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Purpose: This study aimed to develop a repeatable MRI-based machine learning model
to differentiate between low-grade gliomas (LGGs) and glioblastoma (GBM) and provide
more clinical information to improve treatment decision-making.

Methods: Preoperative MRIs of gliomas from The Cancer Imaging Archive (TCIA)–GBM/
LGG database were selected. The tumor on contrast-enhanced MRI was segmented.
Quantitative image features were extracted from the segmentations. A random forest
classification algorithm was used to establish a model in the training set. In the test phase,
a random forest model was tested using an external test set. Three radiologists reviewed
the images for the external test set. The area under the receiver operating characteristic
curve (AUC) was calculated. The AUCs of the radiomics model and radiologists
were compared.

Results: The random forest model was fitted using a training set consisting of 142
patients [mean age, 52 years ± 16 (standard deviation); 78 men] comprising 88 cases of
GBM. The external test set included 25 patients (14 with GBM). Random forest analysis
yielded an AUC of 1.00 [95% confidence interval (CI): 0.86–1.00]. The AUCs for the three
readers were 0.92 (95% CI 0.74–0.99), 0.70 (95% CI 0.49–0.87), and 0.59 (95% CI 0.38–
0.78). Statistical differences were only found between AUC and Reader 1 (1.00 vs. 0.92,
respectively; p = 0.16).

Conclusion: An MRI radiomics-based random forest model was proven useful in
differentiating GBM from LGG and showed better diagnostic performance than that of
two inexperienced radiologists.

Keywords: gliomas, radiomics, MRI, histological grade, machine learning
Abbreviations:MRI, magnetic resonance imaging; GBM, glioblastoma; LGG, low-grade glioma; AUC, area under the receiver
operating characteristic curve; CI, confidence interval; TCIA, The Cancer Imaging Archive; ROI, region of interest.
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INTRODUCTION

The tumor microenvironment could offer information that
assists clinical decision-making.

According to the histological grade introduced by the World
Health Organization (1), malignant gliomas are divided into low-
grade gliomas (LGGs, grades 2–3) and glioblastomas (GBMs,
grade 4) based on the tumor microenvironment. Survival varies
significantly by grade across all glioma subtypes. GBMs have the
poorest overall survival, with only 0.05%–4.7% of patients
surviving 5 years post-diagnosis (2). Maximal surgical resection
plays a central role in the management of gliomas. GBM tends to
respond to postsurgical radiotherapy and chemotherapy due to
its invasive nature, whereas postsurgical radiotherapy is
associated with low benefit and risk of side effects in LGG (3–
5). Pathological examination with invasive method is the gold-
standard method used to differentiate between LGG and
GBM (6).

Magnetic resonance imaging (MRI) has been widely used
clinically to diagnose craniocerebral tumors because of its
excellent soft-tissue resolution. However, distinguishing LGG
from GBM by MRI scanning has low specificity. Yu et al. (7)
found that the accuracy of the diagnostic performance correlated
with the working experience of the radiologists. Imaging features
can offer information regarding tumor homogeneity to
distinguish LGG from GBM (8, 9).

Radiomics, extracted from computed tomography (CT) and
MRI, could produce accurate robust evidence to assist clinical
decision-making (10). Radiomics use high-throughput methods
to extract and analyze qualitative information that cannot be
assessed by visual inspection of clinical images on CT and MRI,
as well as other images based on intensity, shape, size, and
texture. Radiomics maximizes the information gained from
clinical images and has been used in the diagnosis, treatment,
and prognosis assessment of head and neck tumors (10–13).
Recent studies have shown that MRI radiomics-based machine
learning models perform well in predicting the histological grade
and genetic mutations in glioma (14–16). However, an
increasing number of published prediction models lack
reproducibility evaluation (17).

The purpose of this study was to build a repeatable machine
learning model based on contrast-enhanced MRI to predict the
histological grade of glioma and provide more clinical
information to improve treatment decision-making.
MATERIALS AND METHODS

Data of Patients
MRI image acquisition and data set sampling: Our data were
obtained from The Cancer Imaging Archive (TCIA) (https://www.
cancerimagingarchive.net/). The inclusion criteria were as follows:
1) GBM and LGG collections that were identified, selected, and
labeled by expert board-certified neuroradiologists (18, 19); 2) the
preoperative baseline scans of these collections with MRI
modalities of at least T1-weighted, T2-weighted, contrast-
enhanced T1-weighted, and fluid attenuation inversion recovery
Frontiers in Oncology | www.frontiersin.org 2
(FLAIR) imaging were available; 3) basic clinical information and
postoperative tumor pathology were available.

This study included 102 patients with GBM and 65 patients
with LGG from eight independent centers in the TCIA database
(19). The clinical information including sex, age, and images of
preoperative MRI and tumor grading based on postoperative
tumor pathology were collected (18, 20, 21). The patients were
divided into two groups: the training set and the external test set.
To improve the reproducibility of the model among the different
centers, we used an institution-based approach to select the
training set and the external test set to stabilize the model (22).
Patients from the Thomas Jefferson University, Philadelphia, PA,
USA (The Cancer Genome Atlas-76 and -CS), were used as the
external test set, and those from other institutions were used as
the training set (Appendix 1). A multicenter collaboration was
undertaken to offer comparable results and minimize the
potential for systemic bias.

Image Preprocessing
All MRI images were preprocessed and uploaded to the TCIA
library, including T1 images co-register, resampling (1 × 1 × 1
mm3), skull removal, smoothing, and Neuroimaging Informatics
Technology Initiative format conversion (18). The Oxford
Centre for Functional MRI of the Brain (FMRIB) Linear Image
Registration Tool (FLIRT) of the FMRIB Software Library (FSL)
was used for co-registration. All preoperative MRI images were
co-registered to the same T1 anatomic template using the affine
registration method. The intensity of the non-uniformities of the
images was not corrected, as the application of any non-
parametric, non-uniform intensity normalization algorithm
eliminated the T2-FLAIR signal.

Image Segmentation
Image segmentation of MRI was completed with a computer-
aided method named GLISTRboost (23) and subsequently
corrected manually. The lesion was segmented into edema
area, tumor contrast-enhanced area, and non-contrast-
enhanced area. After segmentation, the area was revised and
evaluated repeatedly by multiple experts until an agreement was
reached (18). According to the TCIA description, using the gold-
standard method, the segmentation results were widely
recognized and ensured the feasibility if a cross-study
comparison was done. Based on the segmentation label, we
merged the tumor contrast-enhanced and non-contrast-
enhanced areas as the region of interest (ROI) and then named
it as the tumor area. The unit volume of the tumor component is
1 mm3/voxel. Since clinicians may not be able to distinguish the
small tumor necrosis areas accurately, separate them from other
components, and delineate them finely, we divided the entire
tumor into tumor and edema areas after considering the
application of the model.

Feature Extraction
Radiomics features were extracted and filtered from segmented
ROIs. The model was then verified using an external test set, and
the radiomics process is shown in Figure 1. Due to its superior
performance in the preliminary experiment (Appendix 2), CE-
January 2022 | Volume 11 | Article 761359
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MRI was used to extract the radiomics features. Therefore, we
used the PyRadiomics (V3.0.1; Harvard Medical School; https://
github.com/Radiomics/pyradiomics) (24), an open-source
Python package, and directly extracted quantitative features on
the voxels of the tumor area segmented on the CE-MRI. In the
process of setting the parameters on the PyRadiomics package,
we normalized the graphics (normalized: true normalized Scale:
100) and then resampled the graphics to a voxel size of 2 × 2 × 2
mm to standardize the voxel space and set the bin width to 5 for
discrete voxel intensity to reduce image noise and normalize
image intensity (more specific parameter settings are shown in
Appendix 3). The image is reconstructed by wavelet and log. The
radiomics features are mainly divided into three categories,
namely, first-order features, shape features, and Gray Level Co-
occurrence Matrix (GLCM), Gray Level Run Length Matrix
(GLRLM), Gray Level Size Zone Matrix (GLSZM), and Gray
Level Dependence Matrix (GLDM) (24). These extracted
radiological features were in line with the feature definition
described by the Imaging Biomarker Standardization Initiative.
We used 13 image filters for image transformation and extracted
quantitative image features, including 18 first-order statistical
features, 14 characteristic shapes (including size), and 68 texture
features. A total of 1,132 [(18 + 68) 13 + 14] feature-filter
combinations were built and named as features.

Feature Selection
To differentiate between LGG and GBM, the Pearson correlation
analysis was used to analyze feature reduction. Features could be
retained with a correlation coefficient greater than 0.8. This
feature selection method, based on paired feature correlation,
was used to improve the machine learning training process and
optimize the feature interpretability. As a result, 83/1,132 (7.3%)
features were retained while building the radiomics model.

Model Establishment
The entire code we used during the model establishment is
publicly available on the development platform Github (https://
github.com/pwesp/random-forest-polyp-classification) (25).
Frontiers in Oncology | www.frontiersin.org 3
After 142 lesions were divided into LGG or GBM based on
histopathological examination, Random Forest classifier was
used to construct a radiomics model. Random Forest Classifier
class of the sklearn.ensemble library [scikit-learn Python
machine learning library (26), version 0.22] had 1,000 trees (n
_ estimators = 1,000) and other default parameters, 83 features in
the training set made up of 142 gliomas. After machine learning,
Random Forest Classifier class predicted each lesion as LGG or
GBM. Bootstrap resamples of the entire training data were used
to train each decision tree in the random forest. In the random
forest trees, binary decision-making learns a randomly selected
subset of features on a single node. This double randomness
helps grow independent decision trees as much as possible; thus,
“when the number of trees increases, the generalization error will
almost certainly converge to a limit” (27). The implementation of
the scikit-learn random forest follows the method used by
Breiman et al. (27), with one exception: it combines classifiers
by averaging the probability predictions of the classifiers instead
of allowing each classifier to vote for a class. Compared with
other machine learning algorithms, random forests are robust to
outliers and noise (27, 28). The remaining training set samples
used to train a tree are used to self-evaluate the corresponding
trees and form the “out-of-bag” errors measuring the prediction
error of random forests (27). In addition, the scikit-learn random
forest provided an internal evaluation of the relative importance
of the features, reflecting how much the degree prediction of the
training model (GBM vs. LGG) relies on a specific feature relative
to all others. We used it to estimate the relative importance of the
features among the 83 features used in the establishment of the
model and performed correlation tests on the top 15 features.
Subsequently, the differences in age and the first and second most
relative important features were compared in the training and
external test sets.

Comparison of Diagnostic Performance
Between Model and Radiologists
The random forest analysis of the test set is shown in Figure 2.
To compare the diagnostic performance of the prediction of
FIGURE 1 | The radiomics workflow comprised three steps: segmentation of the tumor core (TC) on the contrast-enhanced MRI; image filtering and feature
extraction feature histogram statistics, shape, or texture; and training a random forest classification algorithm based on features to distinguish low-grade gliomas
from glioblastomas based on histopathological reference standards.
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LGG and GBM between the radiologist and the model, we also
selected three radiologists (reader 1, neuroradiologist with 15
years of radiographic experience; reader 2, neuroradiologist with
1 year of radiographic experience; and reader 3, non-
neuroradiologist with 3 years of radiographic experience) to
independently evaluate 25 cases of glioma in the external test
set on T1, T2, FLAIR, and T1 contrast-enhanced MRI. These
radiologists assessed the size of the tumor, edge of the tumor,
border of the tumor, peritumoral edema, degree of enhancement,
necrosis, and other characteristics. All patients were diagnosed
with grade 2, 3, and 4 gliomas according to the histological grade
of the World Health Organization. The grade 2 and 3 gliomas
Frontiers in Oncology | www.frontiersin.org 4
were regarded as LGGs, and the grade 4 gliomas were regarded as
GBMs. The three radiologists were blinded to the patients’
clinical data.

Statistical Analysis
Statistics on the training and external test sets were independent.
All statistical calculations were performed using Python (version
3.7.0) and MedCalc (version 19.0; MedCalc Software). The
differences between the demographic data of the training set
and those of the external test set were evaluated. The receiver
operating characteristic curve was used to predict the diagnostic
performance of the random forest model and radiologists. The
cutoff value was preset using the maximum Youden index (29)
from the training set, and the difference between ROCs was
compared using the DeLong test (30); statistical significance was
set at p < 0.05.
RESULTS

Comparison of Patient Characteristics
Between Training Set and Test Set
Patient characteristics: A total of 142 patients were included in the
training set, of which 64 were male (54.9%, 52.3 years ± 16.0), 88
had GBM (61.9%), and 54 had LGG (28 were grade 3, and 25 were
grade 2). According to the more detailed histological classification,
oligodendroglioma (23 cases), astrocytoma (14 cases),
oligoastrocytoma (17 cases), IDH1 mutant (33 cases), and IDH1
wild type (67 cases) were identified. The external test set included 25
patients, of which 13 were male (53.4 years ± 12.6), 14 had GBM
(61.9%), and 11 had LGG (14 were grade 4, eight were grade 3, and
three were grade 2). There were three cases of oligodendroglioma,
seven cases of astrocytoma, 11 cases of oligoastrocytoma, four cases
of IDH1 mutant type, and 16 cases of IDH1 wild type. Baseline data
did not show a statistically significant difference between the
training and external test sets (Table 1; p > 0.05).

Radiomics Feature Reduction
As mentioned above, we screened 83 features that were finally
incorporated into the model from 1,132 extracted features,
including six first-order statistical features, five characteristic
shapes (including size), 13 texture features, and 59 high-order
features after wavelet transform and log transform.
TABLE 1 | Clinical characteristics in the training and external test sets.

Training Set (n = 142) External Test Set (n = 25) p-value

Age (years)* 52.3 ± 16.0 53.4 ± 12.6 0.72a

Gender (male/female) 78/64 13/12 0.79b

GBM/LGG 88/54 14/11 0.36b

G4/G3/G2 88/28/25 14/8/3 0.37b

Histology
Glioblastoma/oligodendroglioma/astrocytoma/oligoastrocytoma

88/23/14/17 14/3/7/1 0.07b

IDH1 mutation/IDH1 wild type 48/68 7/18 0.10b
January 2022 | Volume 11 | Article
aStudent’s t-test.
bChi-square test.
TCGA, The Cancer Genome Atlas; IDH1, isocitrate dehydrogenase 1; SE, standard error.
*Age values are means ± standard deviation.
FIGURE 2 | The random forest analysis of the test set. A total of 83 of
1,132 (7.3%) feature filter combinations were extracted from images of the
test set using different image filters (n = 13) and image features
characterizing shape (n = 14), histogram statistics (n = 18), or texture (n =
68). On the basis of these filter feature combinations, the trained random
forest classifier was used to predict the low-grade glioma and glioblastoma.
Prediction performance was quantified using area under the receiver
operating characteristic curve (AUC).
761359
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The Diagnostic Performance of
Radiomics Model
After constructing the random forest model constructed, the AUC
of the radiomics model to distinguish between LGG and GBM in
the training set was 0.930. The maximum Youden index (0.610)
was selected as the cutoff value, and the sensitivity and specificity of
the model obtained were 0.880 and 0.910, respectively. The
Youden index is sensitivity + specificity -1, when its range is 0–
1.0, indicating that the model’s ability is perfect. In the external test
set, when the AUC was 1.000 and the cutoff value was 0.610, the
sensitivity and specificity were 1.000 (14/14) and 1.000 (11/11),
respectively. The random forest model calculated the relative
importance of the 83 features (Appendix 1). The top 2 features
were original_firstorder_90Percentile: 0.129, original_firstorder_
Maximum: 0.051. The heatmap of correlation among 15 features
has been shown in Figure 3. The correlation coefficient was 0.77
between original_firstorder_90Percentile and original_
firstorder_Maximum.

Comparison of Diagnostic Performance
Between Random Forest Model
and Radiologist
In the external test set, the AUCs were 1.0 (95% CI 0.86–1.00),
0.92 (95% CI 0.74–0.99), 0.70 (95% CI 0.47–0.87), and 0.59 (95%
CI 0.38–0.59) for the radiomics model, readers 1, 2, and 3,
respectively. No difference was noted in the AUC between
Frontiers in Oncology | www.frontiersin.org 5
the imaging radiomics model and the senior physicians
(p = 0.16). However, statistical significance was found between
the model and younger physicians (p < 0.001 and p = 0.001,
respectively) (Table 2).

Difference of Diagnostic Performance
Between Clinical Parameter and
Radiomics Features
In the training set, 88 patients had GBM (57.6 years ± 1.5) and 54
had LGG (43.7 years ± 2.0). The difference between GBM and
LGG in terms of age and the first and second relative important
features are shown in Figure 4. The cutoff values of age,
“or ig ina l_fi r s torder_90Percent i l e ,” and “or ig ina l_
firstorder_Maximum” were >53 years, >290, and >510,
respectively. These three variables yielded overall AUCs of
0.812 [95% confidence interval (CI): 0.606–0.939], 0.968 (95%
CI: 0.808–1.000), and 0.942 (95% CI: 0.770–0.996), respectively.
The respective AUCs for the other 81 radiomics features are
shown in Appendix 1. In the external test set, 14 patients had
GBM and 11 had LGG. The cutoff values were set the same as the
training set. The AUCs for age, “original_firstorder_
90Percentile,” and “original_firstorder_Maximum” were 0.721
(95% CI: 0.507–0.880), 0.727 (95% CI: 0.514–0884), and 0.955
(95% CI: 0.788–0.998), respectively. Figures 5, 6 show two
examples of different opinions regarding LGG/GBM between
the radiologists and radiomics model.
FIGURE 3 | Correlation heatmap of the top 15 features of relative importance. glcm, gray level co-occurrence matrix; glszm, gray level size zone matrix; H, high-
pass filter; L, low-pass filter; 3D, three-dimensional. HHH, LHH, LHL, LLH, and LLL indicate wavelet transform bands in the X, Y, and Z axes, respectively.
TABLE 2 | Diagnostic performance of the radiomics model and the three readers in the external test set.

Parameter Radiomics Model Reader 1 Reader 2 Reader 3

AUC 1.00 [0.86, 1.00] 0.92 [0.74, 0.99] 0.70 [0.49, 0.87] 0.59 [0.38, 0.78]
Sensitivity(%) 100 (14/14) [0.77, 1.00] 93 (13/14) [0.66, 1.00] 86 (12/14) [0.57, 0.98] 64 (9/14) [0.35, 0.87]
Specificity(%) 100 (11/11) [0.77, 1.00] 91 (10/11) [0.59, 1.00] 55 (6/11) [0.23, 0.83] 55 (6/11) [0.23, 0.83]
January 2022 | Volum
Data in parentheses are numbers of patients, with 95% CIs in brackets. There were no differences between the AUCs of the radiomics model and an experienced radiologist (p = 0.16).
However, the radiomics model outperformed those of readers 2 and 3 (p < 0.001 and p = 0.001, respectively).
e 11 | Article 761359
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FIGURE 4 | Comparison of age and the first and second relative important features of glioblastoma (GBM) and low-grade glioma (LGG) in the training set and
external test set. **p < 0.01, ***p < 0.001, dotted line: cutoff value.
FIGURE 5 | Glioblastoma (GBM) in a 78-year-old man with a license named TCGA-76-6193 (TCGA-76-6193). (A) Axial T1-weighted MR images demonstrate an
area of high signal intensity in the left temporal region with adjacent edema. (B) Axial T2-weighted MR image reveals slightly high signal in the lesion. (C) Axial T1-
weighted MR image with contrast material showed significant and heterogeneous enhancement in the lesion. All three readers diagnosed the lesion as low-grade
glioma (LGG). Radiomics predict_proba_GBM was 0.701 (cutoff value = 0.610), and the radiomics model diagnosed it as GBM.
FIGURE 6 | Astrocytoma, grade 3, in a 48-year-old man with a license named TCGA-CS-6188 (TCGA-CS-6188). (A) Axial T1-weighted MR images demonstrate an
area of heterogeneous low signal intensity in the left occipital region with adjacent edema. (B) Axial T2-weighted MR image reveals a heterogeneous high signal in the
lesion. (C) Axial T1-weighted MR image with contrast material showed significant “flower lace” enhancement in the lesion. Reader 1 diagnosed the lesion as glioma,
grade 3, and the diagnosis of reader 2 and reader 3 was glioblastoma (GBM). Radiomics predict_proba_GBM was 0.512 (cutoff value = 0.610), and the radiomics
model diagnosed it as low-grade glioma (LGG).
Frontiers in Oncology | www.frontiersin.org January 2022 | Volume 11 | Article 7613596
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DISCUSSION

We used the data of patients with LGG or GBM from the TCIA
database to construct a repeatable random forest model based on
preoperative contrast-enhanced MRI. The AUCs in the training
set and the external test set for identifying the LGG and GBM
were 0.93 and 1.00, respectively, and no difference was observed
in the AUC between the imaging radiomics model and senior
doctors (p = 0.16).

Judging the degree of malignancy, which is important for
clinicians, is challenging when a glioma is suspected. The
random forest model obtained in this study was used to
identify GBM and LGG. The AUC in the training set was 0.93,
and it reached 1.0 in the external test set. A previous study (7)
used qualitative imaging features to distinguish the histological
grades of gliomas. The AUCs of edema and non-contrast
enhancement were 0.803 and 0.753, respectively. Qualitative
assessment depends on the experience of the radiologists, and
comparability cannot be guaranteed. Numerous studies have
been conducted on the identification of high-grade gliomas
and LGGs based on radiomics. Cao et al. (8) found that the
brain regions where gliomas occur and tumor components can
distinguish benign and malignant gliomas. The AUC of the
model in the training set was 0.997 and that in the external
test set was 0.90. Their research only focused on the
morphological features . The model exhibited good
performance; however, the necessary process of image co-
registration required manual calibration to ensure accuracy,
which may decrease the feasibility of clinical application.
Lambin et al. (10) emphasize that the principal challenges of
applying radiomics to clinical practice are the optimal collection
and integration of diverse multimodal data (for example, the
multiparametric MRI data) and reproducibility of the models.
Takahashi et al. (31) used a machine learning model based on
diffusion kurtosis and tension imaging to identify GBM and
LGG. In the external test set, the AUC reached 0.98 in the
comprehensive model, but the sample size was too small, with
only 55 cases. In comparison, we only used the sequence of T1
contrast-enhanced MRI, which may have better general
applicability, as it may be difficult to acquire high-quality
diffusion tensor imaging images in grassroots hospitals.

In the radiomics process, we set the normalization scale = 100
and the bin width = 5 to make the bins equal to approximately
100. Bins between 16 and 128 were ideal in the subsequent
analysis, which also made the images obtained comparable
between different scanning machines. In addition, skull-strip
may potentially eliminate interference with the analysis of the
ROI’s radiomic features.

In the model obtained in this study, the “original_
firstorder_90Percentile” feature contributed considerably to the
identification ability of the model, and its relative importance
reached 0.129. The feature “original_firstorder_90Percentile”
reflected 90% of the voxel intensity of the image after skull-strip,
resampling, and normalization. The feature “original_
firstorder_Maximum” (the maximum value of the image voxel
intensity) after the similar process described above, which is
Frontiers in Oncology | www.frontiersin.org 7
relatively important, belonged to the feature describing the voxel
intensity of the image as the feature “original_firstorder_
90Percentile.” These two features provided an almost 1/5
relative importance. Since malignant gliomas may have high
expression of angiogenic factors, such as vascular endothelial
growth factor and angiotensin, the tumors often have rich
vascular components. In a previous study (32), Ang-II was
reported to be highly expressed in malignant glioma cells, the
necrotic part (with degeneration of the blood vessels), and the
tissues surrounding the tumor (indicating angiogenesis) and was
related to the formation of immature vessels in the tumor. Since a
malignant glioma destroys the blood–brain barrier and has rich
vascular components, it is not difficult to explain why the tumor
can take up an abundant amount of contrast agent in contrast-
enhanced MRI and show a relatively high level of enhancement.
Several important radiomics features obtained in this study also
validated the findings of Yu et al. (7). The proportion of non-
enhancing tumors is an independent predictor of GBM (grade 4).
Liu et al. (33) analyzed perfusion imaging of GBM and found a
subgroup of tumors that could benefit from antiangiogenic
therapy. This group of patients had more abundant angiogenesis
pathways and a worse prognosis. In general, the degree of tumor
enhancement is of great significance to distinguish between high-
grade gliomas and LGGs. Although imaging radiomic
characteristics are used, the degree of tumor enhancement
judged by visual inspection may also be a point that requires
particular attention. A higher degree of enhancement in the
solidity of the tumor often suggests that the glioma belongs to a
higher histological grade category. Compared with other studies,
the proposed model is generalizable. Several radiomics models
with good performance or interpretable feature labels are available;
however, their applicability and repeatability are difficult to
guarantee. The radiomics quality score proposed by Lambin
et al. (10) also discussed the above. Technology application is
inseparable from standardization, and the absence of standards
means that quality is not guaranteed in the promotion of
technology. The data in this study were obtained from public
databases, which guaranteed the verifiability and relative
simplicity of the results. The signal strength of MRI is largely
affected by the magnetic field strength. The extraction of radiomic
features was based on a series of image preprocessing to ensure
that the images with various scan parameters from different
centers were comparable. It is difficult to accurately distinguish
and segment tumor enhancement components, necrotic
components, and edema areas. We combined necrosis and
enhancement area and then combined them into the tumor
area, which may make it more feasible for clinical application in
the future.

Our study has several limitations. First, all our data were
obtained from public databases. The ROI of the images was
drawn semiautomatically and corrected by experienced experts.
The gold-standard segmentation label also brought corresponding
challenges while ensuring segmentation accuracy, and realizing
the gold-standard segmentation is not easy, but the development
of technology of automatic segmentation for brain image may give
a feasible settlement (34, 35). The impact of individual differences
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in the image segmentation process was not evaluated in our
research. No difference was found in the results of this study
because the segmentation was regarded as the gold standard.
Nevertheless, considering further application of the model, the
impact of individual differences cannot be ignored. Therefore,
using other data is necessary to perform external verification of the
radiomics model, which is currently in progress. Second, we
divided the training set and the external test set based on the
organization, and only one center met the requirements of GBM :
LGG = 1:1. The non-random selection of the external test set may
introduce a potential selection bias in the research results. The
number of samples in the external test set was only 25. Whether
the small external test set can play a role in discovering model
overfitting remains unclear. The latest World Health Organization
classification of gliomas incorporated the mutation status of IDH-
1 based on histology (36). We did not consider the mutation status
of IDH-1 in our study because we considered that molecular
information only played a supplementary role. When grading the
degree of malignancy, the difference in histology is still important.
The study by Hartmann et al. (37) analyzed the impact of IDH-1
mutation status and histological grade on the prognosis of patients
with glioma. The results showed that regardless of the IDH-1
mutation status, higher histological grades often indicate
worse prognosis.
CONCLUSIONS

Our model is generalizable. The performance of the model was
comparable to that of experienced radiologists, and it was better
than that of inexperienced radiologists. Our model can reduce
the workload of radiologists and improve the diagnostic accuracy
for glioma.
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