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Abstract: Sliding tactile perception is a basic function for human beings to determine the 

mechanical properties of object surfaces and recognize materials. Imitating this process, 

this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric 

polyvinylidene fluoride (PVDF) film for surface texture measurement. A parallelogram 

mechanism is designed to ensure that the sensor applies a constant contact force 

perpendicular to the object surface, and a 2-dimensional movable mechanical structure is 

utilized to generate the relative motion at a certain speed between the sensor and the object 

surface. By controlling the 2-dimensional motion of the finger-shaped sensor along the 

object surface, small height/depth variation of surface texture changes the output charge of 

PVDF film then surface texture can be measured. In this paper, the finger-shaped tactile 

sensor is used to evaluate and classify five different kinds of linen. Fast Fourier 

Transformation (FFT) is utilized to get original attribute data of surface in the frequency 

domain, and principal component analysis (PCA) is used to compress the attribute data and 

extract feature information. Finally, low dimensional features are classified by Support 

Vector Machine (SVM). The experimental results show that this finger-shaped tactile 

sensor is effective and high accurate for discriminating the five textures. 

  

OPEN ACCESS 



Sensors 2014, 14 4900 

 

 

Keywords: tactile sensor; surface texture measurement; fabric texture classification 

 

1. Introduction 

Tactile sensation which means feeling objects by touch is one of the most important factors to sense 

the environment and obtain information. Klatzky, a professor of psychology, experimentally confirmed 

that vision has a higher spatial resolution than touch, which can quickly and accurately get very fine 

details, while tactile sensation on exploring and distinguishing material properties is much better than 

vision [1]. Thus, studying on tactile sensors which can detect the surfaces of objects and extract 

features of materials is very valuable. In virtual reality, such as a digital museum project, shapes and 

textures of the cultural artifact are important to archive and represent haptic impression [2]. In the field 

of robotics, intelligent robots with tactile sensors can be used to provide more information about 

surface texture and assist in object recognition tasks [3,4]. In the textile field, tactile sensors are useful for 

evaluating fabric surfaces because extracting and comparing fabric surface properties accurately can 

lead to a more stable textile product quality and reduce the costs of production and inspection [5]. 

In surface metrology, the size of texture elements varies with the purpose of analysis. Coarse 

texture usually gives the spatial sense and fine texture gives a vibration sense [6,7]. In many cases, 

they both exist, especially in soft fabrics which surface can be deformed by external force. Thus, 

perception of the surface texture is a complex process. Designing effective tactile sensors with the 

capability of extracting features of surfaces is still a challenge task [8]. 

In previous designs, handheld devices with a probe were a common type of tactile sensor for 

surface property detection. Pai et al. designed a wireless device for haptic texture interaction by 

simultaneously measuring contact force and acceleration in a handheld probe [9]. Ye et al. developed a  

pen-type texture sensor with strain gauges, PVDF module, force sensor and contact probe to 

discriminate surface roughness [8], but this measurement method is more suitable for stiff surfaces. 

The probe tip may deform or hurt soft surface like woven textiles. Computer vision techniques based 

on cameras or microscopes [10,11] are another good way to explore surfaces using a non-contact 

method to get fine details. However, they can only reflect spatial information but not mechanical 

properties and is hard to achieve real-time classification. 

As mentioned above, soft surface detection is a relatively challenging problem. In the textile field, 

Fabric Assurance by Simple Testing (FAST) [12] and Kawabata Evaluation System for Fabrics  

(KES-FB) [13] are well-known systems for evaluating fabrics. In these systems, samples are cut from 

fabrics and then mounted on a series of instruments to measure the mechanical properties of the 

fabrics. Therefore, these complex systems are more suitable for laboratory than industrial measurements. 

In recent literature, some new methods and materials are involved in tactile sensors. Muhammad et al. 

designed a MEMS based biomimetic tactile sensor to measure force ranges encountered during tactile 

exploration of surfaces [14]. Kumar et al. developed a flexible tactile sensor based on a thin 

polydimethylsiloxane (PDMS) film for contact traction distribution [15]. These research projects are 

still in the early stages and only partial static contact information of surface can be detected. 
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However, psychophysical research shows that the tactile perception of human finger is not a static 

process but an active process influenced by both the finger motion and the force applied on the object 

surface, which includes three steps [16–18]. Firstly, finger touches the surface of object with a slight 

pressure and repeats a back-and-forth motion at speeds from 2 to 10 cm/s. The particles from the 

surface texture activate the cutaneous sensory neurons. Secondly, the sensory neurons transduce the 

physical stimulus into electric signals and then send them to the brain cortex through the spinal cord, 

brain stem, and thalamus. Thirdly, the cerebral cortex resolves the perceived information and produces 

results in a specific texture feeling. Smith et al. studied the human surface exploration process by the 

fingertips, and showed the mean normal contact force exerted by humans on surfaces is 1.54 ± 0.50 N [19]. 

By imitating the human active tactile perception process, we have designed a texture sensor with a 

simple rotational mechanical structure in our previous research [20,21]. The limitation of the texture 

sensor is that a piece of sample must be cut from the measured objects and it can only measure in a 

fixed circular path with rotational motion. In order to extend the detection range to a two-dimensional 

plane, this paper proposes an improved finger-shaped tactile sensor installed on a mechanical structure 

with two-dimensional motion. Moreover, samples needn’t be cut from the measured objects. This 

finger-shaped tactile sensor is designed using a PVDF film as sensitive element, which has high 

piezoelectric effect and unique physical properties to fabricate a high-speed-response and high-accuracy 

device. We use FFT operation to get original attribute data of the surface in the frequency domain. 

PCA is utilized to compress the attribute data and extract feature information. Finally, low dimensional 

features are classified by SVM. 

The rest of the paper is organized as follows: Section 2 describes the principle of surface 

measurement by the PVDF film. Section 3 introduces the design of the finger-shaped sensor. Section 4 

describes the mathematical principles of PCA and SVM. Section 5 shows the experiments and results 

of fabric classification. Finally, Section 6 provides some conclusions. 

2. Principle of Surface Measurement by PVDF 

PVDF is a polymer consisting of long molecular chains with repeated ‒CF2–CH2‒ units. It has 

strong piezo-pyroelectric activity. Compared with other piezoelectric materials, PVDF is flexible, light, 

tenacious and inexpensive. Therefore, PVDF film is very suitable for tactile sensor fabrication [22]. The 

piezoelectric coefficient matrix of PVDF form is usually expressed as [20,21,23]: 
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Figure 1 is schematic picture of a PVDF film. The sensitivity of the PVDF film depends on the 

direction of measurement. The coefficients d31, d32, d33 are the piezoelectric strain coefficient of the 

direction 1, 2, 3, respectively and −d33 ≥ d31 > d32 > 0. The coefficients d24, d15 are the piezoelectric 

shearing strain coefficient of the film sides in the direction 1, 2, respectively. For the commercially 

available PVDF film, the piezoelectric shearing strain coefficients are smaller than the piezoelectric 

strain coefficients about two orders of magnitude. 
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Figure 1. Schematic picture of a PVDF film. 
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When a force is applied on the PVDF film, the output charge in the electroded area of the PVDF 

film is expressed as: 

31 2
31 32 33 31 1 32 2 33 3

3 1 2 3

FF FQ
d d d d d d

A A A A
         (2) 

where Q is the output charge, A3 is the electrode area of the PVDF film, A1 and A2 are the cross-sectional 

areas of the film perpendicular to the A3. F1, F2, F3 are the applied force in the direction 1, 2, 3, 

respectively, and σ1, σ2 and σ3 are the tensile stress in the direction 1, 2, 3, respectively. Moreover, the 

electrode film to which the PVDF film is glued is usually rigid in the horizontal direction, which 

means σ1 = σ2 = 0. Thus, Equation (2) can be rewritten as: 

33 3
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Q
d

A
  (3) 

During the sliding movement, a micro-unit of PVDF film will be compressed by the fine particles 

on the surface, resulting in an amount of charge. Thus, we can get the surface texture characteristics by 

measuring the output charges of the PVDF film. Usually, the electrode fully covers the surface of the 

PVDF film that means the electrode area A3 equals the surface area of PVDF film Ω. Let σ(x,y,t) 

denote the strain of point (x,y) at time t on the surface of the PVDF film. When the PVDF texture 

sensor is connected to the amplifier circuits, the leakage current i should be considered. Thus the 

output charge of the PVDF texture sensor caused by the strain change can be expressed as: 
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where Q(t0) is the output charge of the PVDF texture sensor at the initial time t0, R is the amplifier 

equivalent resistance, and C is defined as the equivalent capacitance of the PVDF film. Assuming the 

strain is uniform on the sensitive area of the PVDF film and that the initial output charge Q(t0) = 0. 

Then the total electric charge Q(t) induced at each surface electrode of the PVDF film by the strain at 

the contact area can be given as: 

3
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When strain σ3 is changed as a step function, the solution of Equation (5) is: 

33( ) ( ) ( )
t t

RC TQ t d e U t Q e U t
 

     (6) 

where U(t) is the step function, T = RC is the response time constant, and QΩ = Ω·d33 is the amplitude 

of output charge caused by strain σ3 in the electrode area. Equation (6) illustrates that the output charge 

of the PVDF texture sensor will exponentially decrease with time t owing to the leakage current of the 

sensor and the amplifier. This implies that the texture sensor using the PVDF film as the sensing 

element is unable to measure the static force but is sensitive to the dynamic force, which is similar to 

the perceptual characteristic of human fingers. 

3. The Design of the Finger-Shaped Sensor 

3.1. Mechanical Design of Finger-Shaped Tactile Sensor Based on PVDF Film 

The mechanical structure of the finger-shaped tactile sensor is shown in Figure 2. The sensor is 

composed of PVDF film, infillings, aluminum block, force sensor, base and parallelogram mechanism. 

The base is a cylindrical shape connected to the movable rod of the parallelogram mechanism. The 

force sensor is fixed to the base and a curved aluminum block is mounted at the end of the force 

sensor. The curved aluminum block plays a supporting role like our finger bone so that the sensor tip is 

arched and won’t damage soft surfaces. Silicon rubber is used as infilling to fill the cavity between the 

force sensor and PVDF film, which is capable of transferring the contact force from the PVDF film to 

the force sensor owing to its soft human tissue-like properties. The arched surface of the silicon rubber 

is covered with a latex membrane as a protective layer. Then the PVDF film is glued to the latex 

membrane surface. The PVDF film is 10 mm width, 30 mm length and 30 μm thick. The coefficient 

d33 is 21 pC/N. The function of the PVDF film is to measure the strain variation corresponding to the 

surface texture change when the relative sliding motion between the sensor and the object surface happens. 

Figure 2. Structure of the finger-shaped tactile sensor. 
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The parallelogram mechanism is designed to ensure that the sensor is pressed perpendicularly to the 

surface of the object. It has three movable rods and one fixed rod connected to the motor shaft in point A 

of Figure 2. When the motor shaft rotates anticlockwise, the sensor will go down slowly to contact the 

surface along the vertical direction. Meanwhile, the contact force is detected by the installed force 

sensor. As soon as the contact force reaches a certain value, the motor will stop. Then the contact force 

between the sensor and the surface won’t be changed owing to self-locking function of the motor. 

Here, we use a FSG1500g touch force sensor manufactured by the Honeywell Corporation 

(Morristown, NJ, USA) to measure the normal contact force between the PVDF film and the surface of 

objects. Its measuring range is 15 N with a measurement precision of 0.5% F.S., and its resistance to 

overload reaches 55 N. 

3.2. Design of Measurement System 

Figure 3 shows the schematic of the measurement system. It consists of a finger-shaped tactile 

sensor, two-dimensional motion mechanism, measurement platform with two sample clips, system 

base and the measurement system circuits. 

Figure 3. The schematic of the measurement system. 
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The finger-shaped tactile sensor is installed on the two-dimensional motion mechanism, which is 

composed of two linear rails with sliders. Linear rail 1 is fixed on the system base to produce 

movement in the X-direction. Linear rail 2 is perpendicular to linear rail 1 and move in Y-direction. 

Bracket is the mechanical connection of linear rail 1 and linear rail 2. Each linear rail is driven by a 

step motor with encoder which can record displacements and speeds. The measurement platform is 

also fixed on the system base under linear rail 2. Samples are mounted on the platform with sample 

clips on both sides of the platform and they needn’t be cut from the measured objects. Therefore, the 

finger-shaped tactile sensor can slide both in the X-direction and Y-direction on any part of a sample at 

a certain speed. 
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The circuit architecture of the measurement system is given in Figure 4. It includes conditioning 

circuit for the PVDF film output charge signal and force sensor output voltage signal, DC motor 

driver, step motor driver, line driver for encoder and single chip microcomputer connected to the 

computer via a USB interface. When measuring the object surface texture, the computer sends an 

instruction to the single chip microcomputer and then the single chip microcomputer controls the step 

motors through step motor driver so that the two-dimensional motion mechanism can take the tactile 

sensor to a specified position of samples. Then, a PWM signal with a certain duty cycle is generated by 

the PWM module to control the DC motor, which can adaptively adjust the contact force between the 

tactile sensor and surface of samples. Force signal is obtained from the force sensor through the 

conditioning circuit. When the tactile sensor is sliding on the surface of samples, the texture property 

can be obtained by acquiring the output charge of PVDF film. Encoders are installed on the step 

motors to measure the rotation angle so that we can obtain the speeds and displacements of sliders. 

Figure 4. Circuit architecture of the measurement system. 
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4. Data Dimension Reduction and Classification 

4.1. PCA-Based Data Dimension Reduction 

A Fast Fourier Transformation (FFT) operation is utilized to get the original attribute data of 

surface in the frequency domain. Then texture signal can be obtained as 12,288 data points in this 

domain. If the texture signal is used directly for classification, it will require a large amount of 

calculations, so Principal Component Analysis (PCA) is introduced for dimension reduction. 

PCA is a classical and powerful dimension reduction technique. It uses orthogonal transformation to 

convert the original correlated data points into a set of linearly uncorrelated variables called principal 

components [24,25]. Suppose there is a matrix X with n rows and m columns that each row represents 

an m-dimensional vector of one sample. Then matrix X , which the empirical mean of the distribution 

has been subtracted from the original data set, can be calculated as follows: 

1

1
( ) 1,2, ,

m

i i i

k

X X x k i n
m 

    ，  (7) 

where iX  is the i-th row of X . The covariance matrix of X  is: 
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1 TCov X X
m

  (8) 

Apparently, the matrix Cov is a diagonal matrix. As a result, the m orthogonal unit eigenvectors, 

which are the principal components, can be written as follows: 

 1 2 mE e e e   (9) 

Assuming that the eigenvalues of them are λ1 ≥ λ2 ≥ … ≥ λm ≥ 0, the cumulative contribution rate uk 

is calculated as follows: 
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then the orthogonal transformation matrix P is: 

1 2( )kP e e e   (11) 

The matrix S, which consists of the data with k dimensions, is calculated as follows: 

S XP  (12) 

Each row of S is the dimension reduction result of corresponding vector in X. Thus the original  

m-dimensional vectors can be reduced to k dimensions. 

4.2. Classification Based on SVM 

Support Vector Machine (SVM) is a popular supervised learning method to analyze data and 

recognize patterns in classification and regression analysis. It can maximize the geometric margins and 

minimize the empirical classification error simultaneously [26,27]. While using SVM in classification, 

a good separation can be achieved by constructing a hyperplane which separates the classes with the 

largest margin. Besides linear classification, SVM can efficiently perform a non-liner classification by 

mapping input vectors into high-dimensional feature spaces. 

Suppose there are n samples in the training data corresponding to two classes. Each sample includes 

a vector Si, (i = 1,2,∙∙∙,n). This input vector Si is mapped into a high dimensional space H by applying 

kernel trick. Guassian radial basis function (RBF), a common choice of kernel, is used in this study [28]. 

It can be defined as follows: 

2

2
( , ) exp

2

i j

i j

S S
K S S



 
  
 
 

 (13) 

The training data is used to determine the classification function f(S). As shown in Figure 5, the 

mathematical form of f(S) is similar to a three-layer feedforward artificial neural network. 
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Figure 5. The mathematical form of f(S). 
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The function is defined in terms of kernels: 

1
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 
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where K is the kernel function, b is a bias term. yi is the class label with value +1 or −1 and αi is the 

Lagrange multiplier coefficient obtained by solving the Quadratic Programming Problem (QPP). 

However, SVM may not find a separating hyperplane for some data sets such as mislabeled samples. 

The soft margin SVM [27] by introducing slack variables is more useful for finding hyperplane which 

splits the samples in feature space. Thus, finding coefficients αi is equivalent mathematically to maximize: 

1 1 1

1
max ( ) ( , )

2

n n n

i i j i j i j

i i j
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    (15) 

with the constraints of: 
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 (16) 

where C is a non-negative regularization parameter used to control the trade-off between maximizing 

the margin and minimizing the error. 

In this study, there are more than two kinds of samples for classification. Therefore, a binary 

classification method above is not enough to distinguish samples. Multiclass SVM needs to be built. 

The approach for doing this is to reduce the single multiclass problem into multiple binary 

classification problems. Binary classifiers should be built to discriminate between every two classes [29]. 

The “Max Wins” strategy is utilized in this approach [30]. Every classifier assigns the sample to one of 

the two classes and the assigned class adds one vote. Finally the class with the most votes determines 

the sample classification. In this way, if there are N kinds of samples in classification, (N − 1)N/2 

classifiers are needed in multiclass SVM. 
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5. Experimental Results 

5.1. Two Dimensional Texture Measurement 

In our experiment, we chose five samples of linen for texture measurement. Each sample is similar 

in material but different in yarn density, yarn thickness and weave pattern, which have great impact on 

tactile sensation [31]. Sixty places are selected randomly on each sample for tactile signal acquisition 

and 300 groups of data are obtained in total. Figure 6 shows photographs of the five types of linen. 

Figure 6. The photograph of five types of linen. (a) linen No.1; (b) linen No.2; (c) linen 

No.3; (d) linen No.4; (e) linen No.5. 

 

As shown in Figure 6a, some fabrics have different properties in the X-direction and Y-direction. 

Humans can easily distinguish between the two directions by tactile sensation. Thus tactile signals in 

different directions are valuable in evaluation. To get comprehensive surface mechanical properties, 

tactile signals are acquired in both directions during the experiment. The contact force of the tactile 

sensor applied on the sample of linen is set to be 1.5 N, which is within the fingertip touch force range 

of 1.54 ± 0.50 N. The sliding speed is set to be 2.55 cm/s, which is ensured by the encoder installed on 

the step motor. For instance, Figure 7 shows the raw data of linen No.1 in the time domain, which is 

acquired in the X-direction. 

Figure 7. The raw data of linen No.1 in the time domain. 

 

Figure 8 displays the power spectrum density of the five types of linen. The left charts show texture 

information in the X-direction, and the right charts in the Y-direction. The thick line is the power 

spectrum density envelope, which can facilitate observation of spectral peaks. As shown in the figure, 

the surface mechanical features of linen No. 1 are different in the X-direction and Y-direction. 
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However, the remaining four kinds of linen show similar mechanical features in the X-direction and  

Y-direction, which indicates that their woven structures of the two directions have little difference. 

Meanwhile, each kind of linen has its own features in the frequency domain. Thus, imitating the 

motion of human finger, this finger-shaped tactile sensor is capable of detecting in two directions. 

Figure 8. The power spectrum density of five types of linen. 
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5.2. Classification Results 

We use PCA to reduce the dimension of features in the frequency domain. Taking linens No. 2 and 

No. 3 for instance, each of them has 60 groups of data in the X-direction, so the matrix X can be  

60 rows and 12,288 columns, which means n = 60 and m = 12,288. Then the dimension reduction 

results can be calculated using Equations (7) to (12). To make uk > 99%, k is set to be 39. Eventually, 

the 12,288 points can be reduced to a 39 dimensional vector of each sample. Figure 9 shows the 

dimension reduction results of linen No. 2 and linen No. 3. Lines with different colors represent 

different groups of data and each figure has 60 curves in total. 

Figure 9. The dimension reduction results of linen No.2 and linen No.3. 

  

As illustrated above, the dimension of features is effectively reduced to 39. In classification, the 

input vectors of each sample are combinations of the dimension reduction results in X-direction and  

Y-direction. Thus each input vector is 78-dimensional. 

We use SVM to classify the five kinds of fabrics with 78-dimensional features and ten binary 

classifiers are built for the multiclass SVM. For each type of linen, sixty samples are acquired, in other 

words, 300 samples in total. We randomly choose 200 samples as training data and the rest are the 

testing data. All the classification results are shown in Table 1. There is no misclassification for linen 

No. 1 due to the distinct characteristics of direction. However, linen No. 3 and line No. 4 are 

sometimes mistaken for each other because they have some similar features in the frequency domain 

and some noises during the detection lead to more difficulties in their distinction. 

Although the five kinds of linen are similar in material and the differences between them are 

relatively small, their extracted texture features can be classified accurately using PCA and SVM 

algorithm. As a whole, the accuracy of linen classification reaches 92.0%, which indicates that the 

finger-shaped tactile senor is effective for fabric evaluation. 

Table 1. The results of classification with SVM 

Linen 

number 

Number of 

learning 

Number of errors/Number 

in the test set 

Classification 

accuracy 

1 40 0/20 100.0% 

2 39 1/21 95.2% 

3 40 3/20 85.0% 

4 38 3/22 86.4% 

5 43 1/17 94.1% 

Total 200 8/100 92.0% 
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6. Conclusions 

In this paper, we have developed a novel finger-shaped tactile sensor for evaluating fabric surfaces 

by imitating the human active touching process. A thin PVDF film is used as the sensitive element in 

the tactile sensor, so that height/depth variation of surface texture can be measured by relative motion 

with a constant contact force between the sensor and the 2-dimensional surface. Before classification, 

PCA is used for dimension reduction and the dimension of features is effectively reduced to a  

39-dimensional vector. Finally, a SVM method based on the RBF kernel is used for fabric 

classification. In the experiments, five kinds of linen are used for classification. The accuracy of linen 

classification reaches 92.0%. The measurement of this proposed sensor is accurate and cost-effective, 

and in addition samples needn’t to be cut from the measured fabrics, making the finger-shaped sensor 

suitable for fabric quality evaluation and control in the industrial field. 
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