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Abstract

While high rate algal ponds (HRAPs) can provide efficient pathogen removal from wastewa-

ter, the mechanisms involved remain unclear. To address this knowledge gap, the mecha-

nisms potentially causing Escherichia coli (E. coli) removal during microalgae-based

wastewater treatment were successively assessed using laboratory microcosms designed

to isolate known mechanisms, and bench scale assays performed in real HRAP broth. Dur-

ing laboratory assays, E. coli decay was only significantly increased by alkaline pH (above

temperature-dependent thresholds) due to pH induced toxicity, and direct sunlight exposure

via UV-B damage and/or endogenous photo-oxidation. Bench assays confirmed alkaline pH

toxicity caused significant decay but sunlight-mediated decay was not significant, likely due

to light attenuation in the HRAP broth. Bench assays also evidenced the existence of

uncharacterized ‘dark’ decay mechanism(s) not observed in laboratory microcosms. To

numerically evaluate the contribution of each mechanism and the uncertainty associated, E.

coli decay was modelled assuming dark decay, alkaline pH induced toxicity, and direct sun-

light-mediated decay were independent mechanisms. The simulations confirmed E. coli

decay was mainly caused by dark decay during bench assays (48.2–89.5% estimated con-

tribution to overall decay at the 95% confidence level), followed by alkaline-pH induced tox-

icity (8.3–46.5%), and sunlight-mediated decay (0.0–21.9%).

1. Introduction

High rate algal ponds (HRAPs) are shallow raceway ponds that support efficient removal of

organic carbon and nutrients during wastewater treatment. Few studies have shown HRAPs

also support pathogen removal [1–3] at levels comparable to the efficiency achieved in matura-

tion ponds, a well-established technology for wastewater disinfection [4–6]. Recent studies

have confirmed this capacity at full-scale [7–9].
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Various mechanisms drive pathogen removal in maturation ponds. Dark mechanisms

include heat inactivation, sedimentation, predation, starvation/competition with other micro-

organisms, and the toxicity caused by dissolved oxygen (DO), pH, and algal toxins [10,11].

Davies-Colley et al. (1999) [12] proposed that three sunlight-mediated mechanisms are the

main drivers of pathogen removal in these systems, namely 1) direct absorption of solar UV-B

by DNA resulting in DNA damage; 2) photo-oxidation of key cellular biomolecules by reactive

oxygen species (ROS) generated by endogenous photosensitizers reacting with UV light; and

3) photo-oxidation of key cellular biomolecules by ROS generated by exogenous

photosensitizers.

While the relative occurrence and significance of sunlight-mediated and dark removal

mechanisms are currently unknown in HRAPs, sunlight-mediated mechanisms are expected

to drive the bulk of pathogen removal based on studies in pilot scale systems [2,13]. However,

Bahlaoui et al. (1998) [2] compared two HRAPs operated in parallel and found solar radiation

was only significant in the HRAP operated at a constant hydraulic retention time. At full scale,

Young et al. (2016) [8] found no relationship between F-RNA bacteriophage inactivation and

solar radiation or water temperature, two parameters associated with this indicator inactiva-

tion in maturation ponds [14]. These authors also found no correlation between Escherichia
coli (E. coli) removal and any of the parameters monitored. These results disagree with findings

from maturation ponds, thus suggesting prevalent pathogen removal mechanisms may differ

between HRAP and maturation ponds. Critically, the rapid and large temporal variability of

key parameters experienced during pilot and full scale operations (e.g. influent flow and com-

position, temperature, incident sunlight intensity) impedes the determination of the mecha-

nisms potentially involved, especially considering the different time scales involved.

These observations motivated the present study focusing on the removal of E. coli, the most

commonly used indicator of wastewater disinfection [15], in HRAPs. To combine a determin-

istic laboratory scale approach with the representativeness of in situ investigations, this study

was performed in three steps:

1. Laboratory assays (approx. 0.1 L) were first used to evaluate the potential magnitude of

individual removal mechanisms under conditions representative of HRAP;

2. Bench assays (approx. 5 L) in HRAP liquid cultures including micro-organisms (henceforth

referred to as HRAP broth for simplicity) were used to verify the relevance of laboratory

observations under experimental conditions representative of real HRAP systems, while

still enabling some control of broth conditions.

3. Due to large experimental uncertainty associated with microbial monitoring, the relative

contributions and associated confidence intervals of the mechanisms identified in steps 1)

and 2) were computed using a model based approach.

2. Materials and methods

2.1.Laboratory assays

Experiments investigating ‘dark mechanisms’ were conducted indoor under darkness in 150

mL E-flasks covered with foil, and experiments investigating ‘light-mediated mechanisms’

were conducted outdoor in opened 100 mL beaker. Sunlight experiments were performed on

cloudless days to minimize the impact of sunlight variability caused by clouds. All E-flasks and

beakers were autoclaved to minimize contamination interference, filled with 50 mL of auto-

claved medium (unless otherwise notified) and aseptically inoculated with a wildtype E. coli
strain to achieve an initial cell count between 2.0�107 and 2.0�108 CFU�mL-1. This strain was
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isolated from a pilot HRAP treating primary wastewater at Palmerston North wastewater treat-

ment plant, New Zealand (Chambonniere et al. 2020 [16], see S1 Appendix). Following inocu-

lation, the cultures were continuously agitated using a KS 260 control orbital shaker (IKA,

Germany) at 200 rpm and incubated under specific conditions. Based on relevant literature

[10], “natural decay” (starvation and heat inactivation), algal metabolite toxicity, wastewater

toxicity, ammonia toxicity, alkaline-pH induced toxicity, sunlight direct damage (combining

direct DNA damage and endogenous photo-oxidation), and exogenous photo-oxidation were

investigated as potential E. coli decay mechanisms. The specific conditions used for each inves-

tigation are given in Table 1 with further details given in S2 Appendix. Predation was not

investigated for practical reasons.

Laboratory analysis. Microbial counting was conducted using the pour-plate method

[17]. The measurement uncertainty associated with log-transformed E. coli cell counts was

estimated to be 4% (relative standard error, S3 Appendix). Temperature and pH were recorded

using an Orion Star A326 multiprobe meter (Thermofisher, USA). Sunlight intensity data (10

minutes interval) was obtained from the National Institute of Water and Atmospheric

Research Ltd database (Palmerston North, location agent number 21963).

2.2.Bench assays

Bench assays were developed to verify in real HRAP broth the significance of mechanisms

demonstrated to impact E. coli survival during laboratory assays. Since pH toxicity and sun-

light mediated mechanisms were the only mechanisms causing significant E. coli removal dur-

ing laboratory assays (see Results and Discussion section), the bench assays were designed to

focus on the parameters known to impact these mechanisms i.e. sunlight exposition, pH, and

DO concentration (temperature could not be controlled). E. coli survival was therefore moni-

tored under various combinations of 1) high or low pH, 2) high or low DO concentration, and

3) under sunlight radiation or in the dark.

Table 1. Summary of the conditions tested during laboratory assays.

Mechanism targeted Experimental matrix Chemical addition

(Level)

Control of temperature

(Range)

Indoor/

Outdoor

Duration (Range)

Starvation and heat

inactivation

Reverse osmosis water None Yes

(5–35˚C)

Indoor 2 hr—7 d1

Toxicity of algal metabolites Filtrated HRAP broth None No Indoor 1 d -7d

Wastewater toxicity Filtrated wastewater

Centrifuged

wastewater

None No Indoor 2 d - 7d

Ammonia toxicity Reverse osmosis water pH buffer

(pH 7–10)

NH4Cl

(0.5–50 mg�L-1)

Yes

(10–35˚C)

Indoor 2 hr (35˚C)– 7 hr (10˚C)

Alkaline induced pH-toxicity Reverse osmosis water pH buffer

(pH 7–11)

Yes

(5–35˚C)

Indoor 0.2 hr (35˚C, pH 11)– 2 d

(5˚C)

Direct sunlight damage Reverse osmosis water None

pH buffer

(pH 7 & 10)

No Outdoor 20 min—4 hr

Exogenous photo-oxidation Filtrated wastewater

Filtrated HRAP broth

None

pH buffer

(pH 7 & 10)

No Outdoor 20 min—2 hr

Predation Not investigated in the present study

1 The duration varied since these conditions were used as controls for other experiments.

https://doi.org/10.1371/journal.pone.0265576.t001
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For this purpose, two cylindrical reactors (25 cm deep, 14 and 16 cm diameters, 3.8 and 5.0

L working volumes) were set-up on the laboratory rooftop. The sides of the reactors were cov-

ered with opaque tape up to the 25 cm mark so that sunlight could reach the algae only from

the liquid surface. The reactors were mixed using a vertical propeller (RW20 Janke & Kunkel,

IKA, Germany) enabling water homogenization within 20 seconds based on visual colorimet-

ric tests. The reactors were also equipped with an air bubbler (flat spiral coil) to control DO

concentration.

Bench assays were conducted in broth collected from a pilot scale HRAP treating primary

domestic wastewater located in Palmerston North, New Zealand having median broth total

organic carbon, dissolved organic carbon, nitrate, ammonia, E. coli cell count levels of 94.2

mg�L-1, 19.8 mg�L-1, 51.5 mg�L-1, 0.52 mg N�L-1, and 1.48�105 MPN�100 mL-1, respectively (set-

up and operation fully described in [16]). Prior monitoring showed Scenedesmus spp. was the

dominant species in the HRAP (unpublished data) but this was not verified during bench

assays.

Various conditions of DO concentration (> 10 mg�L-1 or < 2 mg�L-1), pH (> 9.4 or < 8)

were tested under natural sunlight exposure or in darkness. When DO concentration and pH

were not left to increase naturally due to photosynthetic activity, DO concentration was

reduced below 2 mg�L-1 by bubbling N2 gas through the air bubbler. In this case, the propeller

was removed as gas bubbling also enabled reactor mixing. When needed, pH was kept neutral

(< 8) by adding 0.1 M HCl.

Assay preparation, sampling, and analysis. On the day of each experiment (four days in

total, all carried out in November 2017), HRAP broth was collected prior to 11 A.M. and

immediately transported to the laboratory. Within 1 hour of collection, the two bench scale

reactors were filled up with the HRAP broth to the 25 cm depth mark and inoculated with 2

mL of wild type E. coli suspension (S1 Appendix) to obtain a consistent initial E. coli cell count

representative of levels typically reported in HRAP [16]. This inoculation time was considered

as the start of the first bench assay, during which the reactors were exposed to sunlight for 2 hr

(first light assay). The reactors were re-inoculated with 2 mL of wildtype E. coli suspension and

exposed again to sunlight for 2 hr (second light assay). Following these two light assays, the

reactors were re-inoculated with 2 mL of wildtype E. coli suspension, covered with cardboard,

and incubated in darkness for another 2 hr (dark assay). An aliquot (< 3 mL) was collected

from each reactor immediately following the addition of E. coli stock culture (time zero). The

reactors were sampled every 30 minutes and E. coli cell count was quantified immediately fol-

lowing sample collection using the Quantitray1 Colilert1-18 in accordance with the manu-

facturer instructions (IDEXX Laboratories, USA). Temperature, pH, and DO concentration

were continuously logged at one minute intervals using an Orion Star A326 multiprobe meter

(Thermofisher). Light attenuation coefficients were calculated from the measurement of

HRAP broth transmittance for the wavelength 683 nm (PG Instrument Ltd UV/VIS Spectro-

photmeter, T60) performed on each day bench assays were performed.

2.3.E. coli decay expression

In well-mixed batch reactors as operated during laboratory and bench scale experiments, the

experimental rate of E. coli decay (k, d-1) was computed from experimental data assuming first

order kinetics [13,18,19] as:

dC
dt
¼ � k tð Þ � C tð Þ ð1Þ
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Where C(t) represents E. coli cell count in the vessel (see S4 Appendix for further discus-

sion). To quantify the removal efficiency of E. coli decay over a certain duration, the E. coli

log10 removal was computed as log
10

C0

Cend

� �
, where C0 and Cend are the initial and final E. coli

cell count for the duration considered [20].

Determination and uncertainty during laboratory assays of thus determined E. coli decay

rate are further detailed in S4 Appendix.

2.4.E. coli decay modelling

E. coli decay was mathematically modelled to quantify the relative contribution of mechanisms

experimentally identified to cause significant E. coli removal. The model was used to estimate

the confidence intervals associated with mechanism relative contributions.

E. coli decay was first modelled and parameterized based on results from laboratory assays.

Changes in E. coli cell count during bench assays were then computed by calculating E. coli
decay rate for every minute of the experiments (assuming the sunlight intensity was constant

over 10-minute periods) using the Euler method [21] with a 1-minute time step from the first

measured cell count, and assuming E. coli decay follows pseudo-first order kinetics. Algal

broths were assumed to be well-mixed and shading from the mixer was neglected. Kinetic

parameters of E. coli decay rate were corrected by fitting E. coli cell counts calculated for bench

assays to the experimental dataset (kinetic parameters of E. coli decay rate are referred to as

“fitted parameters” in the following). Model development, calibration, and fitting are described

in the Results and Discussion section.

The uncertainty associated with the fitted parameters was assessed using Monte Carlo sim-

ulations [22]. For this purpose, experimental inputs associated with significant uncertainty

were randomly varied within their range of uncertainty assuming normal or log-normal distri-

bution (Table S5-1 in S5 Appendix) and new values for fitted parameters were each time com-

puted. This operation was repeated 1,000 times (S5 Appendix).

The relative contribution of each mechanism to the overall E. coli decay and the confidence

intervals associated with these relative contributions were assessed again using Monte Carlo

simulations (S6 Appendix). Briefly, experimental measurements and fitted model parameters

were randomly varied within their 95% confidence intervals and the relative contributions of

the mechanisms studied (i.e. ratio between the number of cells decayed through a given mech-

anism over the total number of cells decayed during bench assays) were computed each time.

This calculation was repeated 2,000 times.

2.5.Numerical and statistical analysis

All numerical and statistical analyses were performed using Matlab1 R2019a (Mathworks

Inc., Natick, MA, USA). Matlab1 code files used to generate the results of this study can be

found in the repository [23].

3. Results and discussion

3.1.Laboratory assays

3.1.1. Laboratory assays in darkness. Starvation and heat inactivatio. No significant

reduction in E. coli viable cell counts (henceforth referred to as “decay” for simplicity) was

recorded in darkness, in the absence of known harmful conditions, and at temperature up to

35˚C (S7 Appendix). E. coli ‘natural death’ was therefore insignificant under the conditions

tested, which confirms findings from Cook and Bolster (2007) [24] who reported a high E. coli
survival in natural water (decay rate of 0.04 d-1 over 400 days). E. coli optimally grows at
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37.5˚C, the temperature of the human gut, and tolerates temperatures up to 48˚C [25]. As tem-

peratures above 35˚C have hitherto not been reported during HRAP operations, starvation

and heat inactivation are unlikely to be relevant to E. coli removal in full-scale HRAPs. While

E. coli re-growth has been reported in some systems, particularly in warm tropical ponds [26],

no significant increase of E. coli cell count was noticed during this study even at the warmest

temperature tested (Fig S7-2 in S7 Appendix). Caution is therefore mandated before ruling out

the possibility of regrowth, for E. coli or other indicators, depending on the conditions

experienced.

Algal-metabolite and wastewater toxicity. Despite previous evidence that several microalgae

can excrete a wide array of antibacterial compounds harmful to E. coli [27], E. coli decay was

insignificant in flasks filled with algal filtrates. Algae-based toxicity was therefore unlikely sig-

nificant under the conditions tested. This finding cannot be broadly extrapolated in view of

the geographical and temporal variability in algal diversity found in HRAPs [28] and the

diverse bactericidal compounds each species may be secreting [27,29]. E. coli decay was also

insignificant in flasks supplied with filtered wastewater. Wastewater toxicity was therefore

excluded as significant decay mechanism under the conditions tested.

Ammonia toxicity. No significant decay was recorded when NH4
+ was supplied, even at pH

10 and concentration up to 50 mg�L-1 (S8 Appendix). Considering the low NH4
+/NH3 concen-

tration typically found in HRAP broths (generally� 2 mg N-NH4
+�L-1 [30]), NH3 toxicity is

not expected to cause significant E. coli decay in HRAPs treating domestic wastewater. This is

important as NH3 has been suggested as a potential disinfectant in algal ponds [31,32] but

direct evidence has to date been lacking.

Alkaline-pH induced toxicity. E. coli decay increased with pH, and this increase was tempera-

ture-dependent (S9 Appendix). E. coli pseudo-first order decay rate thus reached 67.5 ± 19.2 d-1

at pH 10 and 30˚C (N = 8), which is significantly higher than the typical decay rates< 6 d-1 at

20˚C in facultative and maturation ponds [32]. This discrepancy may be due to the fact that mat-

uration ponds are characterized by lower pH conditions than HRAPs [33]. Because pH> 10 and

temperatures> 25˚C can be experienced in HRAPs [34,35], alkaline-pH induced toxicity may

indeed be significant in these systems. Such heightened decay rates agrees with findings from Par-

had and Rao (1974) [36] who reported enhanced E. coli decay at pH> 9.4 in algal systems.

The exponential impact of pH on E. coli decay at constant temperature was described in a

pseudo first order decay rate as:

dC
dt
¼ � aðTÞ � 10pH� 14

� �
� C tð Þ ð2Þ

where C(t) is E. coli cell count in a laboratory assay reactor (CFU�mL-1), T is the broth tempera-

ture T (˚C), pH is the broth pH, and a(T) is a temperature-dependent fitting parameter. The val-

ues of a(T) were obtained as the slopes of the linear regressions of the decay rates against 10pH−14

at each temperature tested. The values of a(T) were found to linearly increase with temperature

when log-transformed (R2 = 0.972, N = 6, Fig S9-3 in S9 Appendix), meaning the influence of

temperature on E. coli decay rate at a given pH (i.e. a(T)) could be described by an Arrhenius

equation [37] leading to the following final equation for pH induced toxicity to E. coli:

dC
dt
¼ � ðkpH

20 �y
pHT� 20

� 10pH� 14Þ � C tð Þ ð3Þ

where θpH is the temperature-compensation coefficient for alkaline-pH induced toxicity and kpH
20

is E. coli decay rate at 20˚C and pH 14. This temperature-dependent relationship can be explained

by the hypothesis formulated by Mendonca et al. (1994) [38] that the effect of alkaline pH to E.

coli is due to the solubilisation of membrane proteins or the saponification membrane lipids, two
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reactions which temperature-dependence have been modelled using the Arrhenius equation

[39,40]. The numerical values of θpH (1.14) and kpH
20 (1.49�105 d-1) were determined from the lin-

ear regression of ln(a) with T. As can be seen in Fig 1, Eq 3 satisfyingly fitted experimental data

(coefficient of determination between measured and predicted data = 0.914, N = 81). Because of

the very fast decay occurring at pH above 10.5, only a few experiments performed under these

conditions yielded measurable results, and the values obtained suffered from high uncertainty,

particularly at higher temperature (e.g. only two values of decay rate could be calculated at

pH> 10.5 at 35˚C: 1212 and 1713 d-1; not shown in Fig 1). Consequently, Eq 3 was calibrated

excluding such data and may not accurately predict E. coli decay at pH> 10.5.

3.1.2. Laboratory assays under natural sunlight. Sunlight irradiation. In open beakers

exposed to sunlight at neutral pH, E. coli log10 removal was linearly correlated with sunlight

dose without intercept (0.314 ± 0.0212 m2�MJ-1, R2 = 0.920, N = 20, p = 6.84�10−12, Fig 2). This

correlation yields a relationship between E. coli cell count rate (C(t), CFU�mL-1) and incident

sunlight intensity (Hs, W�m-2) that can be expressed as:

dC
dt
¼ � a � HsðtÞð Þ � C tð Þ ð4Þ

Where α is the sunlight specific decay rate due to direct sunlight damage (6.24�10−2 ±
4.2�10−3 m2�W-1�d-1). The sunlight specific decay rate due to direct sunlight damage predicted

Fig 1. Measured versus fitted E. coli decay rates for all tested pH between 6.5 and 10.5 and temperatures between

5 and 35˚C in laboratory assays. The 45˚ line shows equality between measured and predicted data. Error bars show

the standard error of linear regression performed.

https://doi.org/10.1371/journal.pone.0265576.g001
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in the present study is challenging to compare to existing studies using different experimental

conditions (e.g. strain as shown in S10 Appendix, experimental broth matrix, radiation wave-

length) and/or because the inputs needed to calculate the sunlight dose and the log10 removal

(or alternatively, sunlight intensity and first order decay rates) are not always provided in the

literature. Nevertheless, Maraccini et al. (2016a) [41] determined a sunlight specific decay rate

of 7.01 m2�W-1�d-1 for E. coli exposed to UV-B in natural waters. Assuming UV-B accounts for

5% of the total UV radiation reaching the Earth surface and UV radiation accounts for approx.

5% of the total solar spectrum [42], this translates to a sunlight specific decay rate of 1.75�10−2

m2�W-1�d-1 which is in the order of magnitude predicted in the present study. Curtis et al.

(1992b) [43] reported a sunlight specific decay rate of 1.07�10−2 m2�W-1�d-1 (assuming pH and

DO concentration are constant) for faecal coliforms incubated in filtrated algae pond water.

This value is again in the order of magnitude of the rate herein reported for E. coli in reverse

osmosis water. A direct comparison of the rate values is however difficult given the different

microbial indicator used.

Influence of pH. In agreement with Davies-Colley et al. (1999) [12], E. coli decay under sun-

light was significantly enhanced at high pH (S11 Appendix). It was however not possible to

determine if the high pH contributed to additional E. coli removal, or if it synergistically

Fig 2. Effect of sunlight dose on E. coli log10 removal at neutral pH during laboratory assays. The straight line

represents the linear regression with null intercept peformed over the dataset (slope converted to the sunlight specific

first order decay rate of 0.0624 m2�W-1�d-1 by multiplying by the factor 24 � 3600 ½s=d�=ð106½MJ=J�Þ � lnð10Þ. An outlier

confirmed by Grubb’s test on the residuals from linear regression was removed from the analysis. Error bars show

measurement standard error.

https://doi.org/10.1371/journal.pone.0265576.g002
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enhanced sunlight-mediated removal. E. coli decay rates under sunlight at alkaline pH

observed were higher than hitherto reported [31,44] which may be explained by the higher pH

and temperature used in the present work compared to these past studies.

Impact of photosensitizers. Decay rates recorded in reverse osmosis water did not statisti-

cally differ from decay rates recorded in wastewater or HRAP filtrates (one-tailed paired two-

sample t-test at the 5% significance level, N = 9, p = 0.584, S12 Appendix). Overall, these tests

suggest E. coli decay under sunlight is not significantly improved by the probable presence of

photosensitizers under the conditions tested. Therefore, and despite the potential existence of

a shoulder lag-period before exogenous photo-oxidation would become significant [18,45,46],

this mechanism was unlikely significant for E. coli in HRAP (S12 Appendix). It is possible that

instead (or in spite) of leading to the creation of ROS species, dissolved substances in the

HRAP filtrates were absorbing sunlight and thereby reduced sunlight-mediated damage to E.

coli cells (the sunlight absorption spectra of the filtrates were not recorded during the experi-

ments but an example of absorption spectrum for wastewater and HRAP filtrates can be found

in S12 Appendix). Regardless, our finding agrees with the conclusion of Maraccini et al.

(2016b) [46] who found gram-negative bacteria such as Salmonella enterica, E. coli K-12, and

E. coli O157:H7 had a high resistance to exogenous photo-oxidation in presence of naturally

occurring organic photosensitizers. The specific impact of dissolved oxygen (DO) concentra-

tion on sunlight-mediated removal could not be practically investigated in laboratory assays

due to technical difficulties in reaching HRAP supersaturated DO levels (up to 300% of the

atmospheric saturation values [34]) under aseptic conditions. The addition of known photo-

sensitizers was not tested as this manipulation would at best only verify that these known

chemicals generate radicals enhancing E. coli removal, without evidencing that the mechanism

is indeed taking place in the absence of the added chemicals.

3.2.Bench assays

Four bench scale experiments were conducted in HRAP broth. Each experiment was dupli-

cated (Reactors A and B) and included a series of three sub-experiments conducted under vari-

ous conditions of light, pH and DO concentration (Table 2). To confirm the potential

significance of alkaline pH induced toxicity and photo-oxidation, E. coli log10 removal after

each sub-experimental phase were analysed against the total sunlight dose received (MJ�m-2),

and the averaged pH, DO, and temperature recorded. A complementary analysis based on E.

coli decay rates (d-1) is provided in S13 Appendix.

E. coli decay in the dark. At neutral pH, E. coli log10 removal values were similar in dark-

ness and under sunlight during Experiment 2, but higher in darkness during Experiments 1

and 3. This similarity suggests that mechanisms causing decay under darkness were also

responsible for E. coli removal under sunlight. During Experiment 4, E. coli cells introduced

into the HRAP broth were inactivated within minutes in darkness at neutral pH and high DO

concentration. As these very high decay rates were recorded in the absence of any of the harm-

ful conditions identified during laboratory scale experiments, these results further evidence

that previously undetected dark removal mechanisms drove E. coli decay in real algal broth.

Impact of sunlight exposure. During laboratory assays in clear medium, only sunlight was

found to influence E. coli survival at neutral pH. Yet, in bench assay conducted in algal broth,

similar E. coli log10 removal values were observed in the dark and under sunlight (e.g. Reactor B,

Experiment 2). Assuming the removal efficiency of dark mechanisms is not negatively impacted

by light exposure, the similar removals reported during dark and illuminated bench assays sug-

gests that sunlight mediated decay mechanisms had little impact on E. coli decay in the full algal

broth. The analysis of E. coli decay rate also confirmed this conclusion (S13 Appendix).
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Impact of DO concentration. While DO concentration had no apparent impact on E.

coli decay at neutral pH (Experiment 2), high DO concentrations were associated with

improved E. coli decay at high pH (Experiment 1). Critically, these differences (or lack of)

were reported regardless of if the flasks were exposed to light or incubated in darkness, which

disagrees with past literature showing DO concentration impacts E. coli via the formation of

ROS (reactive oxygen species) under sunlight radiation but does not impact E. coli survival in

the dark [31,44]. Light-mediated ROS formation should have therefore enhanced E. coli decay

only under light exposure and this effect should have been see in both Experiments 1 and 2

under sunlight, as opposed to the present observations showing no impact of light, but an

interplay between the impacts of pH and DO concentration (Experiment 1 versus 2). The posi-

tive impact of DO concentration at high pH (Experiment 1) was instead likely due to the

higher temperatures experienced in Reactor A than Reactor B. Indeed, Reactor A was slightly

smaller than Reactor B, meaning higher temperatures were typically experienced in Reactor A

(high DO) than in Reactor B (low DO). Since alkaline pH-induced toxicity to E. coli is sensitive

Table 2. Results from bench experiments by experiment.

Assay Temperature

(˚C)

DO (mg�L-1) pH Light Dose (MJ�m-2) Time Interval E. coli log10 removal 1

Reactor Reactor Reactor Reactor

Experiment Test A B A B A B A B

Experiment 1 1 25.5 25.4 17 1.5 9.6 9.5 4.95 1:50 1.48 1.24

[1.15–1.80] [0.95–1.57]

2 30 27.7 23 1.3 10.4 10.5 3.06 1:30 2.77 1.34

[2.40–3.18] [1.19–1.47]

3 31 28.2 20 0.40 10.7 10.8 0 1:05 3.01 1.97

[2.24–2.98] [1.29–2.03]

Experiment 2 1 24.3 22.9 22 1.2 7.3 7.5 5.64 1:55 1.09 1.32

[0.77–1.40] [0.95–1.70]

2 28.6 27.3 31 0.80 7.4 6.9 4.91 1:50 1.75 1.28

[1.37–2.12] [0.94–1.60]

3 31.1 29.6 24 0.50 6.3 7.6 0 1:40 1.61 1.23

[1.26–2.01] [0.85–1.60]

Experiment 3 1 27.7 26.9 24 15 10.4 7.3 6.95 2:00 2.47 1.61

[2.07–2.88] [1.26–1.97]

2 32 31.7 28 23 11.2 6.9 5.97 1:50 2.83 1.59

[2.44–3.24] [1.18–2.06]

3 34 33.8 20 24 10.9 7.0 0 0:452 > 2.612 1.22

[0.85–1.65]

Experiment 4 1 31.3 30.3 24 21 10.3 7.2 7.15 2:00 3.66 1.24

[2.94–4.63] [0.93–1.55]

2 36.6 36.8 25 26 10.4 7.1 2.84 0:502 > 4.052 0.59

[0.19–1.00]

3 39.6 38.3 18 25 10.4 6.3 0 0:003 >>3 >>3

1 The values in bracket show the 95% confidence interval calculated based on the Quanti-Tray MPN table uncertainty.
2 No live E. coli cells were found in the second sample withdrawn at the dilution tested. A minimal log removal was calculated based on the first cell count measured and

the analytical detection limit of Quanti-Tray countings.
3 No E. coli were found in the first sample (i.e. within 10 minutes following the cells suspension in the algal broth) so no removal efficiency could be measured (log

removal > 4 within minutes can be inferred from these measurements).

https://doi.org/10.1371/journal.pone.0265576.t002
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to temperature (as evidenced during laboratory assays), temperature likely enhanced alkaline

pH-induced toxicity more in Reactor A than in Reactor B during Experiment 1 conducted at

high pH. This positive impact of temperature on alkaline pH-induced toxicity was logically

not significant during Experiment 2 conducted at neutral pH. DO concentration is therefore

concluded to have no significant impact on E. coli removal under the conditions studied.

Impact of pH. During Experiment 3, E. coli removal under sunlight was significantly

faster at pH 10.4–10.8 than at neutral pH, and E. coli removal in darkness was significantly

faster at pH 10.9 than at neutral pH. These results confirmed laboratory findings that alkaline

pH induced toxicity is a significant contributor to E. coli decay. Statistical analysis of the decay

rate dataset also showed with high confidence that pH had a positive impact on E. coli decay

(S13 Appendix).

In comparison with results from laboratory assays, bench assays confirmed that E. coli
decay was enhanced by elevated pH but evidenced that sunlight-mediated decay had lim-

ited impact in HRAP broth. The low impact of sunlight on E. coli during bench assays was

likely caused by a high light attenuation in the HRAP broths (light attenuation coefficients

in the range 55–70 m-1 at 683 nm). This attenuation was itself caused by the presence of

pigmented algae cells and light attenuation can be expected to be even stronger for the UV

radiation known to be lethal to E. coli [13] than for visible wavelength such as 683 nm

[47]. The elevated E. coli decay recorded during bench assays at neutral pH, both in the

dark and under sunlight, was therefore likely caused by dark mechanisms. Since such dark

mechanisms went undetected during laboratory assays, the use of real HRAP broth could

have induced conditions causing microalgae to release antibiotics during bench assays.

For example, the presence of competitive organisms, high DO levels, osmotic stress, and

UV exposure (HRAP broth was exposed to sunlight 4 hours before being placed in dark-

ness) have all been reported to generate stresses that can cause microalgae to secrete bacte-

ricidal compounds [48]. The possible impact of predation could not be practically

assessed in our study but this mechanism has been reported to have a major effect on bac-

terial removal in waste stabilization ponds [10] and could have explained the unexpectedly

high decay recorded in the dark during bench assays.

3.3.Model development from bench assays

There was no clear evidence that alkaline-pH induced toxicity and sunlight-mediated decay

were interacting during laboratory assays (S11 Appendix). Consequently, the total E. coli decay

rate from bench microcosms was first computed as the sum of the alkaline-pH induced toxic-

ity (Eq 3) and sunlight-mediated decay (Eq 4 modified to account for light attenuation from

suspended solids found in HRAPs, S14 Appendix), using their expressions as established and

parameterized from the laboratory data. This model performed poorly against bench data (R2

= -2.55, N = 54), which was not surprising because bench assays evidenced significant dark

decay mechanisms and low impact of sunlight thereby evidencing the lack of representative-

ness of laboratory assays. Since bench assay evidenced dark decay was significant, a mecha-

nisms that is likely temperature-dependent, the decay model was modified by adding an

Arrhenius expression for dark decay rate as commonly done for bacteria removal in matura-

tion ponds [37,49,50]. The laboratory-based model also overestimated E. coli decay at elevated

pH, suggesting alkaline-pH induced toxicity was overestimated. Because microbial communi-

ties form biofilms that protect them against various adverse factors [51], including moderate

pH [52–54], the presence of solids and other microbial species in the HRAP microcosms likely

protected E. coli from alkaline-pH induced toxicity during bench assays. To account for this

effect, the relevant pH-model parameters were recalibrated against bench data as described
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below. Following these modifications, E. coli cell count in bench reactors (C) was computed as:

dC
dt
¼ � kdark

20
�y

darkT� 20
þ kpH

20 �y
pHT� 20

� 10pH� 14 þ
a:HsðtÞ
s:d

� ð1 � e� s:dÞ
� �

� C ð5Þ

where kdark
20

is E. coli dark decay coefficient at 20˚C, θdark is the temperature compensation coef-

ficient for dark decay, d is the water column depth (m), and σ the light extinction coefficient of

the algal broth (m-1). Values (and associated uncertainties) of the experimentally measured

parameters (C, pH, T, Hs, d and σ) are summarized in Table S5-1 in S5 Appendix.

The values of the fitted parameters kdark
20
; y

dark
; kpH

20 ; y
pH

, and α were computed by fitting the

model outputs against specific subsets of bench data focusing on specific removal mechanisms.

The model was initialized by implementing parameter values derived from laboratory data

(i.e. kpH
20 ¼ 1:49 � 105 d-1, θpH = 1.14, kdark

20
¼ 0 d-1, θdark = 1, α = 0.0624 m2�W-1�d-1) and a fitting

algorithm was performed following these successive computation steps:

1. The values of kdark
20

and θdark were computed by minimizing the sum of squared residuals on

the neutral pH data subset when varying kdark
20

and θdark (all other parameters being kept

constant);

2. The values of kpH
20 and θpH were computed by minimizing the sum of squared residuals on

the elevated pH data subset when varying kpH
20 and θpH (all other parameters being kept

constant);

3. The value of α was computed by minimizing the sum of squared residuals over the entire

data set when varying α (all other parameters being kept constant).

This algorithm was repeated until all fitted parameters did not vary relatively by more than

1%. The values thus obtained for fitted parameters are shown in Table 3 (labelled as ‘best fit’).

The average relative error over full bench data set corresponding to the best fit parameters was

6.0% (R2 = 0.812, N = 54, Fig 3). As can be seen, Eq 5 henceforth calibrated could reproduce E.

coli cell counts during bench experiments in HRAP broth with good accuracy. Further calibra-

tion using tests performed in HRAP broth collected at other times of the year (e.g. winter) and

independent validation in a real HRAP are still needed before the model can be used to predict

HRAP disinfection performance.

A Monte-Carlo analysis was carried out to determine the impact of uncertainties in the data

used during model parameterization (Table S5-1 in S5 Appendix) on the computation of

kdark
20
; y

dark
; kpH

20 ; y
pH

, and α (i.e. the fitted parameters). Because the distributions of fitted model

parameters were not necessarily normal (Fig S5-1 in S5 Appendix and S6-2 in S6 Appendix),

median, mean, 5, and 95 percentiles of the data calculated are shown (Table 3). As can be seen,

large uncertainty is associated with the parameterization of the model and an additional

Table 3. Model parameters uncertainty estimated by Monte Carlo analysis.

Parameter kdark20
(d-1)

θdark

(-)
kpH20
(d-1)

θpH

(-)

α
(m2�W-1�d-1)

Best fit 47.4 1.00 2.86�103 1.45 0

Median 39.6 1.00 3.40�103 1.42 0

Average 37.6 1.02 7.72�103 1.39 1.13�10−1

5 Percentile 9.98 1.00 2.22�103 1.19 0

95 Percentile 58.4 1.10 2.58�104 1.49 4.91�10−1

Laboratory assays 0 1.00 1.49�105 1.14 6.24�10−2

https://doi.org/10.1371/journal.pone.0265576.t003
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sensitivity analysis (S15 Appendix) showed that this uncertainty was primarily caused by E. coli
cell counts measurement uncertainty (inherent to Quantitray1 Colilert1-18 method).

3.4.Mechanistic implications

The data shown in Table 3 suggest uncharacterized dark decay was not impacted by tempera-

ture (θdark = 1 for best fit) within the temperature range tested (19.9–38.1˚C), though θdark

uncertainty range includes values up to 1.10 underlining that high temperature dependence

for this mechanism is possible. A broader range of temperature should be tested to refine this

finding. Alkaline-pH induced toxicity was confirmed to be less effective during bench assays

than during laboratory assays (significant decrease of kpH
20 ), but was more sensitive to tempera-

ture (significant increase of θpH). Critically, sunlight-mediated decay has no predicted impact

on E. coli removal as the model best fit was obtained when the value of α was null.

The relative contribution (%) of each single E. coli decay mechanism to overall E. coli removal

during bench assays was further assessed using Monte-Carlo analysis to account for the impact of

uncertainties due to experimental error (Table S5-1 in S5 Appendix) and parameterization uncer-

tainty (Table 3). Based on the 5–95 percentiles of the values thus calculated (Fig 4),

Fig 3. Measured vs. computed E. coli cell counts during bench assays using ‘best-fit’ model parameters (R2 = 0.812,

N = 54). Error bars show 20% uncertainty on measured E. coli cell counts.

https://doi.org/10.1371/journal.pone.0265576.g003
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uncharacterized dark decay was found to account for 48–89% of the overall E. coli decay during

bench assays, against 8–46% for alkaline-pH induced toxicity, and 0–22% for sunlight-mediated

removal. This analysis therefore showed with strong confidence that direct sunlight damage con-

tributed little to E. coli removal during bench assays, while uncharacterized dark decay was likely

the main contributor. This finding is critical because sunlight is commonly viewed as the main

factor of pathogen removal during wastewater treatment in HRAPs [13,55].

Further research is critically needed to better understand the uncharacterized dark mecha-

nisms involved, as this knowledge may provide the foundation for significantly improving

HRAP design and operation for pathogen removal. The specific mechanisms causing E. coli
removal under darkness were not identified during this study. Because predation (e.g. from

protozoa or coliphages) has been reported as a main mechanism of bacterial decay in the dark

[10], investigating this dark mechanism in the context of HRAP is of utmost interest, especially

considering the predominance of dark decay herein reported. A significant contribution to

overall dark decay from bactericidal compounds produced by microalgae cannot be ruled out

although it was never observed in specific laboratory assays. It is also critical to consider the

findings from this study may not apply to HRAPs operated under significantly different condi-

tions (e.g. different climates, pH control through CO2 addition, [56]) and/or hosting different

microalgae ecology (e.g. influencing pH variations [57], potentially generating toxic metabo-

lites [48]) or, especially, to different pathogens or indicators than E. coli. For instance, gram-

positive indicators were found to better resist alkaline-pH induced toxicity likely due to

Fig 4. Relative contributions of removal mechanisms contributing to E. coli decay during bench assays. Boxplots

represent the 5, 25, 50, 75, and 95 percentiles of the distributions, and red dots the outlying data (N = 1322).

https://doi.org/10.1371/journal.pone.0265576.g004
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differences in the cell membrane structure [38], while gram positive bacteria were on the con-

trary reported to be more susceptible to exogenous photo-oxidation facilitated by naturally

occurring organic photosensitizers [46]. Similar studies should therefore be carried out to

investigate the removal of different indicators during HRAP based wastewater treatment.

4. Conclusions

The present study showed with high confidence that dark mechanisms caused most (48–89%)

of E. coli decay in HRAP mesocosms while sunlight mediated mechanisms only caused a negli-

gible to limited removal (0–22%). Alkaline-pH induced toxicity was the only other significant

E. coli decay mechanism identified, causing 8–46% of total decay. The exact underlying mecha-

nisms of E. coli decay in the dark were not identified, and further research to characterize dark

decay in HRAP is critically needed as it could be the foundation for significant improvement

of HRAP disinfection performance.

Finally, while some conditions reported to be harmful to E. coli correlated well with E. coli
decay at laboratory scale, such correlations were less evident (high pH) or non-existent (sun-

light intensity) at bench scale. This study therefore underlines that controlled experiment to

identify conditions of microbial decay can lack the representativeness of real conditions.

Future investigations of the mechanisms of microbial decay during wastewater treatment in

HRAPs need to be carried out in broth and under conditions as comprehensively representa-

tive of HRAP culture as practical.
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