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Abstract: According to the World Health Organization, lower-income countries suffer from adverse
health issues more than higher-income countries. Information and communication technologies (ICT)
have the potential to resolve these issues. Previous research has analyzed the theoretical and empirical
causal effects of ICT on infant mortality at country-specific and global levels for a short period of time.
However, the causes and results could be different in low-income countries. The objective of this
paper was to examine the deficiencies through the use of panel data from 27 low-income countries
from 2000–2017. We applied the predictive mean matching technique to supplement the missing
data and then used panel data techniques (i.e., fixed effects (FE) and pooled common correlated
effects (PCCE)), and system-GMM to estimate the causal effects. We compared the consistency and
the possible heterogeneity of previous results using a set of robust techniques and empirical tests.
We found that internet access and, to a lesser extent, cellular mobile subscriptions, two of the three
ICT variables used in our research, had a significant positive effect on reducing infant mortality in
low-income countries. In conclusion, governments and policymakers of low-income countries should
consider the availability of internet-related ICT innovations and make them nationally accessible to
reduce health crises such as the infant mortality rate.

Keywords: health; infant mortality; ICT; PMM; panel regression; low-income countries; Driscol–
Kraay; instrumental variables IV; pooled common correlated effects PCCE

1. Introduction

“A disease threat anywhere is a disease threat everywhere” is a quote from the Centers
for Disease Control [1]. The global COVID-19 pandemic showed us that if health is
affected anywhere, it will affect everywhere. Even though health outcomes such as life
expectancy and child mortality rates are improving globally, the minimum life expectancy
and maximum infant mortality rates are disappointing: 39.54 years old and 147.86 per
thousand children, respectively [2,3]. Unfortunately, approximately 1 million newborns do
not survive their first day, and 2.6 million do not survive their first month [4,5]. In addition,
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physical and mental health issues are increasing in low-income countries. This increase
places a heavier burden on low-income economies and widens the gap between developing
and developed countries.

To address this issue, economists first defined “health outcome or health issue” as
the healthcare parameters that impact people’s lives and health in any given country.
These parameters include longevity, the use of health-designated services, psychosocial
and physical states, morbidity and mortality, costs of healthcare, and chronic and non-
chronic illnesses [6]. Researchers have measured these parameters using indicators such as
stillbirths, neonatal mortality, under-five child mortality, maternal mortality, total fertility,
low birth weights in infants, life expectancy at birth, and sex at birth [2]. Finally, policies
have been proposed to mitigate and reduce these health issues. For example, in 2015, the
three top sustainable development goals (SDGs), out of seventeen goals, re-established
by the U.N. General Assembly included the reduction and eradication of all forms of
poverty in the world; comprehensive and fair education for all, and the improvement and
preservation of well-being and health regardless of age [7].

Another example of proposed solutions has been the use of information and commu-
nication technologies (ICT). In this globalized epoch, ICT is a crucial factor for innovative
infrastructure and is internationally recognized as a principal determinant for societies’
socio-economic growth and improvement. Many comprehensive studies have illustrated
the role of ICT in increasing the rate of GDP, unemployment reduction, capacity improve-
ment, economic extension, and expansion through fast and efficient information exchange,
and poverty mitigation [8–10]. A concise definition of ICT by the World Bank was “the
collection of electronic operations and norms that assist the acquisition, storage, man-
agement, transfer, and exhibition of information”. ICTs have improved the healthcare
systems of developing economies [11]. ICT challenged the location and time limitations
of information exchange with better performance at a lower cost [12]. ICT has supported
health literacy and eased the attainment of health education. Moreover, researchers have
shown strong evidence that ICT develops the quality of life as one of four main pathways
to attain socio-economic growth [13].

However, the development, innovation, and advancement of technology for the pur-
pose of improving health issues, such as infant mortality, have been insufficient [14]. There-
fore, the goal should be less idealistic and more focused: one objective and one measure
at a time. The applications, and their subsequent failures, have taught policymakers that
technology and technological solutions have not advanced far enough to resolve serious
health crises in low-income economies. Furthermore, low-income countries may not have
the capabilities or specializations to employ even accessible ICT and other technological
solutions due to government incompetence and/or corruption.

In our study, we focused on 27 low-income countries and examined the relationship
between ICT and health. Using 18 years of data from the World Bank, from 2000 to 2017,
we studied the effect of three ICT proxies, including internet use (IU), mobile cellular
subscription (MCS), and fixed phone subscription (FTS), on health outcomes rates: infant
mortality (INFM) and child mortality under five (CMU5). Our objectives included the
following: (1) To separate and differentiate our study from the global scope as well as
the global results and findings; (2) To determine if there are any significant positive or
negative effects of ICT on health variables for low-income countries if they vary according
to the proxy measurement and if they are significantly different from global predictions
and estimates. (3) To provide policy suggestions based on the results. To the best of our
knowledge, this was the first panel study on this subject for low-income countries over a
long period of time.

2. The Literature on the Effects of ICT on Health Outcomes

The development of ICT and the internet has provided access to an abundance of
health-related information for individuals. This accessibility has improved the effectiveness
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and efficiency of patients when communicating with their physicians, assisted them in their
health decisions, and improved healthcare-related interactions and services [15–18].

ICT has supported independent living measures by facilitating easier communication
strategies for the elderly, so they can contact their loved ones, family members, and
physicians [19–21]. As indicated by Lacal and Mechael [22,23], due to the advances in
health-relevant applications, ICT has enabled real-time advice and feedback in healthcare
scenarios and assisted in decentralizing healthcare.

Bukachi and Pakenham-Walsh [24] found that healthcare professionals used the inter-
net for correspondence and recording health-related data in a coordinated effort around the
world. Wald et al. [25] and Bankole et al. [26] used survey data to explore the relationships
among healthcare frameworks, internet access, and doctor–patient relationships. They
found that internet access improved health frameworks and global health.

In developing economies, Lucas [27] examined the healthcare impact of ICT innova-
tions such as the improvements in health information systems; computer-aided prescription
monitoring, treatments, and diagnostics; a variety of applications for “telemedicine”; and
educating large populations about their health and healthcare. In the same developing
economies, Blaya et al. [28] reviewed the developments of e-health information technolo-
gies to manage patient care. They showed that e-health had a significant impact on health
in developing countries and that ICT enhanced interactions among institutions, assisted in
organizing and distributing medicines, and promoted monitoring and identifying patients
who may not complete necessary treatments. Furthermore, personal mobile devices have
increased both the time and quality of data acquisition. Cole-Lewis and Kershaw [29]
presented a systematic review of mobile text messaging as an instrument to change in-
dividuals’ behavior toward disease management and illness prevention, and they found
significant impacts on diabetes control, smoking cessation, and weight reduction. Their
results showed that text messaging could be effective for practical disease prevention and
control.

Moreover, ICT can provide cost-effective solutions for health improvement. For
example, it empowers individuals affected by similar health challenges to share information
and experiences [30]. Déglise et al. [31] reviewed contextual studies from developing
countries to investigate SMS interventions for the prevention, monitoring, supervision, and
treatment of communicable and non-communicable illnesses and diseases. They found
that mobile devices played an effective role in disease control in developing nations as
they are cost-effective and assist in mitigating the demands and deficiencies in health
systems. Nilseng et al. [32] conducted a pilot study in 2010–2011 in Tanzania and found
that ICT tools improved inventory and ordering management among healthcare operators.
Fedha [33] suggested that information innovation significantly affected clinical appointment
attendance among pregnant females, which could potentially improve the rate of infant
mortality.

In recent studies, ICT removed the geographical barriers between medical care suppli-
ers and the recipients by improving their export potential [34]. Cole et al. [35] assessed the
health advice provided by weblogs and online forums. Their examination indicated that
there was little evidence indicating the information was erroneous, and they proposed that
these sources allowed individuals to ask health-related questions and receive quality re-
sponses. Tsai et al. [36] investigated a blended e-learning system (BELS) used by Taiwanese
nursing personnel and found that its e-learning curriculum included face-to-face courses in
advanced health education topics. Majeed and Khan [3] conducted a panel data analysis
in 148 countries during 1990–2014 to analyze the relationship between ICT and health
outcomes. They validated that ICT increased global health outcomes in terms of prolonging
life expectancy and lowering infant mortality rates, and they recommended healthcare
plans and policies that focused on digital inclusion. Similarly, Dutta et al. [2] conducted a
panel data analysis on 30 Asian countries from 2000 to 2014 to study the long-term impact
of ICT on health outcomes. Their findings found a significant effect of ICT on healthcare.
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However, there have also been negative outcomes when using ICT solutions in health-
care. The quality of information collected by ICT may be of inferior quality, misleading,
or easily misinterpreted, which can jeopardize health behaviors and outcomes. Kiley [37]
indicated that false information could provoke fear and worry about preventable illnesses,
or even death. In addition, there are still disparities in Internet access among different
socioeconomic groups (rural versus urban, wealthy versus poor, etc.) even in developed
countries. This problem on a global scale may increase the disparities between these groups,
complicating an already complex issue. Third, easy access to online health information
could result in an increase in unnecessary medical visits due to misinformation or patient
misperceptions, which could place an undue burden on healthcare systems [38].

In [39–41], the researchers suggested that low-income countries should focus on im-
proving their health infrastructures and access to clean water, as opposed to developing
ICT tools. Tanis et al. [42] found that health anxiety motivated patients to seek out health in-
formation online, yet the same motivation was negatively associated with their satisfaction
with their medical consultation.

The main barrier to employing ICT and innovations are its implementation, especially
in developing countries. In addition to the lack of skilled workers and specialists, the
economic costs may be too high; these can include licensing charges, yearly or monthly
paid upgrades, subscription fees, and replacement expenses. Furthermore, in the long
term, the literature has indicated that significant reliance on foreign resources creates yet
another dependency cost. Moreover, the harsh climate of various developing countries can
damage ICT hardware and instruments that require climate-controlled settings and dust-
free conditions. In recent years, policymakers and researchers have examined the health
outcomes with ICT and the related infrastructure. However, there have been opposing
theoretical results, especially in low-income countries. Therefore, an empirical evaluation
of the link between health and ICT specifically in low-income countries is necessary for a
comprehensive understanding of the relationship. Previous research has been centered on
clinical and/or country-specific data that cannot be generalized to various samples. In our
study, we empirically tested the assumed relationship of ICT tools with health outcomes in
27 low-income countries over 18 years.

3. Materials and Methods
3.1. Data Source, Data Processing, and Data Imputing
3.1.1. Data Source

In Table A1, we provide a brief summary of the variables used and their sources
in previous research. We only considered works that studied the impacts of ICT and
its development on health outcomes in national panel studies (i.e., studies that used
aggregated datasets). In accordance with previous studies, we acquired the necessary data
from the World Bank database. The World Bank defined low-income countries as nations
that have a per capita gross national income (GNI) of less than USD 1026. Twenty-eight
countries were identified using this criterion: Afghanistan; Burundi; Benin; Burkina Faso;
Central African Republic; Congo, Democratic Republic; Eritrea; Ethiopia; Guinea; Haiti;
Liberia; Madagascar; Mali; Mozambique; Malawi; Niger; Nepal; Korea Democratic People’s
Republic; Rwanda; Sierra Leone; Somalia; Syrian Arab Republic; Chad; Togo; Tajikistan;
Tanzania; Uganda; and Yemen Republic.

3.1.2. Data Processing

To process the data, we conducted five steps:
Step 1. Variable selection: In this initial step, we favored the variables that were

mentioned in previous literature.
Step 2. Time period: To determine the time period used in our study, we relied on

data availability. Since both the data before 2000 and after 2017 were not available for our
variables of interest (ICT) or missing, we selected a period from 2000 to 2017.
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Step 3. Variable exclusion: We excluded variables that were completely or partially
(20% missing) absent in the data for 28 countries, which were assigned by excluded in the
last column of Table A1.

Step 4. Country exclusion. We excluded countries with missing variables or unrealistic
values for our variables of interest, specifically North Korea.

Step 5: Data replacement. Missing data with a rate of 7.5% was estimated using the
predictive mean matching (PMM) technique. The strength of any imputation technique is
greater with more information provided. We only included three variables (the prevalence
of HIV index, life expectancy at birth index, and incidence of tuberculosis index) in this
step, but we excluded them from the analysis.

Overall, we had 27 low-income country data for 18 years with the included variables,
as detailed in the fifth column of Table A1.

3.1.3. Predictive Mean Matching (PMM)

As mentioned previously, to complete the small percentage (7.5%) of our dataset that
were missing values, we applied the standard PMM technique. PMM calculates missing
continuous values in datasets. PMM attributes a present observed value that is nearest to
the missing one and preserves the initial distribution of the experimental data better than
fully parametric multiple imputation strategies and is known to be consistent and robust
for a small percentage of missing values [43,44].

3.2. Empirical Tests

To utilize the model described beforehand and to evaluate the robustness of the
results, we used a set of tests. The tests we used, which have been widely adopted in
the literature, were: the panel unit-root test, panel causality tests, pool-ability tests, panel
cross-dependency tests, and Hausman specification test. A brief definition of the test is
provided in Appendix A.1 empirical tests part.

3.3. Model Construction

In Grossman’s [45] health production function, health was indicated by individual
comportment, medical care, and resources. Theoretically, Grossman’s production of health
function is:

Health = f(health inputs) (1)

where “Health” is a person’s output of health, and health inputs are the following factors:
income and wealth, education level, health expenses and investments, health accommo-
dations, milieu, and the standard of living. Grossman’s [45] model studied the health
production function at a micro-level. Fayissa and Gutema [46] converted it to its macro
equivalent. They re-expressed health inputs per capita and reconstructed them in three
divisions: economic, environmental, and social.

Health = f(ECO, ENV, SOC) (2)

where ECO, ENV, and SOC describe factors of economic, environmental, and social vari-
ables, respectively. There are numerous variables under each division. Therefore, every
researcher has adopted different variables due to data and resource limitations as well as
other reasons.

In our empirical research, the economic factors were economic growth (GDP and ADR)
and health expenditures (HE, IM, and IDPT). The social variables were education (SCH)
and sex ratio (SR), and the environmental factors included urban population ratio (UP) and
carbon dioxide emissions (CO2E).

Health = f(Economic growth, Health expenditures, SCH, SR, UP, CO2E) (3)



Int. J. Environ. Res. Public Health 2022, 19, 7338 6 of 24

Our research explored other potential factors that could affect health by concentrating
on ICT. To consider the effect of ICT on the production of health models, Majeed and
Khan’s [3] prolonged Equation (3) to incorporate digital inclusion is as follows:

Health = f(Economic growth, Health expenditures, SCH, SR, UP, CO2E, ICT) (4)

In this study, we measured ICT through fixed telephone subscriptions (FTS), mobile
cellular subscriptions (MCS), and internet use (IU). As follows, we quantified health
through two infant mortality proxies (INFM and CMU5).

According to [2,3], the above equation between ICT and Health and our model could
be formulated to the following panel equation design by taking into consideration the
ease to build a link between them through using log functional form and to interpret the
coefficients.

lnHealthit = αit + β1lnICTit + β2lnXit + εit (5)

where i = country index, and t = time yearly index. Health represents the dependent
variable in our design measured by INFM and CMU5. ICT represents the independent
variable in our design measured by IU, FTS, and MCS. X represents the set of control
social, economic, and environmental factors mentioned before and measured by GDP, SCH,
SR, IM, IDPT, HE, ADR, UP, CO2E. ln is the natural logarithm function, and ε indicates
the idiosyncratic error term. To estimate the panel model parameters, we first applied
the pooled ordinary least squared (POLS) and then the random and fixed-effects models.
The variable αi has three forms: (1) α0 constant for the POLS model; (2) αi, αt, and αit
country, time, and two-way (country and time) fixed effects FE, respectively, in the fixed
effects model; (3) α0 + αit the constant and random effect errors, respectively, in the random
effect model. To address the cross-sectional dependence, we estimated the three regression
models (POLS, random, fixed effects, RE/FE) with Driscoll–Kraay standard errors. In
the presence of cross-sectional dependence, we found that the standard errors of Driscoll–
Kraay were well-calibrated [47,48]. To address the strong observed and unobserved cross-
dependence in the data including “when the regressors and errors both have a factor
structure”, we applied common correlated effects (CCE) modeling. This approach has
become very influential in both the theoretical panel-data literature and in empirical
applications. The CCE method, which was presented by Pesaran [49] and developed by
many authors including [50], consists of an equation of interest, in which the error has a
component structure, and a reduced form equation, in which the explanatory variables
are linear functions of the same factors that present in the main equation. CCE then treats
the response and explanatory variable cross-sectional averages as fixed effects, removing
unobserved variability. In the latest paper presented by Juodis et al. [51], they provided
strong evidence of the robustness of the pooled CCE. Therefore, in the present research, we
also applied the pooled PCCE with Driscoll–Kraay robust errors. The estimation of linear
panel data models using generalized least squares (GLS) was also used. In the presence of
heteroskedasticity and serial and cross-sectional correlations, the proposed GLS estimator
outperformed OLS. Finally, three factors were likely to cause endogeneity in our model:
(1) simultaneous links between health and ICT factors, (2) ICT measures found to correlate
with error terms, and (3) omitted variable bias. These issues could be mitigated by the use
of instrumental variables. To account for potential endogeneity, this study employed a
two-stage least squares in FE and system-GMM in panel data. The potential endogenous
variable (ICT) was adjusted with a variety of appropriate internal and external instruments.
Initial values, communications, computers, and so on (% of service exports, BoP), and
internet country code dummy were used as instruments. The indicators of communications,
computers, and so on (% of service exports, BoP), and internet country code dummy were
highly correlated with ICT measures. Furthermore, these indicators had no direct influence
on population health. The data for instrument variables are detailed in Table A1 instrument
variables.
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We followed an algorithmic structure of data modeling to explain the use of these
analyses. The algorithm is as follows:

1. Ensure stationarity through the tests of 1st-generation panel unit-root;
2. Test for pool-ability to utilize the POLS and, later, the PCCE;
3. First step: Apply the POLS analysis and fixed effects to get their estimates results;
4. Compare through F-test of individual effects to decide which estimates better depict

our data and model;
5. Second step: Apply random-effects analysis to obtain its estimates results;
6. Compare RE with FE to decide which estimates depict better our model;
7. Test for cross-sectional dependence through the results of the estimate of RE and FE;
8. Apply appropriate techniques to remedy the presence of cross-sectional dependence;
9. Add additional analyses to compare the final model estimates (robustness);
10. To avoid redundancy and length, we only report the adequate results.

4. Results

In this research, we reported our results accordingly. The first subsection provides
a broad description of the data, their Spearman correlations, unit-root test results, and
panel Granger causality test results. Sections 2–4 report individual/two-way fixed effects
with/without IV, PCCE, and system-GMM estimation results, respectively.

4.1. Descriptive Statistics

Table 1 provides the descriptive statistics of our variables. After reviewing the mean
and the min–max of the dependent variables, we found that the results were high for
low-income countries. On average, these countries lost 6.7% of their children at birth and
10.2% under five years old. In some country cases, the maximum was 14.2% and 23.4%,
respectively. Throughout the years, both infant mortality rates decreased at a slow pace,
see Figure 1b,d. In 18 years, the average lessened from 9% to 5% in infant mortality and
from 15% to 7% in children under five. In Figure 1a,b, the averages vastly differed between
countries, and except for Syria, most of the countries’ averages were above 5% for both
infant mortality indicators. For Syria, we did not have a confirmed source; however, we
speculated that Syria should be at the same level as a result of the ongoing civil war that
started in 2011.

Similarly, Figure 2 and Table 1 show the changes on average in our independent ICT
variables. The average was 4% of the total population that had internet access among
low-income countries. The 4.5% average was the across-time-and-country average. The
trend of individual access to the internet began approximately 20 years ago; therefore,
Figure 2b shows the most recent averages. Panel (b) of Figure 2 shows that, in 2018, the
average internet users were around 15% of the low-income countries’ populations. For FTS
and MCS, the averages were 1.5% and 28.7%, respectively. Except for FTS, in Figure 2b,d,f,
IU and MCS increased over time. Of the ICT variables, MCS showed the most growth over
time, and from 2016 to 2018, it averaged approximately 60% of the total population, see
Figure 2f. Figure 2a,c,e also show that the average user, for all ICT indicators, per year,
differed from country to country, especially for IU and MCS.

Figures 1 and 2 show the cross-country heterogeneity and dependencies for all vari-
ables, dependent and independent. This type of heterogeneity may have biased the results
given by the estimation methods such as the standard POLS. In Appendix A, Figure A1
presents Spearman’s correlation matrices for our set of variables. In this research, we used
these correlation matrices to indicate the possible causality between our sets of variables.
The correlation matrices showed that there may have been a negative causal relationship.
In other words, ICT scales and health outcomes presented through infant mortality indices
correlated negatively. Therefore, health outcomes may have been positively affected by ICT.
We also observed, as shown in Figure A1, that both INFM indices correlated negatively
with other control variables, except for ADR and UP. Considering previous studies and
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the findings in Figure A1, we could estimate the causality direction between health/health
input variables and ICT.

Table 1. Descriptive statistics.

Symbol
Descriptive Statistic

mean SD min max Median

Dependent Variables
INFM 67.14 24.502 13.80 142.40 66.25
CMU5 104.12 44.740 16.10 234.00 101.05

Independent Variables
IU 4.561 6.519 0.004 34.253 1.549

FTS 1.528 3.307 0.005 22.620 0.504
MCS 28.685 29.752 0.018 138.80 20.008

Control Variables
GDP 546.1 330.13 111.9 2032.6 467.7
SCH 93.17 29.436 16.63 156.03 92.38
IM 69.38 18.056 16.00 99.00 70.00

IDPT 70.31 19.570 19.00 99.00 74.00
HE 30.242 19.067 4.691 139.75 24.814

ADR 90.09 11.710 56.61 111.94 91.06
SR 1.038 0.014 1.010 1.071 1.030
UP 29.744 11.374 8.246 55.60 29.909

CO2E 0.246 0.497 0.017 3.343 0.0947
Instrumental Variables

ICC 0.277 0.448 0.000 1.000 0.000
CCSEB 6.988 6.408 0.144 42.219 5.631

Own source: Author calculation.
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Finally, in Table A2, the first-generation test columns, we report the LLC and IPS panel
unit-root test results. We observed, by using the LLC method, that almost all variables
were stationary at level except ADR and CO2E. Using the IPS method, not all variables
were stationary at level. Even though some variables were stationary, we used the sum of
total stationarity as an indicator to use static methods. While the dependent variables were
stationary at level, only two of the three ICT variables were not stationary according to the
IPS method. However, in future studies, the use of dynamic models would be prudent. We
established the stationarity proposition. After establishing the cross-sectional dependencies,
we also reported the test results of second-generation tests (see Table A2 s-generation panel
unit-root tests). CIPS and CADF tests did not reject the assumption of the presence of
cross-sections in the data. Similar to the results of the first-generation tests, we found that
almost all the results rejected the hypothesis of the presence of unit-roots. Therefore, our
panel was stationary with “drift” or “trend” settings.

Finally, the last set of tests that we applied were the panel Granger causality tests.
As we noted in Table 2, all the test results reported a significance causal impact of ICT
indicators on both CMU5 and INFM.
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Table 2. Panel Granger causality test results.

lnCMU5 lnINFM

Ztilde Zbar Wbar Ztilde Zbar Wbar

lnIU 8.703 *** 12.19 *** 4.317 *** 8.273 *** 11.618 *** 4.162 ***
lnFTS 12.489 *** 17.225 *** 5.688 *** 13.606 *** 18.711 *** 6.092 ***
lnMCS 39.138 *** 52.674 *** 15.336 *** 35.051 *** 47.237 *** 13.856 ***

Significance level *** p < 0.01.

4.2. Fixed Effects FE Results

In Table 3, in the second-to-the-last row, we found that the Breach–Pagan test results
rejected the null hypothesis of an unbalanced dataset for the 1–8 model specification. As a
consequence of the test results, we used the POLS.

Correspondingly, Table 3 reports the results of the estimation of FE estimators using
robust Driscoll–Kraay and the cross-dependence test results, and the Hausman specification
test results. The FE with Driscoll–Kraay robust error results were reported in eight columns.
In columns 1–8, we noticed that the IU and MCS estimators were associated with a decrease
in both INFM and CMU5. More specifically, in columns 1–3 and 5–7, INFM and CMU5
decreased by 7% and 6%, respectively, in association with IU. MCS reduces INFM and
CMU5 by 6% and 5%, respectively. While in columns 4 and 8, where we had regressed all the
ICT variables simultaneously, IU decreased INFM and CMU5 by 4% and 5%, respectively;
MCS reduced both INFM and CMU5 by 3%. Hence, in the FE estimation method, FTS
was not statistically significant. As per the other control variables, in Table 3, we observed
that most were statistically significant. Except for CO2E, their significance direction or
sign was similar to those in previous research. The last row in Table 3 shows the results
of the Hausman specification test. The results of the test rejected the null hypothesis.
Therefore, the FE estimates were more consistent than the RE estimates. The second- and
third-to-last two rows display the cross-dependence test results. Breush-Pagan LM and
Pasaran CD cross-sectional results rejected the null hypothesis. These results indicate that
the FE estimation results without applying Driscoll–Kraay robust errors did not account for
country cross-dependence as well. As per the results of FE with instrumental variables (IV),
we found the only ICT variable that underwent a change in its estimate. In Appendix B.1
Table A3, we found that IU decreased INFM and CMU5 by 18% and 14%, respectively. We
did not apply the IV for all models simultaneously as the number of regressors was larger
than the number of IVs.

Table 3. FE using Driscoll–Kraay robust error estimation results for infant mortality and child
mortality under 5.

INFM CMU5

1 2 3 4 5 6 7 8

lnIU −0.070 *** −0.040 *** −0.059 *** −0.051 ***
0.016 (0.012) 0.011 (0.018)

lnFTS 0.003 0.006 0.001 0.008
0.013 (0.009) 0.010 (0.013)

lnMCS −0.059 *** −0.030 *** −0.052 *** −0.031 ***
0.011 (0.005) 0.009 (0.007)

lnGDP −0.152 *** −0.286 *** −0.124 *** −0.073 *** −0.114 *** −0.226 *** −0.084 *** −0.110 ***
0.027 0.059 0.036 (0.024) 0.024 0.050 0.031 (0.026)

lnSCH −0.084 −0.139 −0.069 −0.003 −0.025 −0.071** −0.008 −0.062
0.071 0.065 0.070 (0.038) 0.038 0.031 0.037 (0.073)

lnIM 0.142 *** 0.197 *** 0.191 *** 0.120 *** 0.110 ** 0.157 *** 0.151 *** 0.151 ***
0.047 0.041 0.040 (0.036) 0.046 0.031 0.028 (0.037)

lnIDPT −0.167 *** −0.237 *** −0.197 *** −0.120 *** −0.121 *** −0.180 *** −0.144 *** −0.165 ***
0.047 0.064 0.058 (0.027) 0.037 0.047 0.039 (0.040)

lnHE −0.076 −0.142 *** −0.089 ** −0.071 −0.083 ** −0.138 *** −0.091 ** −0.064
0.052 0.044 0.044 (0.044) 0.041 0.036 0.037 (0.055)

lnADR −0.080 0.075 0.034 0.127 0.105 0.235 * 0.198 * −0.057
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Table 3. Cont.

INFM CMU5

1 2 3 4 5 6 7 8

0.125 0.154 0.139 (0.106) 0.096 0.125 0.111 (0.136)

lnSR −23.289
***

−25.727
***

−26.321
***

−19.500
***

−18.768
***

−20.850
***

−21.333
***

−23.955
***

5.412 6.082 5.044 (3.190) 4.057 4.589 3.659 (4.291)
lnUP −0.079 * −0.148 ** −0.100 ** −0.033 −0.042 −0.100 * −0.057 −0.069

0.048 0.068 0.050 (0.038) 0.040 0.058 0.040 (0.045)
lnCO2E 0.039 ** 0.064 *** 0.050 *** 0.025** 0.026** 0.048 *** 0.035 *** 0.037 **

0.015 0.010 0.013 (0.010) 0.011 0.007 0.009 (0.015)
R2 0.850 0.805 0.846 0.859 0.825 0.781 0.817 0.832

Adj. R2 0.838 0.789 0.834 0.847 0.811 0.764 0.803 0.818
F-Stat 254.624 *** 184.781 *** 246.956 *** 227.488 *** 211.733 *** 211.733 *** 211.733 *** 184.226 ***

Lagrange Multiplier Test (Breusch–Pagan) for balanced panels, X2

1984.1 *** 1846.2 *** 1984.1 *** 1930.7 *** 1670.5 *** 1603.2 *** 1670.5 *** 1665.3 ***

F test for individual effects

124.83 *** 95.708 *** 131.94 *** 126.42 *** 88.073 *** 71.707 *** 91.224 *** 88.682 ***

Breusch–Pagan LM test for cross-sectional dependence in panels

1485.8 *** 1333.9 *** 1595.3 *** 1609 *** 1381.9 *** 1287.7 *** 1549.1 *** 1565 ***

Pesaran CD test for cross-sectional dependence in panels

1572.8 *** 1380.5 *** 1661.4 *** 7.690 *** 1573.6 *** 1363.9 *** 1646.9 *** 9.518 ***

Hausman Test

111.79 *** 69.428 *** 553.31 *** 242.09 *** 117.69 *** 80.781 *** 222.17 *** 145 ***

Note: Significance level * p < 0.1; ** p < 0.05; *** p < 0.01.

4.3. Two-Way FE Using Driscoll–Kraay Robust Errors with IV Estimation Results

Similarly, Table 4 shows the results of the estimation of the two-way FE estimators
using robust Driscoll–Kraay. The two-way FE accounted for both country and time effects.
In Table 3, FE with Driscoll–Kraay robust error results are shown in eight columns, from
column 1 to column 8. The estimates of ICT indicators were all negative. However, only
MCS was statistically significant. IU and FTS decreased both INFM and CMU5. It also
indicated that MCS decreases both INFM and CMU5 significantly. More specifically, MCS
reduced INFM and CMU5 by 3% and 2%, respectively. In the columns where we regressed
all three variables simultaneously, MCS reduced both INFM and CMU5 by 2%. For other
control variables, only GDP, IM, IDPT, and SR remained statistically significant, as shown in
Table 4. The other control variables were not statistically significant. With the exception of
HE, the estimates were statically significant for columns 6–8. One reason for the change in
the results, especially for the control variables, was that the two-way estimation approach
may have been a better fit to model our data. A more apparent indication for the previous
proposition was that the total sum of squares and the residual sum of squares R-squared
and adjusted-R-squared estimates were lower than the one-way (individual/country) FE
results. In addition, the figures in our study showed an apparent time effect.

For the results of FE with IV, the estimation results of ICT were the same as the o
individual/country effect, as shown in Table A3. In Table A4, the IU reduced INFM and
CMU5 by (2% and 1%) and (3% and 2%), respectively. For the control variables, their
estimation results were similar to those of the two-way effect of Table 4.



Int. J. Environ. Res. Public Health 2022, 19, 7338 12 of 24

Table 4. Two-way FE using Driscoll–Kraay robust error estimation results for infant mortality and
child mortality under 5.

CMU5 INFM

1 2 3 4 5 6 7 8

lnIU −0.053 −0.012 −0.049 −0.010
0.047 (0.010) 0.042 (0.006)

lnFTS −0.007 −0.005 −0.006 −0.004
0.010 (0.011) 0.007 (0.008)

lnMCS −0.028 *** −0.023 *** −0.023 *** −0.020 ***
0.006 (0.007) 0.006 (0.006)

lnGDP −0.083 * −0.115 ** −0.092 ** −0.083 ** −0.048 −0.078 * −0.058 * −0.051
0.045 0.046 0.040 (0.039) 0.036 0.040 0.034 (0.034)

lnSCH −0.042 −0.050 −0.037 −0.038 0.013 0.006 0.017 0.016
0.075 0.071 0.071 (0.072) 0.041 0.037 0.037 (0.037)

lnIM 0.157 *** 0.221 *** 0.193 *** 0.185 *** 0.126 *** 0.185 *** 0.162 *** 0.155 ***
0.056 0.039 0.029 (0.035) 0.062 0.040 0.031 (0.038)

lnIDPT −0.185 *** −0.234 *** −0.213 *** −0.205 *** −0.135 *** −0.180 *** −0.162 *** −0.156 ***
0.034 0.044 0.042 (0.038) 0.028 0.026 0.024 (0.023)

lnHE −0.059 −0.083 −0.075 −0.073 −0.065 −0.087 ** −0.080 ** −0.079 *
0.051 0.051 0.049 (0.055) 0.044 0.041 0.039 (0.044)

lnADR −0.091 −0.009 −0.013 −0.031 0.090 0.166 0.163 0.148
0.108 0.128 0.135 (0.138) 0.091 0.101 0.107 (0.107)

lnSR −19.318 *** −19.364 *** −20.299 *** −20.315 *** −15.645 *** −15.671 *** −16.456 *** −16.478 ***
4.973 4.864 4.570 (4.343) 3.768 3.683 3.462 (3.341)

lnUP −0.022 −0.027 −0.034 −0.035 0.009 0.005 −0.001 −0.001
0.024 0.034 0.030 (0.024) 0.017 0.027 0.023 (0.019)

lnCO2E 0.000 −0.003 −0.004 −0.002 −0.002 −0.005 −0.005 −0.004
0.015 0.008 0.006 (0.008) 0.012 0.005 0.004 (0.006)

R-Squared: 0.261 0.276 0.290 0.296 0.290 0.316 0.333 0.339
Adj. R-Squared: 0.170 0.187 0.203 0.206 0.203 0.232 0.252 0.255

F-statistic on 10 and
432 DF 160.452 164.994 177.230 15.039 190.025 200.290 216.549 18.387

Significance level * p < 0.1; ** p < 0.05; *** p < 0.01.

4.4. Panel Common Correlated Effects PCCE Estimation Results

Similarly, Table 5 reports the results of the estimation of PCCE estimators using
robust Driscoll–Kraay. PCCE consists of an equation of interest in which the error has a
component structure and a reduced form equation in which the explanatory variables are
linear functions of the same factors that are present in the main equation. CCE then treats
the response and explanatory variable cross-sectional averages as fixed effects, removing
unobserved variability. Similar to FE Tables 3 and 4, PCCE results were reported in eight
columns, from column 1 to column 8. In the ICT individual models (columns 1–3 and 5–7),
only the IU estimate was statistically significant. The IU decreased both INFM and CMU5
significantly, yet the significance level was low. In columns 4 and 8, where we regressed
all three variables simultaneously, FTS significantly reduced both INFM and CMU5 by 1%
while MCS increased CMU5 significantly. For the other control variables, in Table 5, we
observed changes in estimates and significance levels. For example, GDP was statistically
significant only in columns 5–7. SCH was statistically significant only in columns 4–8. IM,
IDPT, HE, ADR, and UP were statistically significant for all the columns, except (3 and 5),
(3 and 6), (1 and 5), (3 and 5), and (1,2, and 5), respectively. SR was statistically significant
only in column 4. CO2E was statistically significant in all the columns. One reason for the
change in the results, especially for the control variables, could have been that the PCCE
estimation approach was not an ideal fit to model our data. The total sum of squares and
the residual sum of squares R-squared and adjusted R-squared estimates were higher than
the two-way FE models’ results, as well.
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Table 5. PCCE using Driscoll–Kraay robust error estimation results for infant mortality and child
mortality under 5.

CMU5 INFM

1 2 3 4 5 6 7 8

lnIU −0.003 *** −0.001 −0.002 *** −0.001
(0.001) (0.001) (0.001) (0.001)

lnFTS 0.000 −0.011 ** −0.002 −0.006 **
(0.002) (0.004) (0.003) (0.002)

lnMCS 0.000 0.002 *** −0.001 0.000
(0.001) (0.001) (0.001) (0.001)

lnGDP −0.001 −0.009 −0.004 0.005 −0.006 ** −0.012 * −0.005 * −0.005
(0.005) (0.007) (0.003) (0.007) (0.003) (0.007) (0.003) (0.003)

lnSCH 0.002 −0.009 −0.005 −0.023 ** −0.006 * −0.031 ** −0.009 ** −0.012 *
(0.004) (0.006) (0.004) (0.009) (0.003) (0.012) (0.004) (0.006)

lnIM 0.012 *** 0.029 *** −0.004 −0.026 ** 0.005 0.014 ** −0.01 ** −0.016 **
(0.004) (0.01) (0.008) (0.013) (0.003) −0.006 (0.004) (0.008)

lnIDPT −0.021 *** −0.017 ** 0.000 0.016 * −0.013 *** −0.010 0.006 * 0.013 **
(0.005) (0.009) (0.007) (0.01) (0.003) (0.009) (0.003) (0.006)

lnHE −0.001 −0.015 *** 0.008 *** 0.015 ** 0.001 −0.006 ** 0.009 *** 0.012 ***
(0.004) (0.004) (0.003) (0.006) (0.002) (0.003) (0.001) (0.004)

lnADR 0.115 *** 0.129 *** −0.105 −0.159 * 0.033 0.071 ** −0.159 *** −0.169 ***
(0.026) (0.025) (0.074) (0.087) (0.023) (0.03) (0.04) (0.04)

lnSR −0.141 −0.120 −0.007 −2.665 ** 0.051 0.068 0.227 −0.888
(0.794) (0.933) (0.736) (1.076) (0.618) (1.154) (0.58) (0.928)

lnUP −0.069 0.125 0.075 ** 0.118 ** 0.025 0.203 *** 0.136 *** 0.185 ***
(0.051) (0.079) (0.037) (0.046) (0.055) (0.059) (0.02) (0.036)

lnCO2E −0.009 *** −0.007 *** −0.009 *** −0.009 *** −0.004 *** −0.006 *** −0.005 *** −0.005 ***
(0.002) (0.001) (0.002) (0.002) (0.001) (0.002) (0.001) (0.001)

Total Sum
of Squares: 131,245 131,245 131,245 131,245 90,734 90,734 90,734 90,734

Residual
Sum of

Squares:
0.017 0.038 0.013 0.008 0.009 0.023 0.006 0.003

HPY R2: 0.998 0.996 0.999 0.999 0.999 0.997 0.999 0.999

Significance level * p < 0.1; ** p < 0.05; *** p < 0.01.

4.5. System-GMM Results

Finally, the last approach that we applied, as reported in Table 6, was system-GMM.
We used IV 2SLS to address potential endogeneity. Nevertheless, this approach was
improper in the existence of heteroscedasticity. In this circumstance, it would be reasonable
to utilize the generalized method of moments to address both heteroskedasticity and
endogeneity. We employed the system-GMM presented by Arellano and Bond. In our
process of estimating, we used an inverse matrix to keep all system-GMM estimators
consistent in terms of heteroskedasticity. System-GMM is used to address cross-dependency
and hidden heterogeneity in a model. It uses internal and external instruments to calculate
our independent variables. Therefore, in our experience, it was the most suitable of the
previous models to estimate the effect of ICT on health through INFM and CMU5. In
the system-GMM, the Sargen test analyzed the overall validity of the instruments, the
Arellano–Bond test for AR (1) and AR (2) examined the absence of the first-order and the
second-order serial correlation in disturbances, and the Wald test was conducted for the
coefficients. In Table 6, we reported the estimates and test results of the system-GMM of all
the models, from 1 to 6.
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Table 6. System-GMM estimation results for infant mortality and child mortality under 5.

INFM CMU5

1 2 3 4 5 6

IU
−0.093 *** −0.105 ***

(0.026) (0.030)

FTS
−0.051 −0.046
(0.033) (0.037)

MCS
−0.036 −0.040
(0.024) (0.027)

GDP
−0.170 * −0.281 ** −0.270 ** −0.136 −0.271 ** −0.249 **
(0.091) (0.124) (0.109) (0.102) (0.134) (0.117)

SCH
−0.132 −0.167 −0.181 * −0.276 *** −0.317 *** −0.331 ***
(0.097) (0.102) (0.095) (0.102) (0.104) (0.100)

IM
−0.292 −0.122 −0.176 −0.370 −0.181 −0.238
(0.319) (0.314) (0.321) (0.342) (0.342) (0.347)

IDPT
0.252 0.118 0.165 0.313 0.159 0.213

(0.316) (0.327) (0.330) (0.332) (0.352) (0.349)

HE
0.115 −0.001 0.070 0.127 0.003 0.076

(0.084) (0.105) (0.101) (0.091) (0.112) (0.111)

ADR
1.176 *** 1.104 *** 1.176 *** 1.172 *** 1.468 *** 1.382 ***
(0.096) (0.110) (0.096) (0.102) (0.106) (0.108)

SR
−2.547 −3.824 * −2.547 −6.324 *** −5.040 * −6.285 ***
(2.576) (2.221) (2.576) (2.030) (2.718) (2.214)

UP
0.395 *** 0.388 *** 0.431 *** 0.333 *** 0.334 *** 0.374 ***
(0.075) (0.101) (0.088) (0.088) (0.110) (0.098)

CO2E
−0.136 ** −0.054 −0.114 ** −0.155 ** −0.070 −0.130 **

(0.064) (0.044) (0.056) (0.068) (0.049) (0.060)
Sargan test: chisq (162) = 27 27 27 27 27 27

p-value = 1 1 1 1 1 1
Autocorrelation test (1): normal = −1.230 −0.615 −0.957 −1.595 −1.168 −1.405

p-value = 0.219 0.538 0.338 0.111 0.243 0.160
Autocorrelation test (2): normal = −0.432 −0.187 −0.410 −0.693 −0.361 −0.529

p-value = 0.665 0.852 0.682 0.489 0.718 0.597
Wald test for coefficients: chisq (10) = 37,675.47 25,405.61 27,954.66 63,688.66 27,759.88 32,799.97

p-value = 0.000 0.000 0.000 0.000 0.000 0.000

Note: Significance level * p < 0.1; ** p < 0.05; *** p < 0.01.

First, we found that the Sargan test did not reject the null hypothesis, so the instru-
ments were highly valid and exogenous. Second, the Arellano–Bond results did not reject
the null hypothesis, indicating an absence of the first-order and second-order serial correla-
tion in disturbances. Third, the Wald results rejected the null hypothesis. As a consequence,
the estimates of this approach were valid. Fourth, we observed many changes in the esti-
mated statistical significance and significance level, as compared to the previous methods.
For example, in Table 6, we observed that the IU estimate was the only ICT estimate that
had remained significant out of the three ICT estimates. In Table 6 columns 1–6, the IU
estimate increased to 9.3% and 10.5% for both INFM and CMU5 models, respectively.
The GDP, ADR, SR, UP, and CO2E estimates were statistically significant; SCH was only
statistically significant in columns 3–6 while IM, IDPT, and HE were statistically significant.

5. Discussion

This study examined the impact of three ICT indices on health measured by INFM and
CMU5. To achieve this aim, we applied suitable panel estimation approaches to mitigate
any potential ICT and error heterogeneity and cross-sectional dependencies. We built
our study model according to that of Grossman in 1972, including social, economic, and
environmental factors, which we used for our health inputs. We used panel data of our
variables for 27 low-income countries for 18 years (2000–2017). We found a strong cross-
sectional dependency in our panel models and data. Before the application of our models,
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we confirmed the stationarity of our data through both generations of panel unit-root
tests. Based on these tests, we noticed that the setting of our data differed from previous
similar research: our data were stationary and cross-sectionally dependent. To remedy this
difference, we used different estimation methods for the context of our data (i.e., Driscoll–
Kraay robust estimates, common correlated effects, and generalized least squares). We also
applied panel Granger causality tests to establish causality. Tables 3–6 show only the results
of the estimation methods (i.e., FE, two-way FE, PCCE, and system-GMM). All tables were
divided into two parts: the first half shows INFM estimation results, and the second half
shows CMU5 estimation results. Similarly, Appendix B Tables A3 and A4 show the results
of FE with IV. Therefore, we divided our discussion into two parts as well:

5.1. INFM

We compared our results with similar research using OLS estimators. Majeed and
Khan [3] employed a set of PLOS for their data from 184 countries. Dutta et al. [2] used
fully modified and dynamic OLS analyses for the data from 30 Asian countries to study the
effect of ICT on INFM. They found significant negative effects of the ICT indices on INFM.
Comparatively, we found that some of our ICT variables had similar results. Our FE (both
individual and country and two-way effect with/without IVs) and RE results showed that
IU and MCS had significant effects on INFM, and the FTS effect on INFM was negative but
not significant. Except for FTS, our results were similar to Lee’s [52] FE results and Majeed
and Khan’s [3] FE and RE results.

In our PCCE models, we found differences in the results, as compared to previous
studies. Previous studies indicated that only individual IU had a significant negative
effect on INFM. However, in the joint-variable model, FTS had a significant negative effect
on INFM. Our system-GMM results differed from other studies. In recent research, only
Lee [52] used the system-GMM in their dynamic panel model to study the effect of ICT
variables on INFM. Using system-GMM, we found that only IU had a significant positive
impact on reducing INFM. Similarly, Lee [52] found that both MCS and FTS had significant
negative effects on INFM.

5.2. CMU5

For this health variable linked to ICT, the only research that included it in their design
was Lee’s research in 2014. All our FE results were similar. In summary, all the findings via
FE showed that IU and MCS have significant negative effects on CMU5, and there was no
significant effect of FTS on CMU5. In the PCCE models, we found that our results were also
different from those found in previous research: only IU when estimated individually had
a significant negative effect on CMU5. However, in the joint-variables model, FTS (MCS)
had a significant negative (net-positive) effect on CMU5. Again, the system-GMM results
differed from Lee’s results [52]. While Lee [52] found a significant negative impact of only
MCS on CMU5, we found a significant negative effect only of IU on CMU5.

In this paper, we discussed and empirically addressed the issues surrounding ICT
and health in low-income countries. The FE (both individual and country and two-way
effect with/without IVs) results suggested that mobile devices and internet access played
important roles in reducing infant and child mortality rates, thus enhancing low-income
countries’ health outcomes, while the usage of fixed phones is becoming obsolete and
antiquated. The PCCE results suggested that IU, when considered individually, had a
significant effect on reducing the INFM rate. Fixed telephones, in the presence of the
other ICT variables, had a slight effect in reducing INFM. When considered with other
ICT variables, mobile devices slightly increased the incidence of INFM. More precisely, the
system-GMM showed strong evidence of the role of internet access. In the system-GMM
results, in contrast to previous research, we found that for low-income economies, IU
significantly reduced both child mortality rates, thus enhancing the health variables. This
research was limited to many aspects that may provide direction for future research.
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Our research had several limitations. First, to measure health outcomes, we used
INFM proxies, which only included non-chronic diseases; future research could include
chronic diseases. INFM, as we mentioned in the introduction, only considered the mortality
rate in children, and it did not consider their future quality of life. Therefore, a better
measure of health outcomes should be constructed. Second, the data in this research
was also limited to the healthcare provided to the public sector. Future studies should
consider more comprehensive panel data that include measurements and life quality as
well as the private sector. Third, there are many cross-sectional country-specific studies
on the adverse effects of the internet and the other ICT indices on mental health, such
as increased stress, depression, and anxiety. This study did not address these issues.
Consequently, there is a need to study the effects of ICT on global mental health, not just
physical health. More specifically, broader health variables that consider maternal health,
chronic diseases, mental health, and the quality of life should be taken into consideration
by future studies. Finally, we encountered limitations in the generalization of our results.
First, in our econometric design, we found a strong country cross-dependency. Second,
the results were only applicable to cross-sectional analyses and approaches and would not
be applicable for country-specific interpretation. Third, our analysis was not a dynamic
design. Therefore, the results were static and interpreted as short-term dependencies. To
solve this issue, we propose future research should use spatial dynamic panel models. To
our knowledge, such a model was not yet accessible from a programming perspective
and has only recently been introduced by Shi [53]. Shi’s [53] model, once programmed,
may address hidden errors, variable heterogeneity, and cross-sectional dependencies. We
would also suggest the use of a dynamic system-GMM and a difference GMM, with proper
instruments, to address these design issues.

6. Conclusions

To conclude, our study expanded the current literature on health factors using an
empirical analysis of ICT on health outcomes for 27 selected low-income countries for
18 years. We applied suitable panel estimation approaches to address potential error
heterogeneity and cross-sectional dependencies (i.e., Driscoll–Kraay errors and PCCE). The
health-outcome-dependent variables of this study were INFM and CMU5. The independent
ICT proxies were IU, FTS, and MCS. In this study, we observed a strong presence of cross-
sectional dependency in the models and data. Our panel data were stationary through
both generations of panel unit-root tests. We established causality through panel Granger
causality tests. In the FE results, we found that both IU and MCS decreased the rates of
INFM and CMU5. In almost all the estimation results, we found that IU had a significant
effect on the reduction in INFM and CMU5 rates. In the joint model of PCCE, fixed
telephones may have also reduced both mortality rates while mobile devices appeared to
increase them. Finally, due to the setting of our data and the application of novel models,
our results differed from previous research and indicated that findings on a global scale
were different from those found in low-income countries.

Our conclusions also provided policy suggestions for consideration. Policymakers
and leaders of low-income countries should implement policies that guarantee sufficient
internet access for the community. The internet, as a means of information transfer and
a tool for communication, could improve these countries’ health outcomes by promoting
health education, rapid health information sharing for early discovery and prevention of
diseases, and healthcare systems support as well as overcoming the barriers of location
and time for communication and consultation between patients and healthcare providers.
Finally, and most importantly, the internet and mobile devices serve as great tools to
inform and educate healthy behaviors, particularly for pregnant people, to reduce the child
mortality rates through early contact with specialist physicians and healthcare systems, and
to provide support and understanding for pregnancy and early childhood issues through
the exchange of information.
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Appendix A

Table A1. Data source according to previous literature.

Variable Description Source Related Works Status

Health outcome dependent variables

INFM Mortality rate, infant (per 1000 live births) World Bank Database [2,3,52] Included
CMU5 Mortality rate, under 5 (per 1000 live births) World Bank Database [52] Included

LEB life expectancy at birth, total (years) World Bank Database [3,52] Excluded

HIV Prevalence of HIV. The percentage of people ages
15–49 who are infected with HIV World Bank Database [52] Excluded

TBS Incidences of tuberculosis, per 10,000 people. World Bank Database [52] Excluded

ICT independent variables

IU Individuals using the Internet (% of the population)
International

Telecommunications
Union (ITU)

[2,3,52] Included

FTS Fixed telephone subscriptions (per 100 people) ITU [2,3,52] Included
MCS Mobile cellular subscriptions (per 100 people) ITU [2,3,52] Included
FBS fixed-broadband subscriptions per 100 inhabitants ITU [2] Excluded

SIS Secure servers are servers used per 1 million
populations ITU [2] Excluded

Economic Factors

GDP GDP per capita, PPP (constant 2017 inter ratio in
USD) World Bank Database [3,52] Included

PHY physicians (per 1000people) World Bank Database [3] Excluded

ADR Age dependency ratio (% of working-age
population) World Bank Database [52] Excluded

IM Immunization, measles (% of children ages
12–23 months) World Bank Database [3,52] Included

IDPT Immunization, DPT (% of children ages
12–23 months) World Bank Database [52] Included

HE Domestic general government health expenditure
per capita, PPP (current inter ratio in USD) World Bank Database [2,52] Included
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Table A1. Cont.

Variable Description Source Related Works Status

Social Factors

SR Sex ratio at birth (male births per female births) World Bank Database [3,52] Excluded
SCH School enrollment, secondary (% gross) World Bank Database [3] Included

SCHF
Female pupils as a percentage of total pupils at
primary level includeenrollments in public and

private schools
World Bank Database [2,52] Included

NETP The net primary school enrolment rate (%). World Bank Database [52] Excluded

Environmental Factors

UP Urban population (% of the total population) World Bank Database [2] Included

SNT People using at least basic drinking water services;
taken as the percentage of total population World Bank Database [2,52] Excluded

WATR The percentage of the population with access to an
improved water source. World Bank Database [52] Excluded

CO2E CO2 emissions (metric tons per capita) World Bank Database [3] Included

Instrumental Variables

CCSEB Communications, computer, etc. (% of service
exports, BoP) World Bank Database Included

ICTSEBCUS ICT service exports (BoP, current USD) World Bank Database Excluded
ICTSESEB ICT service exports (% of service exports, BoP) World Bank Database Excluded
ICTGETGI ICT goods imports (% total goods imports) World Bank Database Excluded
ICTGETGE ICT goods exports (% of total goods exports) World Bank Database Excluded

CCSIB Communications, computer, etc. (% of service
imports, BoP) World Bank Database Excluded

CCOSCSI Computer, communications, and other services (%
of commercial service imports) World Bank Database Excluded

CCOSCSE Computer, communications, and other services (%
of commercial service exports) World Bank Database Excluded

ICC Dummy variable of the first year a country issued
an internet country code

Author’ own
calculation Included

Appendix A.1. Empirical Tests

The tests we used, which have been widely adopted in the literature, were:
1. Panel unit-root test: To test for stationarity properties, there are two generations

of panel unit-roots. The first-generation tests that are commonly used are Levin–Lin and
Chu (LLC) and Im–Pesaran–Shin (IPS) tests [54,55]. Both tests are based on the augmented
Dickey–Fuller unit-root test and both have similar null hypotheses. Their null hypotheses
indicate no presence of unit-roots. The second-generation tests are distinguished by the
rejection of the cross-sectional independence assumption. These tests are cross-sectional
Im–Pesaran–Shin (CIPS) and cross-sectional augmented Dickey–Fuller (CAFD) [56]. In this
endeavor, we began with preliminary first-generation tests to determine a prior assumption
for our data. Through their estimates, we then confirmed the presence of cross-sectional
dependence. If the assumption of no cross-sectional dependence was rejected, we then
applied the second-generation tests of unit-roots under cross-sectional dependence.

2. Panel causality tests: To test for causality between the dependent and the inde-
pendent variables, we utilized three tests based on the Granger causality test, mentioned
in [57–59]. In programming, there were three proposed variations: Wbar, Ztilde, or Zbar.
Ztilde gives the standardized statistic recommended by Dumitrescu and Hurlin [58], while
Wbar provides the average of individual Granger chi-squared statistics. Following the
works of Lu et al. [60], they forged a direct link between structural causality (identified by
the causality between cross-sections) and Granger causality, which allowed this paper to
utilize this test for studying the causality between the variables of our panel.

3. Pool-ability tests: These determined whether we had to use panel data models or the
usual ordinary least squared OLS models. They are variations of Lagrange multiplier tests,
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including the Breusch–Pagan test for balanced data, and the Lagrange multiplier for the
individual effects when comparing a pooled OLS to random/fixed-effects models [6,61].

4. Panel cross-dependency tests: These inspected the presence of unmeasured unit
cross-dependency in the model estimation, which was the presence of country cross-
dependencies [61,62].

5. Hausman specification test: This is used to specify the estimation method that could
provide better heterogeneity in models. Typically, it has been used to distinguish which
model estimates are better suited: its null hypothesis indicates random-effects models
would be more consistent while the alternative indicates that the fixed effect models would
be more consistent [63].

Table A2. Panel unit-root tests.

Symbol Second-Generation Panel Unit-Root Test First-Generation Panel
Unit-Root Test

CIPS d CAFD d CIPS t CAFD t LLC IPS
INFM −2.5506 * −5.46 * −2.159 * −2.195 * −27.47 * −54.70 *
CMU5 −2.55 * −4.899 * −2.747 * −2.388 * −34.31 * −74.71 *

IU −2.478 * 0.225 −3.475 * −2.649 * −6.103 * −0.749
FTS −1.6 * 0.48 −1.886 * 2.172 * −5.01 * −0.627
MCS −3.732 * −8.144 * −4.002 * 3.614 * −23.233 * −17.663 *
GDP −2.487 * −1.587 * −2.731 * 2.29 * −4.717 * −1.097
SCH −2.592 * −3.943 * −2.744 * −2.98 * −6.797 * −4.754 *
IM −2.571 * −3.902 * −2.608 * −1.873 * −6.758 * −5.357 *

IDPT −2.268 * −5.042 * −2.702 * −3.116 * −13.213 * −9.030 *
HE −2.138 * −3.262 * −2.406 * 2.278 * −5.633 * −2.265 *

ADR −0.497 4.937 −0.677 5.694 * 3.023 15.379
SR −2.895 * −8.99 * −3.213 * −8.27 * −3.9749 * −10.594 *
UP −1.017 5.255 −2.343 * −1.728 * −24.437 * −5.148 *

CO2E −1.911 * −1.293 −2.05 * 1.455 0.777 −1.748 *
Note: d: stands for drift; t: stands for trend; significance level * p < 0.1.

Appendix B

Appendix B.1. Results

Table A3. FE using Driscoll–Kraay robust errors with IV estimation results for INFM and child
mortality under 5.

CMU5 INFM

1 2 3 4 5 6

lnIU −0.185 *** −0.142 ***
0.019 0.015

lnFTS 0.003 0.001
0.013 0.010

lnMCS −0.059 *** −0.052 ***
0.011 0.009

lnGDP 0.064 ** −0.286 *** −0.124 *** 0.042 ** −0.226 *** −0.084 ***
0.029 0.059 0.036 0.020 0.050 0.031

lnSCH 0.005 −0.139 ** −0.069 0.040 −0.071 ** −0.008
0.081 0.065 0.070 0.047 0.031 0.037

lnIM 0.051 0.197 *** 0.191 *** 0.044 0.157 *** 0.151 ***
0.092 0.041 0.040 0.081 0.031 0.028

lnIDPT −0.053 −0.237 *** −0.197 *** −0.039 −0.180 *** −0.144 ***
0.062 0.064 0.058 0.050 0.047 0.039

lnHE 0.031 −0.142 *** −0.089 ** −0.005 −0.138 *** −0.091 **
0.064 0.044 0.044 0.050 0.036 0.037

lnADR −0.330 0.075 0.034 −0.076 0.235 * 0.198 *
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Table A3. Cont.

CMU5 INFM

1 2 3 4 5 6

0.111 0.154 0.139 0.087 0.125 0.111
lnSR −19.152 *** −25.727 *** −26.321 *** −15.777 *** −20.850 *** −21.333 ***

4.916 6.082 5.044 3.742 4.589 3.659
lnUP 0.034 −0.148 ** −0.100 ** 0.040 −0.100 * −0.057

0.065 0.068 0.050 0.047 0.058 0.040
lnCO2E −0.003 0.064 *** 0.050 *** −0.004 0.048 *** 0.035 ***

0.027 0.010 0.013 0.020 0.007 0.009
Total Sum of Squares: 30.251 30.251 30.251 20.507 20.507 20.507

Residual Sum of Squares: 8.796 6.619 5.526 4.905 4.008 3.154
R-Squared: 0.741 0.781 0.817 0.782 0.804 0.846

Adj. R-Squared: 0.720 0.763 0.802 0.765 0.788 0.833
Chi-Squared on 10 DF: 1277.240 1602.840 2008.710 1585.210 1847.810 2469.560

Significance level * p < 0.1; ** p < 0.05; *** p < 0.01.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 21 of 26 
 

 

Appendix B 
Appendix B.1. Results 

Figure A1. Cont.



Int. J. Environ. Res. Public Health 2022, 19, 7338 21 of 24
Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 22 of 26 
 

 

Figure A1. Spearman correlation matrix of the dependent (INFM in the top, CMU5 in the bottom) 
health variables, independent ICT Variables, and socio−economic and environmental control 
variables. 

Table A3. FE using Driscoll–Kraay robust errors with IV estimation results for INFM and child 
mortality under 5. 

 CMU5 INFM 
 1 2 3 4 5 6 

lnIU −0.185 ***   −0.142 ***   
 0.019   0.015   

lnFTS  0.003   0.001  
  0.013   0.010  

Figure A1. Spearman correlation matrix of the dependent (INFM in the top, CMU5 in the bot-
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variables.

Table A4. Two-way FE using Driscoll–Kraay robust estimation with IV results for INFM and child
mortality under 5.

CMU5 INFM

1 2 3 4 5 6

lnIU −0.019 ** −0.016 ***
0.008 0.005

lnFTS −0.007 −0.006
0.010 0.007

lnMCS −0.028 *** −0.023 ***
0.006 0.006

lnGDP −0.107 *** −0.115 ** −0.092 ** −0.071 ** −0.078 * −0.058 *
0.032 0.046 0.040 0.029 0.040 0.034

lnSCH −0.047 −0.050 −0.037 0.009 0.006 0.017
0.071 0.071 0.071 0.038 0.037 0.037
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Table A4. Cont.

CMU5 INFM

1 2 3 4 5 6

lnIM 0.196 *** 0.221 *** 0.193 *** 0.165 *** 0.185 *** 0.162 ***
0.045 0.039 0.029 0.045 0.040 0.031

lnIDPT −0.216 *** −0.234 *** −0.213 *** −0.165 *** −0.180 *** −0.162 ***
0.042 0.044 0.042 0.027 0.026 0.024

lnHE −0.073 −0.083 −0.075 −0.078 * −0.087 ** −0.08 **
0.052 0.051 0.049 0.041 0.041 0.039

lnADR −0.040 −0.009 −0.013 0.141 0.166 0.163
0.127 0.128 0.135 0.098 0.101 0.107

lnSR −19.205 *** −19.364 *** −20.299 *** −15.534 *** −15.671 *** −16.456 ***
5.023 4.864 4.570 3.776 3.683 3.462

lnUP −0.023 −0.027 −0.034 0.008 0.005 −0.001
0.030 0.034 0.030 0.023 0.027 0.023

lnCO2E −0.002 −0.003 −0.004 −0.004 −0.005 −0.005
0.009 0.008 0.006 0.007 0.005 0.004

Total Sum of Squares: 5.733 5.733 5.733 3.438 3.438 3.438
Residual Sum of Squares: 4.100 4.148 4.065 2.316 2.349 2.290

R-Squared: 0.284 0.276 0.290 0.326 0.316 0.333
Adj. R-Squared: 0.197 0.187 0.203 0.243 0.232 0.252

F-statistic on 10 and 432 DF: 17.209 16.499 17.723 20.913 20.029 21.654

Significance level * p < 0.1; ** p < 0.05; *** p < 0.01.
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