
© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(2):1636-1651 | https://dx.doi.org/10.21037/qims-23-1251

Original Article

Deep learning-based bronchial tree-guided semi-automatic 
segmentation of pulmonary segments in computed tomography 
images

Zhi Chen1#^, Bar Wai Barry Wo2#, Oi Ling Chan3, Yu-Hua Huang1, Xinzhi Teng1, Jiang Zhang1,  
Yanjing Dong1, Li Xiao2, Ge Ren1, Jing Cai1

1Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; 2Department of Clinical 

Oncology, Tuen Mun Hospital, Hong Kong, China; 3Department of Radiology, Tuen Mun Hospital, Hong Kong, China

Contributions: (I) Conception and design: Z Chen, BWB Wo, G Ren, J Cai; (II) Administrative support: L Xiao, J Cai; (III) Provision of study 

materials or patients: Z Chen; (IV) Collection and assembly of data: Z Chen, BWB Wo, OL Chan, Y Dong; (V) Data analysis and interpretation: 

Z Chen, BWB Wo, OL Chan, YH Huang, X Teng, J Zhang, Y Dong; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All 

authors.

#These authors have contributed equally to this work.

Correspondence to: Ge Ren, PhD; Jing Cai, PhD. Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk 

Choi Rd., Hung Hom, Kowloon, Hong Kong, China. Email: gary-ge.ren@polyu.edu.hk; jing.cai@polyu.edu.hk.

Background: Pulmonary segments are valuable because they can provide more precise localization and 
intricate details of lung cancer than lung lobes. With advances in precision therapy, there is an increasing 
demand for the identification and visualization of pulmonary segments in computed tomography (CT) 
images to aid in the precise treatment of lung cancer. This study aimed to integrate multiple deep-learning 
models to accurately segment pulmonary segments in CT images using a bronchial tree (BT)-based 
approach.
Methods: The proposed segmentation method for pulmonary segments using the BT-based approach 
comprised the following five essential steps: (I) segmentation of the lung using a U-Net (R231) (public 
access) model; (II) segmentation of the lobes using a V-Net (self-developed) model; (III) segmentation of 
the airway using a combination of a differential geometric approach method and a BronchiNet (public 
access) model; (IV) labeling of the BT branches based on anatomical position; and (V) segmentation of the 
pulmonary segments based on the distance of each voxel to the labeled BT branches. This five-step process 
was applied to 14 high-resolution breath-hold CT images and compared against manual segmentations for 
evaluation.
Results: For the lung segmentation, the lung mask had a mean dice similarity coefficient (DSC) of 0.98±0.03. 
For the lobe segmentation, the V-Net model had a mean DSC of 0.94±0.06. For the airway segmentation, 
the average total length of the segmented airway trees per image scan was 1,902.8±502.1 mm, and the average 
number of the maximum airway tree generations was 8.5±1.3. For the segmentation of the pulmonary 
segments, the proposed method had a DSC of 0.73±0.11 and a mean surface distance of 6.1±2.9 mm.
Conclusions: This study demonstrated the feasibility of combining multiple deep-learning models for 
the auxiliary segmentation of pulmonary segments on CT images using a BT-based approach. The results 
highlighted the potential of the BT-based method for the semi-automatic segmentation of the pulmonary 
segment.
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Introduction

Lung cancer is a leading cause of mortality worldwide, and 
resulted in approximately 1.8 million deaths in 2020 (1). 
Computed tomography (CT) currently serves as the most 
suitable imaging modality for early detection examinations 
of lung cancer due to its exceptional spatial resolution and 
contrast resolution that enable the precise visualization of 
the chest’s anatomical structures.

Radiologists,  pulmonologists,  and surgeons use 
pulmonary segments as a reference to determine the 
location of lung lesions. The accurate identification 
and visualization of these segmental structures enhance 
the reliability and precision of individualized treatment 
plans (e.g., resection by lobectomy or segmentectomy). 
Several studies have shown that segmentectomy helps to 
maintain lung parenchyma and preserves 2–3.5% higher 
lung function in patients with early-stage lung cancer 
while achieving a similar overall survival rate to that of 
lobectomy (2,3). Additionally, segmentation of pulmonary 
segments has the potential to be useful in radiation therapy. 
Baisden et al. (4) found that the likely maximum acceptable 
dose (MAD) for patients considered for stereotactic body 
radiotherapy can be predicted based on the planned 
treatment volume and lung volume. However, the ratio of 
the affected segments to the lung volume could provide 
additional information for MAD prediction, as the dose 
to the target could affect the whole volume of the related 
segments rather than the planning tumor volume regions in 
the segments. Additionally, the segmentation of pulmonary 
segments could also help in functional lung avoidance 
radiotherapy (FLART). Research indicates that certain 
regions may regain function after radiotherapy in patients 
with central tumors (5). This phenomenon occurs when the 
tumor obstructs the airway prior to treatment, subsequently 
shrinking post-treatment and allowing for the re-ventilation 
of the corresponding region. The identification of segments 
on a patient’s diagnostic high-resolution CT (HRCT) can 
help to identify temporarily hypo-ventilated regions. The 
segmentation is then deformed to four-dimensional CT 
(4DCT) could provide more precise guidance for FLART 

through the integration of CT-based ventilation imaging 
methods (6-9).

Despite the extensive clinical benefits related to 
the segmentation of pulmonary segments, its practical 
application is limited by the time-intensive process of 
delineating segment boundaries within three-dimensional 
CT (3DCT) images. Typically, no distinct physical 
boundaries separate these segments. The complexity 
of segmenting these segments further compounds this 
issue. van Rikxoort et al. (10) developed a fully automatic 
method that subdivides each lobe into segments using voxel 
classification. This approach considers voxel features based 
on their relative positions within the lobe and their spatial 
relationship to detected lobar fissures, and had 77% accuracy 
in identifying tumor locations, albeit without validating 
the segment boundaries. Kuang et al. (11) developed the 
ImPulSe deep-learning model for the segmentation of 
pulmonary segments, which had an overall segmentation 
dice similarity coefficient (DSC) of 0.846. However, in 
certain cases, the existing models used for the segmentation 
of pulmonary segments may not be suitable. For example, 
the upper part of the left upper lobe (LUL) can be divided 
into three segments (apical, anterior and posterior) rather 
than the common two segments (apico-posterior and 
anterior) (12,13). In other instances, it may be necessary to 
further divide a segment into two to three sub-segments 
to achieve a more precise analysis. In these situations, 
the standard models for segment segmentation may not 
adequately capture the anatomical variability or provide the 
level of detail required. Consequently, manual revision on a 
slice-by-slice basis may be necessary.

Some anatomical-based methods have been developed to 
address the limitations of existing models. These methods 
take into account the specific anatomical characteristics of 
the lung, such as the distribution of the bronchial tree (BT) 
or pulmonary arteries (PAs). Kuhnigk et al. (14) proposed 
a BT-based method to extract pulmonary segments 
from 3DCT data. After lobe segmentation, the method 
approximated lung segments by assigning each lung voxel 
to the nearest point of the segmented BT within the same 
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lobe. Validation studies reported an accuracy DSC of 0.8 on 
two in-vitro left lungs. Stoecker et al. (15) introduced a PA-
based segment segmentation approach, achieving a mean 
surface distance (MSD) of 2–3 mm compared to the ground 
truth. However, the manual generation of PAs in Stoecker 
et al.’s study took 4–6 hours, which poses a barrier to the 
widespread adoption of this method in clinical settings.

In addition, recent studies have demonstrated that the 
generation of 4DCT-ventilation images differs when using 
lung segmentations that exclude airways and pulmonary 
vasculature (referred to as ‘advanced lungs’) and when using 
lung segmentations that include airways and pulmonary 
vasculature (referred to as ‘standard lungs’) (16-18). The 
advanced lungs-based method is assumed to exhibit fewer 
image-generation artifacts. By applying anatomical-based 
pulmonary segment methods, advanced segments can 
be generated, which can then be used to create 4DCT-
ventilation images for each segment and subsequently to 
form the final 4DCT-ventilation image.

The rapid advancement of deep learning has led to its 
increasing prevalence in the segmentation of the lung, 
lobes, airways, and vessels within the lungs (19-21). 
These advancements hold promise in assisting with the 
segmentation of pulmonary segments. In this study, we 
aimed to construct a BT-based method to identify lung 
segments in CT images by combining multiple deep-
learning models for the automatic segmentation of the lung, 
lobes, and airways. Subsequently, the BTs are automatically 
grouped into their corresponding pulmonary segments 
based on their anatomical positions. The labeling results 
require checking and correction if mislabeling occurs. 
After labeling the lobar pulmonary airways, each voxel 

within the lobe is assigned to the nearest pulmonary 
airway, establishing the pulmonary segments. The resulting 
segmentation is validated by comparing it to manual 
segmentations performed by a physician.

Unlike previous methods, our method has three key 
advantages. First, the developed method automatically 
identifies bronchial branches based on the anatomical 
position. Second, it uses multiple deep-learning models to 
facilitate the automatic contouring of the lungs, lobes, and 
BT. Third, unlike other BT-based methods, our results 
were validated using real patient data.

Methods

Scheme overview

The proposed method for the segmentation of pulmonary 
segments is a BT-based method (22). As shown in  
Figure 1, this method comprises five sequential steps: 
(I) lung segmentation; (II) lobe segmentation; (III) 
BT segmentation; (IV) BT branches labeling; and (V) 
pulmonary segment segmentation. In this study, the lung 
segmentation and BT segmentation were conducted 
using pre-trained deep-learning models available to the 
public that did not require additional training. For the 
lobe segmentation, a deep-learning model was developed 
specifically for this study using a publicly accessible 
data set (23). These steps are explained in further detail 
in subsequent sections. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013) and was approved by the Departmental Research 
Committee of The Hong Kong Polytechnic University. 

Lung segmentation

U-Net (R231) model 
(public)

Lobe segmentation

V-Net model  
(self-developed)

Bronchial tree segmentation

Differential geometric 
approach + BronchiNet  

model (public)

Pulmonary segment 
segmentation

Distance to airway branch 
based

Bronchial tree labeling

Anatomic position  
based + interactive 

correction

Figure 1 The workflow for generating the pulmonary segments using the bronchial tree-based method. The U-Net R231 and BronchiNet 
models (which are publicly accessible) from other published studies were used without any modifications. The (self-developed) V-Net model 
was developed for this study.
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The data set used in this study was acquired from a public 
data set, the requirement of informed consent for this 
analysis was waived. 

Patient data

Due to the time-consuming nature of manually segmenting 
18 segments, only 14 low-dose documented breath-hold 
HRCT scans without serious large disease regions were 
used for the segmentation and evaluation. These scans were 
obtained from the VIA/I-ELCAP Public Access Research 
Database (https://veet.via.cornell.edu/cgi-bin/datac/signon.
cgi). Each scan was acquired in a single breath hold and had 
a slice thickness of 1.25 mm, resulting in minimal visible 
motion artifacts on the CT image. For evaluation purposes, 
a physician manually delineated the reference structures, 
including the lungs, lobes, and pulmonary segments for 
14 patients. The accuracy of the BT-based method for the 
segmentation of the pulmonary segments was assessed using 
the DSC and MSD.

Segmentation of the lung and lung lobes

The conventional threshold-based method fails to 
accurately delineate the lung mask due to the diversity of 
CT images, patient modalities, and lung patterns associated 
with diseases (24). Thus, in this study, a well-trained U-Net 
(R231) model was used for the automatic segmentation 
of the lung mask without any fine tuning (24). The model 
was trained using diverse data sets of patients with various 
diseases, and had a mean DSC of 0.98±0.03; for further 
details on the model design (see https://github.com/JoHof/
lungmask). After the segmentation of the lung mask, a V-Net 
deep-learning model (25) was developed in this study to 
outline the lung lobes. For more details about the model’s 
design and optimization settings (see Appendix 1).

The training and validation data were obtained from 
a publicly accessible database (23), which consisted of 51 
randomly selected CT images from the LUNA16 data set, 
each with manually labeled lung-lobe masks. Of the 51 CT 
images, 41 were randomly selected for training, and the 
remaining 10 were used for validation. The accuracy of the 
V-Net model on the validation data set was evaluated using 
the DSC and MSD. The DSC measures the overlap between 
two volumes; that is, the V-Net lobe mask (A) and the 
manual lobe mask (B). The Hausdorff distance represents the 
maximum distance among the surface distances of all points 
in surface A. The surface distance from a point in surface 

A to surface B is the distance from that point to its nearest 
corresponding point on surface B. The MSD corresponds 
to the average surface distance of all points in surface A. 
The accuracy rate of the U-Net (R231) and V-Net models 
were estimated by comparing them to the segmentations 
performed by the physician using the 14 patients.

Segmentation of the airway

In this study, the respiratory airway was divided into the 
central airway and the BT branches. The central airway 
includes the trachea, the left main bronchus (LMB), the 
right main bronchus (RMB), and the following five bronchi 
connected to five different lobes: right upper lobe (RUL), 
right middle lobe (RML), right lower lobe (RLL), LUL, 
and left lower lobe (LLL). The contouring of the central 
airway was performed automatically using a differential 
geometric approach method (26). This method relies 
on the disparities in principal curvatures and directions 
between the airways and surrounding tissues in geometric 
space. For the segmentation of the BT branches, we used a 
well-trained three-dimensional (3D) convolutional neural 
network, BronchiNet. This model was directly applied 
without any modifications to segment the peripheral 
airways (27). A description of this model can be found at 
https://github.com/antonioguj/bronchinet. This method 
involved cropping the full-size images into bounding boxes 
around the lung region. These boxes could overlap, and 
each box had dimensions of 252×252×252 as input for 
the model. Before cropping, all the CT images were re-
sampled to a resolution of 1 mm × 1 mm × 1 mm. These re-
sampled data were also used for subsequent analyses and 
the segmentation of the pulmonary segments. The total 
respiratory airway was obtained by combining the results of 
the two methods described above. The evaluation metrics 
included the total BT lengths in the lungs (excluding the 
trachea) and the maximum generation numbers (starting 
from the trachea, generation 0). For the left lung, the LUL 
was further divided into the upper lobe and the lingular lobe 
for analysis. The lingular lobe corresponds to the middle 
lobe in the right lung. Due to the time-consuming nature of 
manual airway segmentation, the airways of the 14 patients 
were not manually contoured to verify the accuracy and 
completeness of the BronchiNet model in this study.

Labeling the BT branches

To facilitate the segmentation of each pulmonary segment, 

https://veet.via.cornell.edu/cgi-bin/datac/signon.cgi
https://veet.via.cornell.edu/cgi-bin/datac/signon.cgi
https://github.com/JoHof/lungmask
https://github.com/JoHof/lungmask
https://cdn.amegroups.cn/static/public/QIMS-23-1251-Supplementary.pdf
https://github.com/antonioguj/bronchinet
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it is imperative to first identify each branch of the airway 
as shown in Figure 2. For this study, the lung was divided 
into the left and right lung. After the airway segmentation, 
a 3D image skeletonization method (28) was employed 
to extract the airway skeleton from the airway mask as 
depicted in Figure 2A,2B. The automated lobe-based 
airway labeling method (29) was used to identify the central 
airways, including the trachea, LMB, RMB, RUL, RML, 
RLL, LUL, and LLL, based on the anatomical position 
of the airway distribution. The outcome of identifying the 
main bronchi in the right lung is shown in Figure 2C. Each 
branch of the airway was then identified to ascertain the 
subsequent generations of bronchi.

The labeling of each branch was primarily based on 
the position of the airway’s distal end point. As illustrated 
in the top left quadrant of Figure 3, the RUL was divided 
into the following three pulmonary segments: the apical 
segment, posterior segment, and anterior segment. In 
relation to the branches connected to the RUL, the branch 

with the highest z-value of the endpoint was selected as the 
representative branch of the apical segment, the branch 
with the highest y-value of the endpoint was chosen as 
the representative branch of the posterior segment, and 
the branch with the lowest y-value of the endpoint was 
designated as the representative branch of the anterior 
segment. The result is depicted in Figure 2D. However, 
in some instances, two branches may initially share some 
of the same sections. In such cases, the point at which the 
two branches begin to separate was considered the dividing 
node. As Figure 2E shows, any other branches sharing 
the same section after the dividing node, along with the 
representative branch, were assigned to the same segment. 
This process ensured that all branches were allocated to 
their respective segments. Figure 3 displays the distribution 
of a representative branch airway in the corresponding 
lobes. A similar approach was employed to assign the 
remaining branches to the corresponding segments in other 
lobes. The final result of the BT branches labeling in the 

Figure 2 The five steps of the bronchial tree branches labeling in the right lung. (A) The airway mask. (B) The outcome of the 
skeletonization of the airway mask. (C) The identification of the main bronchi of the right lung. (D) The consequence of the recognition 
of the represented branches in the right upper lobe. (E) The result obtained from the classification of the remaining branches to the 
represented branches. (F) The culminating result of the bronchial tree for the right lung, having executed steps (D) and (E) on the other 
lobes. In this figure, the X-axis represents the left-right direction, the Y-axis denotes the anterior-posterior direction, and the Z-axis indicates 
the superior-inferior direction.
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right lung is presented in Figure 2F. This methodology was 
also applied to the left lung to label the BT branches. For 
the LUL, the lobe was first separated into the upper part 
and lingular part, and each part was then further divided 
into two segments as shown in Figure 3.

Due to the variability in airway distribution, the 
automated BT branches labeling method mentioned 
above may not achieve 100% accuracy. Thus, some 
manual interventions may be necessary to construct an 
accurate BT model. Each representative branch must be 
carefully examined, and any mislabeling must be rectified. 
For instance, Figure 4 illustrates a case in which the left 
upper bronchus exhibited a trifurcated type (30). The 
dividing node between the apico-posterior and anterior 

branches coincided with the dividing node between the 
upper part and the lingular part. As a result, the automatic 
identification method initially assigned the anterior segment 
to the lingular part, leading to the division of the true apico-
posterior segment into two segments—false apico-posterior 
and false anterior—as depicted in Figure 4A. After a visual 
inspection, we manually reassigned the representative 
branches of the apico-posterior, anterior, and lingular 
parts. This adjustment enabled us to achieve the corrected 
segmentation results as depicted in Figure 4B.

Segmentation of pulmonary segments

The pulmonary segments, which are surrounded by 
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Figure 3 The disposition of the representative branch airway within their respective lobes. The red lines represent the representative 
branch airway, while the dash lines outline the boundary of the segments in the lobes, and the large black dots indicate the dividing nodes. It 
should be noted that the superior segments of both the right and left lower lobes has been omitted from the figure to avoid confusion. Each 
representative branch airway can be distinguished based on the position of its endpoints, which have the highest or lowest value along the X-, 
Y-, or Z-axis. In this figure, the X-axis represents the left-right direction, the Y-axis denotes the anterior-posterior direction, and the Z-axis 
indicates the superior-inferior direction. RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; 
LLL, left lower lobe.
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connective tissue septa (31) that are not identifiable on 
CT images, were segmented separately for each lobe. 
The labeled BT branches were used to delineate the 
pulmonary segments within each lobe. The segmentation 
of pulmonary segments was performed in each lobe. In 
the case of the RUL, the distance between each voxel and 
the segmental bronchial branches of the apical segment, 
posterior segment, and anterior segment was calculated. 
The voxel was then assigned to the corresponding segment 
based on the shortest distance. To address the issue of 
certain segmental bronchial branches being longer than 
others due to the incomplete segmentation of the BT 
and its potential bias in the segmentation of pulmonary 

segments, a principal direction was computed and used to 
create a virtual branch for each segment. The principal 
direction was determined by normalizing the sum of all 
vectors, with each vector defined as the path from the 
divided node to another point on the branches. The virtual 
branch was represented by the vector originating from the 
divided node and extending along the principal direction 
to the boundary of the lobe. The outcome of the BT 
branches labeling with and without the virtual branch in 
the left lung is shown in Figure 5. Further, we conducted 
a Spearman correlation analysis of the delineation length 
of the bronchial branches and the DSC of the pulmonary 
segment.

Figure 4 A variant example of the airway distribution in the left upper lobe with airway branch auto-identification (A) and manual 
correction (B).

Figure 5 An example of the bronchial tree distribution in the left lung without (A) and with (B) the virtual branch.
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Results

Segmentation of lung lobes

In relation to the lobe segmentation, the V-Net model 
yielded a mean DSC and a mean MSD of 0.94±0.06 and 
0.76±0.73 mm, respectively, in the validation data set. For 
the left lung, the mean DSC was 0.97±0.02, while for the 
right lung, it was 0.92±0.07. Notably, the middle lobe of 
the right lung had the lowest DSC (0.86±0.09). The MSD 
values for the middle lobe and upper lobe of the right lung 
were 1.49±0.99 and 0.82±0.42 mm, respectively, which were 
higher than those of the other lobes for which the MSD 
values were less than 0.80 mm. This difference may be due 
to the difficulty in identifying the fissure between the upper 
and middle lobes of the right lung in some patients’ images. 

Figure 6 provides an example of the coronal view of a CT 
image, lung masks, and lobe masks generated by the model 
for the same patient. The evaluation results of the U-Net 
(R231) and V-Net models are presented in Table 1. These 
results compared the auto-segmentations of the lungs and 
lobes for the 14 patients with the corresponding manual 
segmentations. These 14 patients were not part of the 
training data set for the models; however, the performance 
of both models on these patients was comparable to the 
performance on the validation data set in terms of DSC. 
Notably, there was a slight increase in the MSD for the 
lobes, which had a mean MSD of 0.94±0.87 mm, compared 
to the validation data set.

Segmentation and labeling of the BT branches

The combination of the differential geometric approach 
and the 3D convolutional neural network model proved 
effective in identifying the majority of airways on the 
CT images for the airway segmentation. However, as the 
segmentation results might have included disconnected 
airways, any “isolated” branches in the segmentation 
results were removed to ensure accuracy. The average total 
length of the segmented airway trees per CT image was 
1,902.8±502.1 mm, with an average of 8.5±1.3 maximum 
generations of airway trees. There was no simple direct 
relationship between the generation numbers and the 
average total airway lengths. The segments in the upper 
lobe exhibited the longest average airway tree lengths, with 
values of 106.8±60.1 and 135.3±56.3 mm for the right and 
left lungs, respectively. Conversely, the segments in the 
middle lobe had the shortest average airway tree lengths, 
with values of 51.9±35.5 and 39.9±33.3 mm for the right 

Figure 6 The coronal view of a patient with the CT image (A), lung masks (B), and lobe masks (C). CT, computed tomography.

Table 1 The results of the evaluation of the U-Net (R231) and 
V-Net models by comparing the auto-segmentation with the 
manual segmentation

Organ name DSC, mean ± SD MSD (mm), mean ± SD

Left lung 0.99±0.00 0.39±0.15

Right lung 0.99±0.00 0.43±0.11

LUL 0.97±0.02 1.31±1.26

LLL 0.96±0.02 1.59±1.47

RUL 0.97±0.02 1.00±0.43

RML 0.91±0.05 1.24±0.54

RLL 0.97±0.01 0.86±0.32

LUL, left upper lobe; LLL, left lower lobe; RUL, right upper 
lobe; RML, right middle lobe; RLL, right lower lobe; DSC, dice 
similarity coefficient; MSD, mean surface distance; SD, standard 
deviation. 

A B C

Right lung           Left lung           Right upper lobe             Right middle lobe              Right lower lobe              Left upper lobe            Left lower lobe
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and left lungs, respectively. For the lower lobe, the average 
airway tree lengths of the segments were 91.8±51.9 and 
105.3±58.2 mm for the right and left lungs, respectively. 
Figure 7 presents the average length of the airway tree for 
each segment. Figure 2 illustrates the performance of a 
sample for airway segmentation and labeling. Among the 
14 patients, five patients had accurate airway labeling that 
did not require any corrections, seven patients required re-
labeling in one lobe, one patient required re-labeling in two 
lobes, and one patient required re-labeling in three lobes. 
Overall, only 17% of the lobes required re-labeling of the 
BT branches by manually selecting the represented branch 
of individual pulmonary segments within the lobe.

The performance of the semi-automatic BT-based method

Figure 8  presents a comparison between the BT-
based segmentation and manual segmentation of two 
representative results, one from the right lung and the other 
from the left lung. The performance evaluation yielded a 
mean DSC of 0.72±0.10 for the right lung and 0.73±0.12 
for the left lung. The mean DSC for the entire lung was 
0.73±0.11. Figure 9A presents an evaluation of the DSC for 
each segment. Similar to the average airway tree length, the 
segments in the upper lobe exhibited the highest average 
DSCs with values of 0.76±0.08 and 0.79±0.10 for the right 
and left lungs, respectively. The segments in the middle 
lobe had the lowest average DSCs with values of 0.66±0.10 
and 0.68±0.13 for the right and left lungs, respectively. 

For the lower lobe, the average DSCs of the segments 
were 0.73±0.09 and 0.71±0.11 for the right and left lungs, 
respectively. The MSD was 6.3±3.0 mm for the right lung 
and 6.0±2.8 mm for the left lung. The MSD for the entire 
lung was 6.1±2.9 mm. The RML exhibited the highest 
MSD with a value of 8.0±2.8 mm, while the MSD values for 
the other lobes were less than 6.3 mm. The MSD evaluation 
result for each segment is shown in Figure 9B.

In terms of the lobes, the average airway tree length in the 
segments appeared to reflect the quality of the segmentation 
performance. The analysis revealed a moderate correlation 
(Spearman correlation coefficient =0.68) between the airway 
lengths and the DSCs for the pulmonary segments. This 
relationship is visually represented in Figure 10, which 
depicts the observed association between the mean DSC 
and the average total airway lengths across the 18 segments.

Table 2 compares the results of our current segmentation 
method for the pulmonary segments with the results of 
the other existing methods. It is important to note that 
these methods were evaluated using their own data sets 
and evaluation parameters. Among them, model-based 
methods, such as voxel classification (10) and ImPulSe (11), 
have the advantage of automatically performing segment 
segmentation. Notably, the ImPulSe model achieved a 
DSC of 0.846. Conversely, anatomical-based methods, 
such as the BT-based (14) and PA-based (15) methods, 
required the manual contouring of partial accessory organs 
and the identification of the corresponding airway or 
artery branches for each segment. The PA-based method 
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Figure 7 The average airway tree length of the 18 segments. The median length is shown as the line inside the box. The bottom and top 
edges of the box indicate the 25th and 75th percentiles, respectively.
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had the highest accuracy with a MSD of 2–3 mm. In 
our approach, we combined existing publicly available 
segmentation models with our self-developed model and 
method to automate the segmentation of the lungs, lobes, 
and airway, and the identification of airway branches for 
segment segmentation. The accuracy of our method was 
lower than that of the ImPulSe and PA-based method. 
Thus, further improvements are still needed. In cases of 
airway distribution variability, manual interventions may be 
required to correct misidentifications.

Incorporating the virtual branch to improve segmentation

The incorporation of the virtual branch helps address the 
imbalance caused by incomplete airway segmentation. 
Figure 11 provides two examples of the segmentation of the 
pulmonary segments in the left lingular lobe, illustrating 
the effect of virtual branches. For the first patient shown 
in Figure 11A-11C, the length of the airway in the superior 
segment of the LUL lingular part (LUL_lingular_sup) 
branch was shorter (length: 7.1 mm) than the inferior 

A

B

C

D

Figure 8 The comparisons of the segmentation for two selected scans (the rows), presented in the sagittal view to display as many 
segments on each slice as possible. The first row depicts the left lung, while the second row depicts the right lung. (A,B) The CT images 
with manual segmentation. (C,D) The CT images with BT-based segmentation. The choice of slices ensures that a maximum number of 
pulmonary segments are visible in each image. CT, computed tomography; BT, bronchial tree.
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segment of the LUL lingular part (LUL_lingular_inf) 
branch (length: 21.9 mm). Consequently, the segmentation 
result for the LUL_lingular_sup segment was considerably 
smaller than that of the LUL_lingular_inf segment for 
this patient. However, by including the virtual branch, 
the DSCs of LUL_lingular_sup and LUL_lingular_inf 
segments increased from 0.19 and 0.65 to 0.72 and 0.71, 
respectively. In the second patient (Figure 11D-11F), both 
the airway branches of the LUL_lingular_sup and LUL_
lingular_inf segments were short. Despite the inclusion 
of virtual branches, the accuracy of the segmentation did 
not improve. The DSCs of LUL_lingular_sup and LUL_

Figure 9 The evaluation of the semi-automatic bronchial tree-based method for each segment. The median value is shown as the line 
inside the box. The bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. (A) The DSC for each segment; 
(B) the MSD for each segment. DSC, dice similarity coefficient; MSD, mean surface distance.
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Table 2 Comparisons between our BT-based method and other related segmentation works

Author, reference Method characteristic Data set
Metrics

Tumor location accuracy DSC MSD (mm)

van Rikxoort et al. (10) Voxel classification model 100 scans; in-house 77% – –

Kuang et al. (11) ImPulSe deep-learning model 160 scans; in-house – 0.846 –

Kuhnigk et al. (14) BT-based, manual identification of 
airway branches

Two in vitro left lung; 
in-house

– 0.8 –

Stoecker et al. (15) PA-based, manual segmentation and 
identification of artery branches

11 scans; in-house – – 2–3 

Ours BT-based, semi-automatic 
identification of airway branches

14 scans; in-house – 0.73 6.1 

BT, bronchial tree; PA, pulmonary artery; DSC, dice similarity coefficient; MSD, mean surface distance.

Airway 
branch

Airway 
branch

LUL_lingual_sup LUL_lingual_inf

Virtual 
branch

Virtual 
branch

Virtual 
branch

Virtual 
branch

A B C

D E F

Figure 11 The results of the segmentation for the LUL_lingular_sup and LUL_lingular_inf segments, both with and without the virtual 
branch, are compared to the manual segmentation. 3D view screenshots of the image are provided from different angles to enhance the 
visibility of the bronchial branches and the boundary between the two pulmonary segments. (A,D) The BT-based method without the 
virtual branch. (B,E) The BT-based method with the virtual branch. (C,F) The manual segmentation with the virtual branch. LUL, left 
upper lobe; LUL_lingular_sup, superior of the LUL lingular; LUL_lingular_ inf, inferior of the LUL lingular; LUL, left upper lobe; 
3D, three-dimensional; BT, bronchial tree.
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lingular_inf segments changed from 0.57 and 0.34 to 0.62 
and 0.29, respectively. Notably, among all the patients, 
this particular patient had the lowest DSC for the LUL_
lingular_inf segment.

Discussion

In this study, we developed a BT-based method to perform 
the segmentation of pulmonary segments on 14 HRCT 
images. The workflow involved the segmentation of the 
lung, lobes, and airways, as well as the labeling of the 
airways. Deep-learning models were used to automatically 
segment the lung, lobes, and airways, while the anatomical 
position was used to label the airway branches. As this 
method successfully automated the segmentation of lung 
segments, the physician was were only required to verify 
and rectify any misidentified bronchial branches resulting 
from incomplete airway segmentation or variations. 
Corrections were necessary for 64% of the patients, 
but most adjustments were confined to a single lobe. 
Consequently, this method significantly reduced the time 
burden associated with the segmentation of pulmonary 
segments. Additionally, a virtual branch method was 
proposed to improve results in cases of substantial 
incomplete airway contouring, which achieved an accuracy 
of 0.73±0.11 in terms of DSC and a MSD of 6.1±2.9 mm. 
Despite advances in the BT-based segmentation method, 
the results obtained still lag behind those obtained for 
the established PA-based method and state-of-the-art 
deep-learning techniques (11,15). Further enhancements 
are necessary to improve the accuracy of the method, 
particularly in cases in which specific patients exhibit 
suboptimal results for certain segments.

To the best of our knowledge, this is the first assessment 
of the segmentation of pulmonary segments on clinical 
CT images using the BT-based method. With a DSC of 
0.846 (11), our method had lower accuracy than existing 
deep-learning methods; however, our method has the 
potential to be extended to segment sub-segments and 
account for segment variations (30,32-34). The combination 
of deep learning with our methods may enable the strengths 
of each approach to be leveraged. Deep-learning methods 
have the ability to learn from large data sets and capture 
intricate patterns, while anatomical-based methods consider 
the underlying anatomical features of the lungs. This 
synergy could lead to more accurate and robust segment 
segmentation, particularly in scenarios involving segment 
variations or the need for sub-segment segmentation.

The PA-based method described by Stoecker et al. (15) 
achieved a MSD accuracy of 2–3 mm, which is significantly 
less than our result of 6.1 mm. However, the manual 
generation of PAs in their study required 4–6 hours, 
making it impractical for daily clinical use. It may be worth 
exploring the application of deep learning to expedite 
the delineation process, which may also require the 
identification of veins. The feasibility and effectiveness of 
such an approach need to be further investigated.

It is important to note that the proposed method 
relies directly on each patient’s BT, making it sensitive 
to variations in the segmental BT. These variations pose 
challenges to the full automation of the segmentation 
process using this method. Additionally, the quality of the 
BT segmentation greatly affects the final segmentation 
outcome. The virtual branch introduced in this study 
improved results in cases of incomplete airway contouring 
within the segments. However, it primarily represents 
the airway growth trend near the lung hilum and may not 
adequately account for the distal regions of the airway 
if the segmentation of the branch airway is very short 
as shown in Figure 11D-11F. Special attention should 
be paid to the quality of BT segmentation, especially 
in cases involving tumor-bearing lobes where a large 
central tumor may result in the absence of the entire BT. 
Moreover, the airway segmentation method employed in 
this study may not perform well for 4DCT or CT scans 
with a significant disease burden, as certain BT branches in 
specific segments may not be segmented at all. Thus, the 
current method is only applicable to breath-hold HRCT 
scans and patients without extensive disease involvement. 
In the future, we intend to enhance the performance of 
the airway segmentation by fine tuning the current model 
using a larger data set that includes CT data with a variety 
of lung diseases (35). By incorporating diverse cases of lung 
diseases, we will be able to effectively address variations and 
abnormalities commonly encountered in clinical scenarios, 
resulting in a more robust and reliable airway segmentation 
model.

To enhance the method further, the branch lines (instead 
of the branch airway) could be manually drawn to improve 
the representation of the BT, particularly in regions with 
insufficient segmentation by the deep-learning model. Our 
proposed semi-automatic segmentation method requires 
physicians to manually correct certain branch recognitions, 
as it is not entirely automated. Currently, the results of 
airway segmentation and labeling are imported into the 
third-party software, Slicer, along with the CT images 
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for visual inspection. To enhance usability for clinical 
purposes, it would be beneficial to develop a dedicated 
software program that enables interactive corrections. In 
such a software program, a feature could be implemented 
to allow users to draw virtual branch lines that represent 
the airway segmentation for the interested segments. The 
inclusion of these virtual branch lines would compensate 
for any potential limitations or areas of insufficiency in the 
deep-learning model’s segmentation. By incorporating this 
interactive correction functionality and the use of virtual 
branch lines, the performance of the airway segmentation 
would be significantly improved. Notably, valuable results 
can be achieved in just a few minutes, making the process 
more efficient and time-effective for clinical practitioners. 
Further, applying a smoothing technique to the boundaries 
of the segmented regions in a final post-processing step 
may enhance the overall results. The segmentation of the 
pulmonary segments will be combined with the CT-based 
ventilation imaging method to identify temporarily hypo-
ventilated regions for better FLART in the future.

Conclusions

In conclusion, this study successfully demonstrated the 
feasibility of integrating multiple deep-learning models 
for the segmentation of pulmonary segments using a BT-
based method on HRCT scans. The results highlighted 
the potential of the BT-based method for the automatic 
segmentation of pulmonary segments.
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