Updates From the NASPGHAN/SPLIT SARS-CoV2 International Registry

eply: We acknowledge the authors of "SARS-CoV-2 in pediatric liver transplant recipients: the European experience" response to our article reporting the NASPGHAN/SPLIT SARS-CoV2 registry experience (1). In contrast, they note that liver transplant (LT) recipients had higher rates of hospitalization, including intensive care unit (ICU) admission, than patients with chronic liver disease (LD).

The NASPGHAN/SPLIT SARS-CoV2 international registry has increased to 180 LT recipients and 76 patients with LD (Table 1). In this expanded cohort, LT recipients were still less

likely to require hospitalization (odds ratio [OR] = 0.32, 95% confidence interval [CI]: 0.17–0.59, P < 0.0001) or ICU level care (OR = 0.05, 95% CI: 0.010.17, P < 0.001) compared with LD patients. No LT recipients required mechanical ventilation or died of SARS-CoV2. Nine patients with LD required mechanical ventilation, and three patients with LD died. Differences between registry outcomes may be partially explained by the higher proportion of patients with obesity and NAFLD with LD in our cohort. Obesity is associated with worse outcomes in children with SARS-CoV2 infection (1,2-5). Buescher et al additionally suggest a role of combined immunosuppression leading to increased hospitalization in LT recipients. In our larger LT cohort, the degree of immunosuppression was not associated with higher odds of hospitalization (OR = 1.6, 95% CI: 0.69-3.8, P = 0.20).

TABLE 1. Baseline characteristics and clinical data for patients with disease of the native liver and liver transplant recipients with positive test for the severe acute respiratory syndrome coronavirus 2

	Disease of the native liver $(N = 76)$	Liver transplant recipient (N = 180)	P value
Baseline characteristics			
Age (y), median (IQR)	9.5 (4-16)	11.5 (5–17)	0.05
Male gender (%)	45 (59)	93 (52)	0.2
Primary liver condition (%)	` /	` /	< 0.001
NAFLD	13 (17)	0	
Biliary atresia	18 (24)	85 (47)	
Acute liver failure	4 (5)	16 (9)	
Autoimmune hepatitis	13 (17)	7 (4)	
Metabolic	6 (8)	23 (13)	
Malignancy	3 (4)	18 (10)	
Other cholestatic liver disease	15 (20)	21 (12)	
Other	4 (5)	10 (6)	
Comorbid conditions (%)	· /		
None	20 (26)	97 (54)	
Overweight/obesity	18 (24)	13 (7)	< 0.001
Cardiac	10 (13)	22 (12)	0.8
Gastrointestinal	11 (14)	10 (6)	0.03
Pulmonary	6 (8)	11 (6)	0.6
Renal	2 (3)	16 (9)	0.07
Endocrine	4 (5)	5 (3)	0.4
Other autoimmune conditions	2 (3)	5 (3)	
Time since LT (y), median (IQR)	_	4.5 (2–11)	
Clinical data		,	
Presenting symptoms (%)			
Fever	27 (36)	49 (27)	
Respiratory symptoms	36 (47)	65 (36)	
Constitutional symptoms	11 (14)	23 (13)	
Gastrointestinal symptoms	18 (24)	29 (16)	
Asymptomatic	16 (21)	63 (35)	
Highest level of care (%)	- ()	35 (53)	
Outpatient	28 (37)	147 (82)	< 0.001
Hospital floor	29 (38)	30 (16)	< 0.001
ICU	19 (25)	3 (12)	< 0.001
Highest respiratory support (%)	17 (20)	3 (12)	< 0.001
None	60 (79)	177 (98)	(0.001
Nasal cannula/CPAP/BiPAP	7 (9)	3 (2)	
Mechanical ventilation	6 (8)	0	
High frequency oscillatory ventilation	3 (4)	0	
Final clinical outcome (%)	3 (1)	v	0.02
Death	3 (4)	0	0.02
Recovery	67 (88)	175 (97)	
Still active in clinical course/pending	7 (8)	5 (3)	
- Carrie in crimical course, periang	, (0)	3 (3)	

ICU = intensive care unit; IQR = interquartile range; LT = liver transplant; N = number; NAFLD = non-alcoholic fatty liver disease.

www.jpgn.org e43

We agree with Buescher et al regarding the utility of collaborative registry studies to inform the care of pediatric LT recipients and children with LD. Our registry continues to collect data (https://bit.ly/NASPGHAN_SPLIT_COVIDregistry). Ongoing submissions remain critical as we continue to explore variants, breakthrough infections, and antibody response to SARS-CoV2 vaccination in pediatric solid organ transplant recipients (6,7).

Acknowledgments: We graciously collaborators that contributed to the registry: Voytek Slowik¹, Daniel H. Leung², Amit Shah³, Nadia Ovchinsky⁴, Debora Kogan-Liberman⁴, Ronen Arnon⁵, Bernadette Vitola⁶, Nadia Waheed⁷, Sylvie Lebel⁸, Saeed Mohammad⁹, James E. Squires¹⁰, Eyal Shteyer¹¹, Tamir Miloh¹², Maria Camila Sanchez¹³, Amber Hildreth¹⁴, Baruch Yerushalmi¹⁵, Christopher Chu¹⁶, Howard Kader¹⁷, Linda Book¹⁸, Leina Alrabadi², Ming-Hua Zheng¹⁹, Shweta S. Namjoshi², Yasemin Cagil², Yonathan Fuchs², Zheng ', Shweta S. Namjoshi , Yasemin Cagii , Yonathan Fuchs , Nitika Gupta²⁰, Jairo Eduardo Rivera Baqueros²¹, Jean Botha²², Ruba Azzam²³, Bhavika Chepuri², Daniel D Agostino¹³, Scott Elisofon²³, Rachel Falik¹⁰, Lisa Gallagher²⁴, Simon Lam²⁵, Douglas Mogul²⁷, Quais Mujawar²⁸, Samar Ibrahim²⁹, Shweta S. Namjoshi², Pamela L. Valentino³⁰, Stacy Postma³¹, Frank DiPaola³², Gustavo Boldrini¹³, Andreanne Zizzo³³, Niviann M. Blondet³⁴, Dania Brigham³⁵

¹ Children's Mercy Kansas City, ²Texas Children's Hospital, ³Children's Hospital of Philadelphia, ⁴ Children's Hospital at Montefiore, ⁵Mount Sinai Hospital, ⁶Medical College of Wisconsin, ⁷Children's Hospital and the Institute of Child Health, 8Phoenix Children's Hospital, ⁹Ann & Robert H. Lurie Children's Hospital, ¹⁰UPMC Children's Hospital of Pittsburgh, ¹¹Shaare Zedek Medical Center, ¹²University of Miami, ¹³Hospital Italiano de Buenos Aires, ¹⁴Rocky Mountain Hospital for Children, ¹⁵Soroka University Medical Center, ¹⁶Children's Hospital Los Angeles, ¹⁷University of Maryland School of Medicine, ¹⁸Primary Children's Hospital, ¹Stanford University, ¹⁹The First Affiliated Hospital of Wenzhou Medical University, ²⁰ Emory University, ²¹Fundacion Cardiofantil – Instituto de Cardiologia, ²²Wits Donald Gordon Medical Centre, ²³University of Chicago, ²⁴Boston Children's Hospital, ²⁴University of California, San Francisco, ²⁵Alberta Children's Hospital, ²⁶Johns Hopkins Hospital, ²⁸University of Manitoba, ²⁹Mayo clinic, ³⁰Yale University School of Medicine, ³¹ Washington University, ³²University of Virginia, ³³Children's Hospital, LHSC, ³⁴Seattle Children's Hospital, ³⁵Children's Hospital Colorado.

*Mohit Kehar, †Noelle Ebel, ‡Vicky Ng, §Steven Lobritto, and §Mercedes Martinez *Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada [†]Stanford University, Stanford, CA, USA [‡]Hospital for Sick Children, Toronto, Ontario, Canada §Columbia University, New York, NY. USA

Funding: This work was not supported by any funding.

Conflict of Interest: Vicky L. Ng: consulting: Albireo; Steven Lobritto: grant and contracts: Gilead, Abbvie. Advisory board: Gilead. Consulting: various law firms.

REFERENCES

- 1. Kehar M, Ebel NH, Ng VL, et al. Severe acute respiratory syndrome coronavirus-2 infection in children with liver transplant and native liver disease: an international observational registry study. J Pediatr Gastroenterol Nutr 2021;72:807-14.
- 2. Tsankov BK, Allaire JM, Irvine MA, et al. Severe COVID-19 infection and pediatric comorbidities: a systematic review and meta-analysis. Int J Infect Dis 2021:103:246-56.
- 3. Korakas E, Ikonomidis I, Kousathana F, et al. Obesity and COVID-19: immune and metabolic derangement as a possible link to adverse clinical outcomes. Am J Physiol Endocrinol Metab 2020;319:E105-9.
- 4. Zachariah P, Johnson CL, Halabi KC, et al. Epidemiology, clinical features, and disease severity in patients with coronavirus disease 2019 (COVID-19) in a Children's Hospital in New York City, New York. JAMA Pediatr 2020;174:e202430.
- 5. Perez A, Cantor A, Rudolph B, et al. Liver involvement in children with SARS-COV-2 infection: two distinct clinical phenotypes caused by the same virus. Liver Int 2021;41:2068-75.
- 6. Corey L, Beyrer C, Cohen MS, et al. SARS-CoV-2 variants in patients with immunosuppression. N Engl J Med 2021;385:562-6.
- Qin CX, Auerbach SR, Charnaya O, et al. Antibody response to 2-dose SARS-CoV-2 mRNA vaccination in pediatric solid organ transplant recipients. Am J Transplant 2021. doi: 10.1111.ajt.16841. [Epub ahead of print].

e44 www.jpgn.org