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Abstract

Purpose of review Cardiac arrest is a common condition associated with high mortality and
a substantial risk of neurological injury among survivors. Targeted temperature manage-
ment (TTM) is the only strategy shown to reduce the risk of neurologic disability cardiac
arrest patients. In this article, we provide a comprehensive review of TTM with an emphasis
on recent trials.
Recent findings After early studies demonstrating the benefit of TTM in out-of-hospital
cardiac arrest due to a shockable rhythm, newer studies have extended the benefit of TTM
to patients with a nonshockable rhythm and in-hospital cardiac arrest. A target temperature
of 33 °C was not superior to 36 °C, suggesting that a lenient targeted temperature may be
appropriate especially for patients unable to tolerate lower temperatures. Although early
initiation of TTM appears to be beneficial, the benefit of prehospital cooling has not been
shown and use of intravenous cold saline in the prehospital setting may be harmful.
Summary There is substantial risk of neurological injury in cardiac arrest survivors who
remain comatose. TTM is an effective treatment that can lower the risk of neurological
disability in such patients and ideally delivered as part of a comprehensive, goal-directed
post-resuscitation management by a multidisciplinary team in a tertiary medical center.
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Introduction

More than 650,000 adults experience a cardiac arrest each
year in the USA [1]. Although survival for both in-hospital
and out-of-hospital cardiac arrests has improved in recent
years [2, 3], overall survival continues to remain low. The
mean survival for out-of-hospital cardiac arrest (OHCA) is
nearly 10% [4], while mean survival for in-hospital arrest
(IHCA) is approximately 25% [5, 6]. Among patients who
survive, there is a substantial risk of neurological disability
and poor quality of life [7]. Efforts for improving resusci-
tation care quality have largely focused on improving the
timeliness and quality of acute resuscitation (e.g.,

bystander cardiopulmonary resuscitation, timely defibril-
lation). However, there is overwhelming evidence that
neurological injury continues to occur in patients even
after return of spontaneous circulation. To date, targeted
temperature management (TTM) is the only treatment
that has been shown to improve survival and reduce the
risk of neurological disability in patients surviving cardiac
arrest. In this article, we provide a comprehensive review
regarding the role of TTM in patients resuscitated from
cardiac arrest with a focus on randomized controlled trials
of TTM (summarized in Table 1).

Mechanism of neurological injury and prevention with
hypothermia

The brain is highly sensitive to hypoxic injury [17]. Within minutes of cessation of
cerebral flow, cerebral ATP is depleted, which leads to loss of structural integrity of
membranes, disrupts calcium homeostasis, and results in mitochondrial damage.
This is followed by release of excitatory neurotransmitters (e.g., glutamate) which
can trigger cellular necrosis [18]. If the period of anoxia is sufficiently long, neuro-
logical injurymay continue tooccur even after restorationof circulation likely due to
a complex interplay of impaired cerebrovascular autoregulation, cerebral edema,
and postischemic neurodegeneration caused by excitotoxicity, calcium overload,
oxygen free radical formation, protease activation, and necrotic and apoptotic
pathway activation [19–22]. These pathways are enacted within hours and may
continue for several days even after achievement of ROSC [23]. Impaired reflow can
also cause neuronal damage due to microvascular occlusions caused by intravascu-
lar thrombi [24]. Hyperemia is common in the initial reperfusion phase [25], which
has been associated with an increase of reactive oxygen species and mitochondrial
injury that can further potentiate neuronal injury [26]. The risk of neuronal injury
maybe further exacerbated bymetabolic abnormalities such as hyperglycemia, acid-
base disturbances, inflammatory responses, and occurrence of seizures [27, 28].

Lowering central body temperature protects against neuronal injury through
several mechanisms which include blunting the inflammatory cascade, decreas-
ing the release of excitatory neurotransmitters, and limiting the intracellular
processes that trigger apoptotic cell death [29]. Moreover, hypothermia signif-
icantly reduces cerebral metabolism and brain edema, which occurs following
anoxic brain injury thereby reducing intracranial pressure and improves oxygen
supply-demand mismatch [30].

Historical background

The earliest mention of therapeutic hypothermia (TH) dates back to early 3500 BC
when it was used as a strategy to treat head wounds [31]. The first modern
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description of use of therapeutic hypothermia for post cardiac arrest care was an
uncontrolled case series of 4 patientswho suffered in-hospital cardiac arrest [32, 33].
All patients underwent open cardiacmassagewith prompt restorationof circulation.
Cooling was initiated with a water-cooledmattress with a target temperature of 30–
33 °C. All patients survived to discharge and 3 (75%) had complete neurological
recovery. These observations were subsequently confirmed in a case series of 19
patients who experienced perioperative cardiac arrest, of whom 12 (63%) patients
were treatedwithhypothermia.Hypothermiawas associatedwith amarked increase
in survival (50% vs. 14%). Although both these studies were nonrandomized, they
suggested that hypothermiamay be a promising intervention to reduce themarked
neurological injury due to cardiac arrest. Unfortunately, randomized controlled
trials to evaluate its efficacy were not conducted until the end of the century, and
the clinical use of hypothermia remained uneven during this period.

Early trials

In 2002, two landmark randomized controlled trials—one from Europe and
another from Australia—were simultaneously published in the New England
Journal of Medicine that demonstrated the efficacy of therapeutic hypothermia
in improving neurological survival in OHCA patients with an initial shockable
rhythm who were comatose after return of spontaneous circulation. The Hypo-
thermia After Cardiac Arrest (HACA) study included 274 patients from9 centers
across Europe and found that hypothermia with a target temperature of 32–
34 °C improved survival to discharge with a good neurological outcome (55%
vs. 39%; RR, 1.40; 95% CI 1.08–1.81) as well as 6-month mortality (41% vs.
55%; RR, 0.74; 95% CI 0.58–0.95). [8]. Similar findings were also demonstrat-
ed in the study by Bernard et al. that included 77 OHCA patients who were
successfully resuscitated ventricular fibrillation. Treatment with hypothermia to
33 °C within 2 h of return of spontaneous circulation improved rates of
survival to discharge with a good neurological outcome (49% vs. 26%; adjusted
odds ratio 5.25; 95% CI 1.47–18.76; P = 0.011) [9].

The promising findings of the aforementioned randomized controlled trials led
to a rapid incorporation of TH as a Class I recommendation for post-arrest care in
the guidelines, especially for OHCA due to a shockable rhythm. However, there
were several limitations of both these early trials, which merit further discussion.
First, both trials were small in size (274 and 77 patients, respectively). Second,
treating physicians were not blinded and protocols for neuroprognostication and
withdrawal of care were not standardized, raising concerns that premature with-
drawal of care in patients treated with normothermia may have exaggerated the
observed benefit. Third, in the HACA study, the mean temperature in the normo-
thermia group was 37.5 °C, which raises the concern whether survival difference
was driven in part by increased neurological injury from fever in the control group.
Finally, it remained unclear whether the benefit of hypothermia could be extrap-
olated to patients with nonshockable rhythms or in-hospital cardiac arrest.

Targeted temperature management trials

To address some of the above limitations, the TTM trial, an international multi-
center trial, was designed. A total of 950 unconscious adult cardiac arrest survivors
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were randomized to a targeted temperature of 33 °C vs. 36 °C [11]. Patients were
adults with at least 20 min of cardiopulmonary resuscitation during an OHCA
[11] and included patients with both shockable and nonshockable rhythms,
except patients with asystole who had an unwitnessed arrest. Ice-cold fluids, ice
packs, intravascular temperature management devices, or surface cooling temper-
ature management devices were all used at the discretion of each research site. A
key strength of the TTM trial was that neuroprognostication was standardized
across both treatment arms. In particular, early withdrawal of care was strongly
discouraged for at least 72 h after return of normothermia in both groups.
Importantly, neurological assessment was performed by a physician who was
blinded to the treatment strategy. At 180 days, all-cause mortality was not signif-
icantly different between patients randomized to 33 °C vs. 36 °C (50% vs. 48%;
P = 0.51). Rates of death or survival with poor neurological function at 6 months
was also similar (54% vs. 52%; P = 0.78).

The findings of the TTM trial suggests that targeting a lower body tempera-
ture of 33 °C does not confer any additional benefit compared with a higher
body temperature of 36 °C. However, it is important to emphasize that body
temperature was actively managed in both treatment arms in the TTM trial
using similar cooling techniques and the study did not compare “no cooling”
with active cooling. However, real world data from the national registries found
that immediately following the publication of the TTM trial, there was an
abrupt decrease in clinical use of TTM from 52.5% in the last quarter of 2013
to 46.4% in the first quarter of 2014, raising concerns that the findings of the
TTM may have been misinterpreted in clinical practice [34].

In contrast to the TTM trial, FROST-I was a randomized controlled trial of
three different target temperatures—32 °C, 33 °C, or 34 °C—and found no
difference in the primary end point of survival with good neurological out-
comes at 90 days in OHCA patients with a shockable rhythm [35]. However, it
is difficult to draw meaningful conclusions as the trial only enrolled 150
patients and was likely underpowered. Taken together, these trials suggest that
TTM using a lower temperature threshold is not superior to a more lenient
temperature. Moreover, a target temperature of 36 °C has many practical
advantages compared with more stringent hypothermia in post-arrest patients
who are often hypotensive and may not tolerate lower body temperatures.

Nonshockable rhythms

Until recently, evidence fromRCTs for cardiac arrest due to a nonshockable rhythm
remained limited. While the HACA and the Bernard study excluded patients with
an initial nonshockable rhythm, the representation of nonshockable OHCA in the
TTM trial was only 20%. And yet, these rhythms represent a majority of cardiac
arrest patients—9 75% of OHCA and 9 80% of in IHCA patients in the USA—and
have an initial rhythm of asystole and pulseless electrical activity (PEA). The
HYPERION trial studied the efficacy of TTM with targeted temperature 33 °C
versus targeted normothermia (37 °C) in comatose patients admitted to an ICU
after a cardiac arrest due to an initial nonshockable rhythm. The study included
patients with OHCA and IHCA. The incidence of the primary end point of survival
with a favorable neurological outcome at 90 days was significantly higher in the
hypothermia group (10.2%) compared with 5.7% in the targeted normothermia
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group (95% [CI], 0.1 to 8.9, P =0.04) [36], but there was no significant difference
in overall mortality between groups (81.3% vs. 83.2%). Although this is the first
RCT to demonstrate a benefit of TTM for nonshockable cardiac arrests, concerns
were raised regarding thewide confidence interval of the overall effect estimate such
that the occurrence of 1 additional event in the control armwould have resulted in
the loss of statistical significance (i.e., a fragility index of the trial was 1) [35].
Moreover, there were systematic differences between the treatment and control
armswith regard to neuroprognostication, whichmay have impacted the incidence
of the primary endpoint. Current guidelines already recommend use of TTM as a
Class I indication for patients with a nonshockable rhythm (level of evidence, C)
[36], which is likely to remain unchanged in light of the HYPERION trial.

In-hospital cardiac arrest

There are a number of reasons why the efficacy of TTM may differ in IHCA
patients, which precludes a direct extrapolation of TTM studies focused on
OHCA patients to management of IHCA. First, response times in patients
who arrest in a hospital are much shorter compared with OHCA, thus limiting
the period of “no-flow” to the brain and other vital organs. Moreover, resusci-
tation in hospitalized patients is performed by highly trained medical profes-
sionals, and the risk of neurological injury post arrest may be smaller. However,
hospitalized patients are also sicker at baseline, have more comorbidities, and
have a higher incidence of asystole or PEA, whichmay increase the risk of death
and neurological injury. Therefore, understanding the benefit of TTM in pa-
tients with IHCA is critically important.

To date, the only dedicated randomized controlled trial that evaluated the
efficacy of TTM was conducted in children [37], which found no improvement
in survival with the use of TTM. Among adults, until recently, the best evidence
came from an observational study that did not find TTM to be associated with
improved survival and neurological outcomes in IHCA patients [38]. Although
the study used a rigorous methodology, the potential for confounding due to
indication cannot be excluded from an observational study. In the aforemen-
tioned HYPERION trial, the overall benefit of TTM on improving neurological
survival in patients with a nonshockable rhythm was consistent in the 25% of
the cohort that had IHCA. In fact, the magnitude of benefit of TTMwas larger in
the IHCA group compared with OHCA (absolute difference in survival in favor
of TTM: IHCA: 10.6% vs. OHCA: 2.4%). However, the interaction was not
significant likely due to the small size of the trial [36].

Methods of cooling

A number of methods for cooling have been employed in prior studies. These
include infusion of cold intravenous saline, application of external gels pads
applied on the skin that circulate chilled water, or an intravascular device that
circulates cold saline through the balloons of a catheter placed in the inferior
vena cava that cools the blood as it passes over the catheter. The infusion of cold
intravenous saline for initiation of cooling has typically been in the prehospital
setting and is no longer recommended as discussed in the next section [12]. The
ICEREA randomized trial compared surface cooling with an intravascular
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cooling device manufactured by ZOLL in patients presenting after an OHCA
[13]. Overall, there was no significant difference in the incidence of survival
without major neurological damage at 28 days (OR, 1.41; CI, 0.93–2.16; P =
0.107). However, there was a trend towards improvement of neurological
outcome at day 90 in the endovascular group (P = 0.07). Moreover, the overall
time ICU nurses spent monitoring the cooling system was significantly reduced
with the intravascular catheter, which could be used for other aspects of clinical
management of post-arrest patients. Similar findings were also demonstrated in
the post hoc analysis of the TTM, which also found that when compared with
surface cooling methods, cooling with an intravascular catheter was associated
with better control of target temperature with fewer deviations but was not
associated with survival or adverse events [39].

Timing of cooling initiation

Several observational studies have examined the association of timing of at-
tainment of target temperature with survival outcomes and showed inconsis-
tent results [40–42]. In a recent post hoc analyses of the Continuous Chest
Compression trial, investigators found that early attainment of target tempera-
ture was associated with improved survival (OR: 1.56; 95% CI: 1.02–2.38).
Accordingly, multiple RCTs have been conducted to confirm this hypothesis.
The largest of these studies was conducted by Kim et al. who randomized 1359
patients to receive prehospital infusion of cold intravenous saline (4 °C) by
paramedics versus hypothermia induction upon arrival to the hospital [12].
Although patients who received infusion of cold saline achieved target temper-
ature a median of 1 h earlier compared with the control group, there were no
significant differences in survival to discharge or neurologic outcomes. Further,
the incidence of rearrest in the field, pulmonary edema, and use of diuretics was
higher in the intervention arm. These findings were consistent with that of the
smaller RCTs that also did not find any improvement in clinical outcomes with
prehospital initiation of cold IV fluids [10, 43]. Accordingly, the current AHA
guidelines recommend against prehospital initiation of cooling with rapid
infusion of cold intravenous saline.

It is possible that the lack of benefit in the above trials was due to the
deleterious hemodynamic effects of cold saline itself and may have
counterbalanced a benefit of early attainment of target temperature. The concept
of achieving rapid prehospital cooling using an intranasal device that delivers a
mixture of oxygen and a liquid coolant to the nasopharynx was investigated in
the PRINCESS trial in patients with bystander witnessed OHCA. [44]. Although
the median time to reach a target temperature less than 34 °C was shorter with
transnasal cooling device, survival with a favorable neurologic outcome did not
differ significantly between groups (16.6% vs. 13.5%; P = 0.25).

Thus, to date, evidence from RCTs to support prehospital initiation of
cooling to achieve target temperature more rapidly is lacking.

Duration of cooling

In a majority of studies, TTM was implemented for 24 h of TTM, and it remains
unknown whether a longer duration of cooling could benefit cardiac arrest
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survivors. A recent randomized control trial compared whether TTM at 33 °C
for 48 h compared with the standard of 24 h improved survival with a good
neurological outcome at 6 months in patients with OHCA []. Overall, the trial
found no significant difference in the primary outcome between groups (69%
vs. 64%; P = .33). Mortality was also not significantly different between groups.
There was a higher incidence of adverse events in the 48 h arm compared with
the 24 h arm (P = 0.03), and patients had longer ICU stays (151 vs. 117 h;
P G 0.001). Based on these findings, a strategy of cooling beyond 24 h does not
improve survival outcomes and may be associated with an increased risk of
adverse events and ICU length of stay. The ICECAP trial, which is investigating
whether TTM for a shorter duration (e.g., 12 h) leads to better outcomes, is
currently underway [45].

Current guidelines

Current American Heart Association guidelines recommend TTM with goal
temperature 32–36 °C (Class I, B-R) for at least 24 h (Class IIa, C-EO) for
comatose OHCA victims having survived VT/VF (Class I, B-R) and upgraded the
recommendation to survivors of IHCA and OHCAwith nonshockable rhythms
(Class I, C-EO) [36, 46].

Practical considerations

Multiple clinical trials during the last two decades have confirmed that TTM is
beneficial for treatment of cardiac arrest patients who remain comatose follow-
ing achievement of ROSC. While the definition of comatose has varied across
studies, we suggest considering patients to be eligible for TTM if they do not
respondmeaningfully to verbal commands. Contraindications for TTM include
presence of intracranial hemorrhage due to concerns of worsening coagulopa-
thy with cooling. In addition, patients withmarked hemodynamic compromise
or severe sepsis may also be considered ineligible as cooling can exacerbate
hypotension and the reduce ability to fight infections.

At our institution, all patients undergo a computed tomography of the brain
to rule out hemorrhage. Following placement of an intravenous cooling cath-
eter, TTM is initiated with the goal of achieving target temperature over the
course of 3–4 h. The choice of target temperature (33 °C vs. 36 °C) is based on
patient factors. Once a target temperature is attained, the temperature is main-
tained for a period of 24 h, and the goal is to minimize temperature fluctua-
tions. Shivering is controlled with the use of neuromuscular blocking agents
especially if a target temperature of 33 °C is chosen. In addition, sedatives (e.g.,
lorazepam) and analgesics (e.g., fentanyl) are used for ensuring adequate
sedation and comfort. All patients treated with TTM aremonitored on telemetry
and have periodic 12-lead electrocardiograms due the risk of QT prolongation
with hypothermia [47] and possible heightened risk of VT/VF [48].

Treatment with TTM should occur in the setting of comprehensive post-
resuscitation care in an intensive care unit with a multidisciplinary team with
broad expertise in critical care, cardiology, neurology, and infectious disease,
among others. Patients require close monitoring and optimization of hemody-
namics, oxygenation, ventilation, metabolic parameters, and neurological
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function. Hypothermia often leads to hypotension, and patients who are
hemodynamically unstable onmultiple pressorsmay not tolerate hypothermia.
Bradycardia can also occur especially at a lower target temperature and usually
does not require treatment unless associated with hypotension. We target a
mean arterial pressure of 9 75–80 mmHg to ensure adequate cerebral perfu-
sion. Placement of a Swan Ganz catheter for invasive hemodynamic assessment
to guide therapy andmechanical circulatory support devices may be considered
in individual patients. All patients treated with TTM are on a ventilator and
require optimization of arterial oxygenation with strict avoidance of both
hypoxia and hyperoxia—the latter has been associated with increase in risk of
neurological injury. Likewise, appropriate ventilation to ensure normocarbia is
also important. Metabolic parameters such as glucose, electrolytes, lactate, and
serum pH also need to be closely monitored. Seizures may occur during the
post-resuscitation phase, which can further exacerbate neurological injury, but
may not be recognized due to use of sedatives and neuromuscular blocking
agents. Neurological expertise is critical for management of post-arrest patients
including consideration of continuous electroencephalography (EEG) moni-
toring to identify subclinical seizures. Infections are common as hypothermia
can compromise the body’s ability to fight infections. Therefore, there is a low
threshold to start empiric antibiotics in patients treated with TTM.

After 24 h of TTM, passive rewarming may be initiated with a goal rate of
0.25 °C per hour until the patient reaches a normal body temperature. Once
normothermia is achieved, efforts to avoid fever should be continued using
pharmacological or nonpharmacological means. Neuroprognostication should
be withheld for at least 72 h (preferably longer) to ensure that the sedative
effects of medications used during the cooling phase have abated and adequate
time for neurological recovery to occur. Close communication with patient’s
family is also important to address questions and manage expectations.

Over the past decade,many centers have developed highly specialized teams
that deliver high-quality post-resuscitation care, and published data suggest that
care from such teams may improve cardiac arrest survival [49]. It is also
important to emphasize that post-resuscitation care is resource-intensive and
the expertise may be available only at a few medical centers. Accordingly,
professional societies have recommended that post-resuscitation care be region-
alized in centers of excellence [50]. Based on recent evidence that has found
large variation in post-resuscitation survival across US hospitals [51], there is an
urgent need to identify best practices for high-quality post-resuscitation care.

Future directions

TTM is a relatively safe and effective strategy to confer neuroprotection in
patients with a cardiac arrest who remain comatose after achievement of ROSC.
After the initial trials demonstrating benefit in shockable OHCA, newer evi-
dence has shown efficacy of TTM in nonshockable rhythms. Despite a strong
recommendation from current guidelines for IHCA patients, use of TTM in
IHCA patients remains variable likely due to persistent uncertainty regarding its
benefit.While the recently publishedHYPERION trial found a similar benefit of
TTM in both IHCA and OHCA, limitations of the study would support need for
additional evidence of TTM in IHCA patients. Ongoing trials would also
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address whether TTM for a shorter duration (12 h) vs. 24 h would provide a
similar benefit.

Summary

TTM is a relatively safe and effective strategy that can improve neurological
outcomes in patients who remain comatose after achieving ROSC from a
cardiac arrest. Following the initial trials that demonstrated its efficacy in
schockable OHCA, newer evidence has emerged regarding its efficacy in OHCA
due to a nonshockable rhythm and possibly adult IHCA also. Current evidence
supports a broad range of TTM from 33 °C to 36 °C and should bemaintained
for 24 h. Although TTM should be initiated as early as possible, prehospital
initiation of cooling has not been shown to improve survival outcomes. Finally,
TTM should be administered in the context of high-quality post-resuscitation
care guided by a multidisciplinary team with sufficient expertise and experience
in intensive management of these critically ill patients.
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