible sets map to 239 loci,

84 of which harbored multiple conditionally independent

signals.4 As disparate signals within the same locus cannot

be assumed, purely on the basis of genomic adjacency, to

influence disease risk through the same downstream

mechanism, we asked how often the classifier assigned in-

dependent signals at a locus to different tissues. We

focused on the 0.2 threshold because this allowed us to

assign signals to each of the four T2D-relevant tissues while

still being widely validated by the approaches described
1022 The American Journal of Human Genetics 107, 1011–1028, Dec
above (Figure 3). There were 60 loci where at least two sig-

nals were assigned to a tissue or designated as ‘‘shared’’

(Figure S9), but we focused on 19 loci where two or more

independent signals received tissue-specific assignments

(rather than ‘‘shared’’). Of these, there were nine loci where

constituent signals were given identical tissue assign-

ments. These included PPARG (MIM: 601487) and EYA2

(all signals designated as adipose) and seven others—

including MTNR1B and GIPR (MIM: 137241)—at which

all signals were assigned to islet (Figure 4A).

This left ten loci where there was divergent assignment

of signals. One of the clearest examples involves the

HNF1B (MIM: 189907) locus where three signals (each

comprising non-coding variants) varied markedly in their

TOA scores from islet and liver (Figure 4B). The lead signal,

at rs10908278, was assigned to islet because the credible

variants with the highest PPAs (0.72 and 0.13) both

mapped to the same strong islet-specific enhancer

(Figure 4C). In contrast, the rs10962 signal was assigned

to liver as the likely causal variant (PPA ¼ 0.98) mapped

to a strongly transcribed region specific to liver. The re-

maining signal, at rs2189301, was classified as ‘‘shared’’

because the principal credible set variants (both with

PPA ¼ 0.49) mapped to a transcribed region in both islet

and liver, and the latter showed a stronger epigenomic

signature for transcription (Figure 4C).

Large-scale GWAS meta-analysis in Europeans has un-

covered multiple signals at the ANK1 locus. One of these,

at rs13262861, colocalizes with an eQTL for NKX6.3

(MIM: 610772) expression in pancreatic islets.4 Using the

TOA classifier, we found that this signal (rs13262861;

PPA ¼ 0.97) was designated as islet given overlap with a

strong islet enhancer. On the other hand, an independent

signal at rs148766658 (43 kb from rs13262861) was catego-

rized as a muscle signal because credible set SNPs

(maximum PPA ¼ 0.25) mapped to strong enhancer and

transcribed chromatin states in skeletal muscle (Figures

S10A and S10B). These data suggest that this ‘‘locus’’ is

really a composite of overlapping associations, with

entirely distinct effector transcripts and TOAs. Notably, a

recent GWAS meta-analysis of T2D in 433,530 East Asians

has uncovered independent signals in this region that

distinctly colocalize with either an eQTL for NKX6-3 in

islet or an eQTL for ANK1 expression in skeletal muscle

and subcutaneous adipose tissues.37 Although there is

incomplete LD between the specific ANK1 variants de-

tected in the European and East Asian meta-analyses (be-

tween the secondary signals in particular), our results are

consistent with the presence of distinct signals near

ANK1with disparate tissue effects. This example highlights

the growing limitations of attributing shared functional re-

lationships to nearby genetic signals solely on the basis of

their proximity. Instances such as this, where proximal sig-

nals represent functionally distinct mechanisms, indicate

that such assumptions can be misleading and are likely

to become less tenable as the density of GWAS hits

increases.
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Figure 4. Multiple Tissues Implicated by Epigenomic Scores at Heterogenous Loci
(A) Profile of TOA scores for the nine loci with all signals receiving identical, ‘‘non-shared’’ tissue assignments at the 0.2 stringency
threshold.
(B) Profile of TOA scores for the ten loci with all signals receiving distinct, ‘‘non-shared’’ tissue assignments at the 0.2 threshold.
(C) Epigenomic profile of PPA values attributable to each credible SNP of the primary signal at theHNF1B locus. For each credible SNP, the
PPA value attributable to each tissue annotation is shown along with its position on chromosome 17 (genome build hg19). Chromatin
state maps for islet, adipose, muscle, and liver tissue from Varshney et al.20 are shown along with ATAC-seq tracks for seven represen-
tative islet samples, called ATAC-seq peaks from a set of islet ATAC samples (n ¼ 17), and DNA methylation (whole genome bisulfite
sequencing) in human islets from Thurner et al.25
Among the ten loci displaying evidence for ‘‘tissue

heterogeneity’’ across signals was TCF7L2. Of the seven

independent signals at TCF7L2 revealed by conditional

fine-mapping, two (at rs7918400 and rs140242150) were

assigned solely to liver (Figure 4B). The remaining five sig-

nals revealed contributions from both islet and adipose

(Figure 4B). This group includes the lead signal at

TCF7L2 (lead SNP, rs7903146), which remains the stron-

gest common variant T2D association in Europeans.

This signal was classified as ‘‘shared,’’ with similar TOA

scores from islet (0.31) and adipose (0.37). Crucially,

this signal did not fine-map exclusively to rs7903146

(PPA ¼ 0.59; MAF ¼ 0.26) in Europeans: the 99% credible

set included two additional SNPs4 (rs35198068 and

rs34872471). Whereas rs35198068 had a PPA value of
The American Jour
only 0.05, rs34872471 had a PPA value of 0.36 and is in

near perfect LD (r2 ¼ 0.99) with rs7903146 in Euro-

peans.38 Notably, rs7903146 has a pronounced signature

in both islet and adipose due to its mapping to an epige-

netically active region in these tissues (a strong enhancer

with, at least in islet, high chromatin accessibility and low

DNA methylation). On the other hand, rs34872471 map-

ped to a strong enhancer only in adipose (Figure S10C).

The net effect, based on this information, is a ‘‘shared’’

designation. In truth, either there is a single causal variant

at this locus (rs7903146, or potentially rs34872471), and

once resolved, this signal can be correctly assigned to

the relevant tissue, or both SNPs are directly contributing

to T2D risk through distinct mechanisms in islet and ad-

ipose tissue.
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TOA Scores Advance Resolution of Effector Transcripts

Given the TOA score classifier was able to discriminate sets

of genetic signals that were supported by orthogonal vali-

dation features, we next considered the value of TOA

scores to clarify regulatory mechanisms and enhance the

identification of downstream effector transcripts at T2D-

associated loci. One widely used approach for promoting

candidate causal genes at GWAS loci involves identifying

cis-eQTL signals that colocalize with trait-associated

SNPs.39,40 However, cis-eQTL signals show appreciable tis-

sue specificity, raising the possibility of misleading infer-

ence if analyses are conducted in a tissue irrelevant to

the signal of interest.41,42 For example, a cis-eQTL specific

to liver is likely to be more informative for a T2D signal as-

signed to liver than one assigned to islet.

We explored the utility of incorporating TOA scores for

T2D-relevant tissues into a previous colocalization anal-

ysis.4 To do so, we evaluated eQTL colocalization results

for the 101 T2D GWAS signals that had lead SNPs with

maximum PPA R 0.5. A total of 378 eQTL colocalizations

(eCaviar colocalization posterior probability [CLPP] R

0.01) were detected across 53 signals with a median of

four colocalizations (implicating four distinct pairs of tis-

sues and eGenes) per signal (Table S4). At some loci, the

number of colocalizations detected was substantial: at

the CLUAP (MIM: 616787) locus, for example, the lead

T2D SNP (rs3751837, PPA ¼ 0.90) was the source of 64

cis-eQTL colocalizations involving 15 eGenes across 37 tis-

sues (Table S4).

Restricting colocalization results to those SNP-gene pairs

arising from the tissue assignments provided by the TOA

classifier (at a threshold of 0.2) reduced the number of co-

localizations to 133 at 32 signals, a 65% reduction overall,

and a 36% reduction (from 209 at 49 signals) if considering

only the subset of colocalizations that involved the four

T2D-relevant tissues (Table S5). This reduced set of TOA-

filtered colocalizations retained many of the T2D effector

transcripts previously reported in the literature, including

those benefiting from additional chromatin conformation

data.8,9 For example, the primary signal at the CDC123

(MIM: 617708) locus (rs11257655; PPA ¼ 1.0) was classi-

fied as an islet signal (TOA¼ 0.40) and has been previously

reported to colocalize with an eQTL for CAMK1D (MIM:

607957) expression in human islets.6,19 The regulatory

element harboring this variant was recently shown, via

promoter capture HiC, to physically interact with the

CAMK1D promoter in human islet cells.9 Similarly, the

designation of islet signals at the MTNR1B (rs10830963;

PPA ¼ 1.0; TOA ¼ 1.0) and IGF2BP2 (rs150111048; PPA ¼
0.94; TOA ¼ 0.96) loci was consistent with colocalized

eQTLs implicating MTNR1B and IGF2BP2 as effector genes

at these loci influencing T2D risk through effects on hu-

man islet function.6,8

At other signals, the integration of TOA scores with

eQTL colocalization data allowed us to further resolve sig-

nals that featured multiple candidate eGenes in T2D-rele-

vant tissues. For example, the lead SNP at the CCND2 locus
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(rs76895963; PPA ¼ 1) has 16 eQTL colocalizations,

involving three eGenes across 11 tissues. Of these, only

two involved any of the four T2D-relevant tissues, impli-

cating CCND2 expression in subcutaneous adipose (CLPP

¼ 1.0) and skeletal muscle (CLPP ¼ 1.0). From a TOA

perspective, this signal was classified as ‘‘shared’’ with

high TOA scores for both islet (0.53) and adipose (0.47).

This suggests that of the two colocalized eQTLs, the

eQTL affecting CCND2 expression in adipose tissue is

likely to be more important to T2D pathophysiology.

CCND2 encodes cyclin D2, a signaling protein involved

in cell cycle regulation and cell division. Consistent with

our inference, CCND2 was previously shown to be differ-

entially expressed between insulin-sensitive and insulin-

resistant individuals in subcutaneous adipose tissue but

not in skeletal muscle.43

At the CLUAP1 locus, referred to above, the lead signal

(rs3751837) was classified as ‘‘shared’’ with comparable

TOA scores across each of the four T2D-relevant tissues

(0.22–0.29). Restricting to these four tissues reduced the

overall number of colocalizations (across genes and tissues)

from 64 to 16. Of the remaining colocalized eQTLs, the

highest colocalization posterior probability (CLPP ¼ 0.41)

corresponded to an eQTL where the T2D-risk allele associ-

ates with increased expression of TRAP1 in subcutaneous

adipose (Table S5). This variant is also associated with

TRAP1 expression in skeletal muscle. TRAP1 encodes TNF

receptor-associated protein 1, a chaperone protein that

expresses ATPase activity and functions as a negative regu-

lator of mitochondrial respiration, modulating the meta-

bolic balance between oxidative phosphorylation and aer-

obic glycolysis.44 Although TRAP1 has not been directly

implicated in T2D risk, a proteomic analysis has previously

found TRAP1 protein levels to be differentially abundant

in cultured myotubes from T2D patients versus normal

glucose tolerant donors.45 Further experimental validation

will be required to resolve the effector transcript(s) at this

and other T2D-associated loci. However, collectively these

results, demonstrate that TOA scores can be systematically

incorporated into integrative analyses to prioritize effector

transcripts, particularly when there are multiple candidate

genes in multiple relevant tissues.
Discussion

We have developed a principled and extensible approach

for integrative multi-omic analysis to advance the resolu-

tion of genetic mechanisms at disease-associated loci by

elucidating relevant TOAs. Existing approaches in this

space have focused on characterizing the contributions

of tissue- and cell-type-specific regulatory features to the

overall genetic architecture of the complex trait of interest

(e.g., through genome-wide enrichment or heritability par-

titioning). However, to ensure that functional follow-up is

directed to appropriate cellular systems, it is also critical to

understand tissue- and cell-type-specific effects at each
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individual signal. In line with previous work, our analyses

support a prominent role for pancreatic islets in the path-

ogenesis of T2D, but these results also emphasize the

extent to which risk-associated variants may involve

shared effects across multiple tissues. Some of this tissue

‘‘sharing’’ was the result of incomplete resolution of causal

variants at less-well fine-mapped signals. However, we also

found multiple examples of fine-mapped signals that over-

lapped regulatory elements active in multiple tissues

(pointing to pleiotropic effects across tissues) as well as of

loci where independent signals manifested diverse TOA

profiles.

A salient exemplar of these scenarios for tissue ‘‘sharing’’

is the TCF7L2 locus that plays a distinguished, but as yet

mechanistically unresolved, role in T2D pathogenesis

and is complicated by pronounced allelic heterogeneity.

The TOA for the lead signal at rs7903146 has been the sub-

ject of recent debate: early studies emphasized conse-

quences focused on islet dysfunction, whereas recent

data have supported a role in adipose tissue.28,46 Evidence

from murine studies has supported an important role for

Tcf7l2 in pancreatic b-cell proliferation, insulin secretion,

and glucose homeostasis.47–50 In human studies, variation

at rs7903146 has been associated with chromatin accessi-

bility and TCF7L2 gene expression in islets.19,28 However,

TCF7L2 activation also regulates Wnt signaling during adi-

pogenesis, and in vivo deactivation of TCF7L2 protein in

mature adipocytes results in hepatic insulin resistance

and systemic glucose intolerance.46 TCF7L2 expression

was also found to be downregulated in human subjects

with impaired glucose tolerance and adipocyte insulin

resistance.46 Our TOA analysis of this signal yielded a pro-

file that is consistent with shared effects in both pancreatic

islets and adipocytes that jointly contribute to T2D patho-

genesis. In addition, two independent signals at this locus

(rs7918400 and rs140242150) had profiles that suggest a

primary mechanism of action in liver, a possibility sup-

ported by in vivo studies linking liver-specific perturbations

of Tcf7l2 expression in adult mice to altered hepatic

glucose production and glucose production.51,52 Overall

these data lend credence to the idea that the impact of ge-

netic variation at this locus on T2D risk is mediated

through several parallel mechanisms operating via multi-

ple tissues. This may explain why it has such a compara-

tively large effect on T2D risk in humans.

Given the important role that skeletal muscle plays in in-

sulin action (i.e., postprandial insulin response), the

paucity of signals assigned to this tissue is conspicuous.

However, it is worth pointing out that skeletal muscle

was actually well represented among ‘‘shared’’ signals,

particularly among signals that had sizable TOA contribu-

tions from adipose tissue. Therefore, rather than discount-

ing the relevance of skeletal muscle to T2D, our results are

consistent with a genetic architecture wherein disease-

associated variants that impact skeletal muscle are also

likely to have effects in other tissues rather than eliciting

effects specific to skeletal muscle. A practical implication
The American Jour
of this observation is that the inclusion of tissues that

share, at least partially, physiological activity (e.g., insulin

action) and related molecular ‘‘machinery’’ (e.g., mem-

brane receptors, secondary messengers, etc.) is that they

are more likely to be classified as ‘‘shared’’ on the basis of

TOA scores. However, the inclusion of higher resolution

tissue and cellular annotations, as discussed below, can

be leveraged to refine tissue assignments and potentially

reduce the number of ‘‘shared’’ signals.

In this study, we have incorporated gene-level expres-

sion data and publicly available chromatin states based

on histone ChIP-seq to determine TOAs at loci associated

with T2D. This scheme yielded tissue designations that

were supported by validation analyses (e.g., functional

fine-mapping and physiological clustering) and are consis-

tent with previously elucidated effector mechanisms at

specific loci. However, such tissue designations, though

informative, constitute a first step and will undoubtedly

become more refined with the increasing availability and

incorporation of higher resolution datasets. In particular,

our approach will benefit from more extensive genetic

fine-mapping that will accompany large-scale discovery

efforts involving greater samples, denser imputation refer-

ence panels, and the inclusion of more diverse populations

representing underrepresented genetic ancestries.

The performance of our approach will also improve with

regulome maps delineated from chromatin segmentation

or hierarchical clustering analyses based on an expanded

set of input features (e.g., histone post-translational modi-

fication [PTM] and transcription factor ChIP-seq, DNA

methylation, chromatin accessibility). This allows more

of the genome to be assigned to a regulatory state. For

example, incorporating ATAC-seq and whole-genome

bisulfite sequencing, in addition to histone PTM ChIP-

seq data, into a chromatin segmentation analysis of hu-

man islets reduced the proportion of quiescent regions

from 6.6% to 3.1%.20,25 Interestingly, islet enhancer anno-

tations characterized by the presence of mediator binding

were recently shown to exhibit a notably strong enrich-

ment of islet-specific chromatin interactions;9 the inclu-

sion of such input features would help to delineate regula-

tory annotations that can further differentiate tissue

effects. Similarly, the elucidation of tissue-specific effects

at coding variants will benefit from long-read RNA

sequencing methods that can leverage patterns of isoform

expression. In principle, measures of relative protein abun-

dances assayed from proteomic technologies (i.e., mass

spectrometry, immunoassays, aptamer-based methods)

may also inform relevant tissues with respect to coding var-

iants. However, available proteomic datasets are more

sparse than RNA-sequenced datasets because of the

comparatively lower proteome coverage achievable in

high-throughput.53 Furthermore, discerning molecular

features under a spectrum of biological contexts (e.g., hy-

perglycemia, developmental stages) will provide valuable

insight into the specific conditions, within TOAs, that

are most relevant to individual genetic signals.
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Lastly, incorporating regulatory information ascertained

from single-cell approaches (e.g., scRNA-seq and snATAC-

seq) will advance the resolution of ‘‘cells-of-action’’ against

different physiological backdrops. Indeed, it may be the

case that some of the tissue sharing observed in this study

is reflecting cell type composition within tissues rather

than sharing across tissues. The inclusion of single-cell reg-

ulome maps will help resolve this question. Notably, the

inclusion of closely related tissues or tissue subtypes would

most likely increase the observed number of ‘‘shared’’ sig-

nals as a result of variants mapping to functional elements

shared between more similar tissues (e.g., subcutaneous

and visceral adipose tissue) than between tissues with

more distinct physiological roles (e.g., adipose and islet

tissue).

The strategy presented here for integrating multi-omic

information can provide valuable insight for prioritizing

variants and determining appropriate model systems to

employ in experimental validation studies. This scheme

may also enhance the construction of process-specific

genetic risk scores that can identify and profile individuals

with genetic burden that impacts pathophysiological pro-

cesses impacting specific tissues and organ systems. Lastly,

this approach can be deployed more widely across other

complex diseases, especially as more tissue- and cell-spe-

cific data become available. To support this wider use, we

have implemented our method and made it openly avail-

able in an R package: Tissue of ACTion scores for Investi-

gating Complex trait-Associated Loci (TACTICAL).
Data and Code Availability

The code scripts used to perform the bioinformatic and

statistical analyses described in this study can be

accessed from a GitHub directory through the following

URL: https://github.com/Jmtorres138/t2d_classification/.

The method described in this study has been implemented

in an R package titled TACTICAL (Tissue of ACTion scores

for Investigating Complex trait-Associated Loci). The pack-

age can be installed from GitHub through the following

URL: https://github.com/Jmtorres138/TACTICAL.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.10.009.
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