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Abstract: Cancer development is associated with abnormal proliferation, genetic instability, cell
death resistance, metabolic reprogramming, immunity evasion, and metastasis. These alterations
are triggered by genetic and epigenetic alterations in genes that control cell homeostasis. Increased
reactive oxygen and nitrogen species (ROS, RNS) induced by different enzymes and reactions with
distinct molecules contribute to malignant transformation and tumor progression by modifying DNA,
proteins, and lipids, altering their activities. Nitric oxide synthase plays a central role in oncogenic
signaling modulation and redox landscape. Overexpression of the three NOS isoforms has been
found in innumerous types of cancer contributing to tumor growth and development. Although
the main function of NOS is the production of nitric oxide (NO), it can be a source of ROS in some
pathological conditions. Decreased tetrahydrobiopterin (BH4) cofactor availability is involved in
NOS dysfunction, leading to ROS production and reduced levels of NO. The regulation of NOSs
by BH4 in cancer is controversial since BH4 has been reported as a pro-tumoral or an antitumoral
molecule. Therefore, in this review, the role of BH4 in the control of NOS activity and its involvement
in the capabilities acquired along tumor progression of different cancers was described.
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1. Background

Cancers are a set of diseases characterized by genetic instability, abnormal cell prolifer-
ation, cell death resistance, metabolic reprogramming, angiogenesis, metastasis capability,
and immune response evasion caused by genetic and epigenetic alterations in oncogenes
and tumor suppressor genes [1]. These alterations contribute to malignant transformation
and tumor development with the consequent acquisition of an increasingly aggressive
phenotype through dysregulation of signaling pathways that maintain cell homeostasis.
Despite the advancement of medical technology and the development of new target ther-
apies [2,3], the incidence of different cancers is rising worldwide and will continue to
increase over the course of this century according to the International Agency for the
Research on Cancer (IARC) GLOBOCAN database within the Global Cancer Observa-
tory (COSMIC v94, released 28-MAY-21). This scenario is mainly attributed to high life
expectancy, the obesity epidemic, increased ultraviolet (UV) radiation exposure, and infec-
tious pathogens classified as human carcinogens [4–6].

Among other cause effects, tobacco, obesity, and related metabolic syndromes, infec-
tions, and UV are associated with inflammation, loss of redox homeostasis, and oxidative
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stress, contributing to cancer development [7–10]. A pro-oxidant milieu alters redox sig-
naling pathways improving the acquisition of cancer-related hallmarks. Moreover, nitric
oxide (NO) and reactive nitrogen species (RNS) metabolism are also altered in inflam-
mation [11]. High reactive oxygen species (ROS) levels found in tumors are caused by
different mechanisms, including increased NADPH oxidase expression and activity, mito-
chondrial damage, endoplasmic reticulum stress, and nitric oxide synthase dysfunction
(NOS) [12–16].

2. Nitric Oxide Synthase

Three NOS (EC 1.14.13.39) isoforms have been described in mammalian cells. NOS iso-
forms, named neuronal NOS (NOS1), endothelial NOS (NOS3), and inducible NOS (NOS2),
are encoded by different genes localized in distinct chromosomes. All three isoforms are ho-
modimeric and each monomer contains a C-terminal reductase domain and an N-terminal
oxygenase domain connected by a calmodulin-binding peptide linker. The binding sites for
the cofactors flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and nicoti-
namide adenine dinucleotide phosphate (NADPH) are found in the reductase domain,
which shares homology with cytochrome P450 (CYT P450) reductases while the oxyge-
nase domain contains binding sites for heme, the cofactor (6R)-5,6,7,8-tetrahydrobiopterin
(BH4) and the substrate L-arginine. The electron transfer occurs from the NADPH cofactor
into the oxygenase domain, where the L-arginine hydroxylation and subsequently NO
formation takes place. Stable dimerization between the two NOS monomers is required
for efficient NOS activity, as electrons flow from the reductase domain of one monomer
to the oxidase domain localized in the other monomer (Figure 1) [17,18]. NOSs activity is
regulated by integrating mechanisms, including post-translational modifications, protein–
protein interactions, and substrate and cofactor availability, being BH4 concentration
determinant [19–21].
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Figure 1. Nitric oxide synthase (NOS) activity. NOSs are homodimers and each monomer contains a reductase domain and
an oxygenase domain connected by a calmodulin-binding peptide linker (CaM) (for eNOS and nNOS). In the normal NOS
coupled state, electron (e−) flow through the nicotinamide adenine dinucleotide phosphate (NADPH) and flavin domains,
adenine dinucleotide (FAD), and flavin mononucleotide (FMN), from the reductase domain of one monomer to the iron of
the heme group (Fe) localized in oxidase domain of the other monomer. (6R)-5,6,7,8-tetrahydrobiopterin (BH4) binding to
the heme active site at the interface between the two monomers increased L-arg (L-arginine) substrate interaction and dimer
stabilization, producing nitric oxide (NO) and L-cit (L-citrulline). In the uncoupled state caused by the absence of BH4, the
electron transfer and the reduction of oxygen (O2) are uncoupled from L-arginine oxidation resulting in the generation of
superoxide anion (O2

•−).

NO is a pleiotropic gaseous molecule with a reactive free radical activity. NO regulates
innumerous physiological processes, including vascular (blood flow, angiogenesis, platelet
aggregation) and neurological functions (nervous system development and neurotrans-
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mission) [21]. Decreased NO concentration is associated with distinct diseases, including
cardiovascular diseases, diabetes, autism, and cancer [22–24].

Different studies have shown that NO can promote or attenuate cancer progres-
sion through the regulation of diverse signaling pathways. Effects of NO on neoplasia
depend on its concentration and exposure duration, NOS localization, NO-induced post-
translational modifications of proteins, and cancer type and stage. The role of NO on cancer
development is also associated with its source, tumor, or stromal cells (cancer-associated
fibroblasts, endothelial or immune cells) [25,26]. At relatively high concentrations, NO
induces cytotoxic and genotoxic events such as protein activity inhibition, mitochondria
dysfunction, DNA and protein damage, and cell death while in low doses can trigger
cell proliferation and angiogenesis. Many studies have reported the dual effect of NO in
cancer cells [21,26]. In melanoma cells, increased NO concentration causes growth arrest
and apoptosis [13,27]. Evodiamine treatment induced p38 and NF-κB activation, which
in turn triggers NO-derived iNOS, increasing apoptosis in a p53-dependent manner [28].
Moreover, NO stabilizes p53 by phosphorylation, stimulating apoptosis in different can-
cers [29,30]. On the other hand, NO elicits HIF-1α accumulation in the nucleus of different
tumor cells, enhancing gene expression of hypoxia-target genes, which in turn contributes
to cancer proliferation, angiogenesis, and metastasis [31–33]. Furthermore, Newton et al.
found that iNOS inhibition improved immunotherapy in combination with radiotherapy in
solid tumors by modulating the tumor immune microenvironment. Decreased NO levels
induced CD8+ effector cells activation and intratumoral infiltration, attenuating tumor
growth [34].

Dysfunctional NOS is a source of superoxide anion (O2
•−), which is associated with

the development of cardiovascular diseases, diabetes, neurodegenerative disorders, and
more recently, its role in cancer has been reported [13,35–37]. The role of ROS in malignant
transformation and tumor progression depends on its concentration and cancer stage,
contributing to carcinogenesis or tumor cell death [13,16,33].

Although increased expression of the three NOS isoforms in different cancers has been
related in innumerous studies, not all the studies describe NOS activity [13,38–41]. High
NOS expression is associated with increased cell proliferation, metastasis, and chemother-
apy resistance, in some cases being associated with poor prognosis [26,40,42]. Therefore,
the knowledge of NOS activity is very important to understand its real role in oncogenesis
and to develop an efficient therapeutic strategy.

3. Tetrahydrobiopterin

BH4 plays an essential function as a cofactor of a set of metabolic enzymes, including
NOS, four aromatic amino acid hydroxylases, alkylglycerol monooxygenase (AGMO),
and the brain-specific tryptophan hydroxylase isomer TPH2. BH4 is a pteridine bicyclic
molecule comprising a pyrimidine ring fused to a pyrazine ring. Biopterin’s redox activity
is conferred by their heteroatomic rings that can be oxidized (biopterin), partially reduced
(dihydrobiopterin, BH2), and fully reduced (BH4) [19]. BH4 also has the ability of scav-
enging ROS by preventing polyunsaturated fatty acyl (PUFA) chains depletion and lipid
peroxidation [43] acting as an anti-oxidant molecule [44]. As BH4 is easily oxidized, an
increase in ROS and RNS like peroxynitrite leads to BH4 depletion.

Intracellular BH4 amount is tightly regulated by de novo, salvage, and recycle syn-
thesis pathways (Figure 2) [45]. In de novo BH4 biosynthesis, BH4 is synthesized from
GTP in a three-step reaction being GTPCH1 (GTP cyclohydrolase 1) (EC 3.5.4.16), the first
and rate-limiting enzyme, followed by PTPS (6-pyruvoyl-tetrahydrobiopterin synthase)
(EC 4.6.1.10) and SR (sepiapterin reductase) (EC 1.1.1.153) [46]. In the salvage pathway,
SR catalyzes the reduction of sepiapterin into BH2 which is then converted into BH4 by
DHFR (dihydrofolate reductase) (EC 1.5.1.3). In the recycling, quinoid-BH2 is reduced by
DHPR (dihydropteridine reductase) (EC 1.5.1.34) into BH4. Other enzymes share with
SR the same substrates, namely, AR (aldose reductase) and CR (carbonyl reductase). Ad-
ditionally, BH4 can also be synthesized by AKR1C3 (3α-hydroxysteroid dehydrogenase
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type 3) (EC 1.1.1.357) and AR [47]. GTPCH1 activity is modulated in transcriptional
and post-transcriptional levels and by interaction with the proteins GFRP (GTP cyclohy-
drolase I feedback regulator protein) and caveolin-1 [46,48,49]. GTPCH1 expression is
triggered by pro-inflammatory cytokines, ROS, and NRF2 transcription factor in different
cell lines [50,51].
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Figure 2. Tetrahydrobiopterin (BH4) biosynthesis pathway. De novo (red): BH4 is produced
from guanosine-5′-triphosphate (GTP) by enzymes GTP cyclohydrolase 1 (GTPCH1), 6-pyruvoyl-
tetrahydrobiopterin synthase (PTPS), and sepiapterin reductase (SR). Salvage (purple): Sepiapterin re-
duction into dihydrobiopterin (BH2) by SR, and BH2 conversion into BH4 by dihydrofolate reductase
(DHFR). Recycling (blue): quinoid-BH2 reduction into BH4 by dihydropteridine reductase (DHPR).

BH4 binding to the heme active site at the interface between the two monomers is
indispensable for NO synthesis through increased L-arginine substrate interaction and
dimer stabilization. Decreased intracellular BH4 concentration promotes NOS destabiliza-
tion and the reduction of NO production. This dysfunctional state of NOS is referred to as
uncoupling because the oxidation of NADPH and the reduction of oxygen are uncoupled
from arginine hydroxylation and NO formation. However, the electron transfer from
NADPH through the flavin domains to molecular oxygen is not inhibited, resulting in the
generation of O2

•− and hydrogen peroxide (H2O2) (Figure 1) [47]. Although BH2 can bind
to the active site of NOS with the same affinity of BH4, it has no cofactor activity, competing
with and displacing BH4 from the oxygenase domain. Therefore, the BH4/BH2 ratio also
determines NOS function.
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4. Tetrahydrobiopterin and Cancer

Different molecules have been described to contribute positively or negatively to
tumor progression, which is associated with several factors, including the type of neoplasia
and the stage of tumor development, reflecting the cross-talking between altered oncogenic
signaling pathways and the interaction with other molecules. The compartmentalization
within the cell and the location in the cancer microenvironment in addition to the expression
and/or concentration of such factors also cooperate with its role.

As discussed below, the involvement of tetrahydrobiopterin as a pro- or anti-tumoral
molecule has been demonstrated in different biological processes, including tumor mi-
croenvironmental reprogramming, cell growth, metabolism, and metastasis, contributing
or impairing cancer development (Table 1).

Table 1. Studies showing the role of BH4 and NOS activity in the progression of different types of cancers.

Cancer Type Altered Tumor
Capability

NOS
Isoforms

Management Methods
of BH4 Levels BH4/NOS Role Reference

Melanoma Growth/Apoptosis
in vitro eNOS, iNOS BH4/L-sep

supplementation Anti-tumor [13]

Breast Growth
in vitro/in vivo eNOS, iNOS L-sep supplementation Anti-tumor [35]

Colorectal Growth in vivo NOS L-sep supplementation Anti-tumor [52]

Melanoma Anoikis in vitro,
Growth in vivo eNOS L-sep/DAHP

supplementation Anti-tumor [53]

HCC Growth
in vitro/in vivo NOS GCH1 silencing

BH4 supplementation Anti-tumor [54]

Breast Growth/Apoptosis
in vitro - SPR silencing Pro-tumor [55]

Glioblastoma Growth
in vitro/in vivo - GCH1 overexpression

GCH1 silencing Pro-tumor [56]

ESCC Growth/Apoptosis
in vitro - GCH1 silencing

GCH1 regulation Pro-tumor [57]

Leukemia,
lymphoma Growth in vitro eNOS GCH1/SPR/PTS knockout

BH2 supplementation Pro-tumor [58]

Colorectal Growth
in vitro/in vivo iNOS BH4 supplementation

PTPS silencing Pro-tumor [59]

HCC Angiogenesis/Growth
in vivo eNOS DAHP supplementation Pro-tumor [60]

CAFs Growth/Angiogenesis
in vivo eNOS DAHP supplementation

GCH1 silencing Pro-tumor [61]

Colon, Breast,
melanoma, TAMs

Angiogenesis/Growth
in vivo/in vivo eNOS DAHP supplementation,

GCH1 silencing Pro-tumor [62]

Breast, CAFs

Growth
in vitro/in vivo
Angiogenesis

in vivo

- DAHP supplementation
GCH1 silencing Pro-tumor [63]

Breast, TAMs Growth ex vivo eNOS, iNOS L-sep supplementation Anti-tumor [64]

Breast, T cells Growth in vivo iNOS

BH4/L-sep
supplementation

GCH1
overexpression/silencing

Anti-tumor [65]

Breast Angiogenesis/Apoptosis
in vivo NOS L-sep supplementation Anti-tumor [66]

Breast Invasion/Apoptosis
in vitro iNOS L-sep supplementation Anti-tumor [67]

Ovarian Growth/migration
in vitro NOS L-sep supplementation Anti/pro-

tumor [68]

BH4: Tetrahydrobiopterin; NOS: nitric oxide synthase; iNOS: inducible nitric oxide synthase protein; eNOS: endothelial nitric ox-
ide synthase protein; DAHP: 2,4-diamino-6-hydroxypyrimidine; L-sep: L-sepiapterin; BH2: dihydrobiopterin; GCH1: cyclohydrolase
gene; PTPS: 6-pyruvoyltetrahydrobiopterin synthase protein; SPR: sepiapterin reductase gene; TAMs: tumor-associated macrophages;
CAFs: cancer-associated fibroblast; ESCC: esophageal squamous cell carcinoma; HCC: hepatocellular carcinoma.
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4.1. Cell Growth

Proliferation is a biological process controlled by innumerous signaling pathways
triggered by ligand-receptor interaction, which in turn, among other processes, regulates
cell cycle progression, nutrition status, and genome integrity. In cancer, uncontrolled cell
growth is associated with genetic and epigenetic alterations of key genes that maintain cell
homeostasis and also by cell metabolism dysregulation [1,69].

As discussed, NOS coupling does not only depend on the total amount of BH4. The
BH4/BH2 ratio and the stoichiometric balance between BH4 and NOS have been shown
to determine the functional state of the enzyme [47,70]. In this context, some studies
have shown that the increase in BH4/BH2 ratio, due to BH4 or precursor sepiapterin
supplementation, impaired or improved cancer development, by regulating tumor growth
by different mechanisms.

Rabender et al. observed decreased BH4/BH2 ratio in human breast cancer cells grown
in culture, as xenografts, or in a spontaneous mouse breast cancer model (MMTVneu).
Besides that, a low BH4/BH2 ratio was found in human colorectal carcinoma biopsies
compared with the adjacent normal colon tissue. Treatment with L-sepiapterin partially re-
duced O2

•− and increased cGMP levels in MCF-7 and MDA-231 cancer breast cells, which
suggested NOS recoupling. Moreover, L-sepiapterin supplementation of MCF-7 cells in-
duced cGMP-dependent protein kinase (PKG) activation, which in turn promoted β-catenin
expression and decreased TCF4 promoter activity [35]. The pro-inflammatory transcription
factor NF-κB is associated with carcinogenesis since it induces the expression of different
oncogenes [71]. The activity of NF-κB is both positively and negatively modulated by
ROS/RNS since Tyr181 nitration of IκBa, an NF-κB inhibitor, triggers NF-κB activation.
On the other hand, CYs38 S-nitrosylation of the NF-κB p65 subunit induces its inhibition.
Treatment of MCF-7 breast cancer cells with L-sepiapterin abrogated Tyr nitration of IκBa
and increased p65 S-nitrosylation, reducing NF-κB activity. Since L-sepiapterin decreases
O2
•− and increases NO amount, we can conclude that BH4 metabolism alteration mod-

ulates the role of NF-κB in cancer and probably the activity of other signaling pathways.
Finally, L-sepiapterin inhibited clonogenic capability of MCF-7 and MDA-231 cells in vitro
which was shown to be dependent on NO and PKG. MDA-231 xenografts tumor growth
and progression were also impaired in the presence of L-sepiapterin. Although MCF-7
and MDA-231 breast carcinoma cells express both iNOS and eNOS isoforms, these results
suggested that iNOS is uncoupled since the iNOS selective inhibitor 1400 W impaired the
L-sepiapterin-induced cGMP levels [35].

Previously, the same group described that L-sepiapterin impaired chemically induced
murine colitis and azoxymethane-induced colorectal cancer [52]. Inflammation is one of
the hallmarks of colorectal cancer contributing to malignant transformation and tumor
progression [71,72]. Activation of pro-inflammatory NF-κB signaling pathway inducing in-
creased iNOS expression is one of the mechanisms of colorectal cancer development [38,73].
Besides that, the participation of eNOS isoform in colorectal cancer carcinogenesis has
been shown by other authors [38,39,73–75]. Interestingly, Gochman et al. demonstrated
increased iNOS expression and nitrotyrosine content in colitis and colorectal carcinoma,
which is caused by peroxynitrite, an RNS and biomarker of oxidative damage, formed
by a reaction between nitric oxide and O2

•− [76]. Since peroxynitrite formation is a very
fast reaction, O2

•− and NO must be in close proximity [77], which normally occurs when
both species are produced by NOS. Moreover, Youn et al. demonstrated that resveratrol,
an antioxidant, abrogated superexpression of iNOS and DSS-induced colitis, indicating
that iNOS is uncoupled and producing O2

•− [78]. Burhanuddin et al. also found in-
creased iNOS expression in DSS/AMO-induced colorectal cancer, but not measured NOS
activity [79]. ROS is also induced by inflammation [80], implicating NOS uncoupling in
colorectal cancer development. Cardnell et al. showed that sepiapterin decreases inflamma-
tion through reduction of infiltrating neutrophils and macrophages and proinflammatory
cytokine expression, which in turn impaired tumor growth. Reduction in BH4/BH2 ratio
was inconclusive since there was a trend for lower BH4/BH2 after DSS treatment that was
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rescued by sepiapterin. On the other hand, sepiapterin reversed the increase in cGMC
levels and Tyr nitration, a hallmark of peroxynitrite formation, after DSS treatment. In
conclusion, these results suggested for the first time the involvement of NOS uncoupling
in colitis-induced colorectal carcinoma [52].

Campos et al. demonstrated for the first time evidence of the association between NOS
uncoupling and murine melanocyte malignant transformation. Melanocytes submitted
to a chronic stress condition showed increased Nos3 expression. Moreover, O2

•− was
suppressed by L-NAME (N-Nitro-L-arginine methyl ester), a NOS inhibitor [81]. The same
group proposed that NOS uncoupling in murine melanoma cells was a result of decreased
BH4 bioavailability since L-sepiapterin treatment restored NO amount and reduced O2

•−

concentration [53]. Recently, our group showed that although there is no difference between
the absolute concentration of BH4 in human melanoma cells when compared to normal
melanocytes, BH4/BH2 ratio was lower in tumor cells. In addition, these melanoma cells
showed an increase in iNOS and eNOS protein expression. In endothelial cells, NOS
uncoupling can be a result of altered NOS and BH4 stoichiometry which means that there
is not enough BH4 to catalyze NO formation. Supporting this finding, melanoma cells
produced higher levels of O2

•− and lower levels of NO. Treatment with BH4 increased the
BH4/BH2 ratio, NO concentration, and decreased O2

•−. More importantly, BH4 attenuated
cell proliferation and induced apoptosis of metastatic melanoma cells, but not melanocytes,
pointing to its use as a promising therapy [13]. The hypothesis of NOS/BH4 stoichiometry
loss was demonstrated by eNOS suppression in metastatic melanoma cells. Decreased
Nos3 expression abrogated the increase in O2

•− and the reduction of NO. Moreover,
cell growth in vitro and in vivo was attenuated (Melo et al., unpublished). Increased
expression of all three isoforms has been shown in melanoma cells and tissues [13,40,41].
However, as mentioned, not all studies investigated NOS activity. This information is
fundamental since NO and O2

•− modulate different signaling pathways in melanoma,
provoking different tumor phenotypes. Furthermore, innumerous authors suggested that
the imbalance between NO and O2

•− results in cancer growth and progression or tumor
development impairment.

Recent data showed that GTPCH1/BH4/NO axis impaired hepatocellular carcinoma
(HCC) development. GCH1 is downregulated in HCC tissues and different cell lines by
promoter methylation. Decreased GCH1 expression is significantly associated with a higher
Barcelona Clinic Liver Cancer stage and larger tumor size. Moreover, GCH1 is correlated
with poor clinical outcomes in HCC patients. GCH1 silencing promotes proliferation
in vitro and in vivo through inhibition of oxidative stress-induced AKT/p38 activation,
indicating the involvement of uncoupled NOS in HCC carcinogenesis [54]. Although the
status of NOS expression was not showed, the results implicate altered NOS activity. On the
other hand, different studies showed the pro-tumoral activity of NO-derived eNOS/iNOS
in HCC growth [82,83]. González et al. reported that sorafenib, a receptor tyrosine kinase,
and MAPK pathway inhibitor, decreased eNOS activity and NO synthesis, attenuating
proliferation and inducing apoptosis in HCC cell lines [83]. Moreover, the NOS3 T-786C
polymorphism (rs2070744) genotype, resulting in reduced activity of NOS3 gene promoter
and NO production, is associated with better clinical outcomes in patients treated with
sorafenib [84,85]. Rahman et al. showed that higher NOS2 and PTGS-2 expression was
correlated with poor prognosis in hepatitis C virus–positive HCC patients. However, NOS
activity was not analyzed [86]. Sorafenib has been eligible for the standard treatment
for patients with advanced unresectable HCC and the participation of uncoupled NOS
was evaluated in primary operable HCC. Accordingly, NOS can have a dual role in HCC
progression as was shown in other cancers [87].

On the other hand, Zhang et al. reported an oncogenic role of BH4 in breast cancer
development. Increased sepiapterin reductase protein (SR) was found in breast cancer
tissues when compared to the adjacent non-tumorigenic tissue and correlated with tumor
aggressiveness. SR downregulation inhibited metastatic breast cancer cell proliferation and
induced ROS-mediated apoptosis. Although NO amount was not evaluated, decreased
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BH4 concentration was reported in MDA-MB-231 and MDA-MB-468 breast cancer cells,
suggesting the involvement of uncoupled NOS in metastatic breast cancer survival im-
pairment [55]. The reduction of sepiapterin reductase can affect another pathway, since its
inhibition impairs ornithine decarboxylase activity and decrease polyamines concentration
in neuroblastomas, attenuating tumor growth [88,89]. The shift in arginine metabolism
leading to high levels of polyamines will reduce NO synthesis affecting NOS function [90].
Therefore, although SR and GTPCH1 are on the same metabolic pathway, their contribu-
tions to breast cancer progression may not be the same.

In glioblastoma (GBM), in silico analyses showed that increased GCH1 expression
was correlated with higher glioma grade, recurrence, and worse survival. Furthermore,
GCH1 overexpression and BH4 levels elevation in GBM cells increase proliferation and
decrease survival in an intracranial GBM-mouse model, which is correlated with brain
tumor-initiating cells maintenance and ROS suppression [56]. GBM development is asso-
ciated with high ROS levels; however, exceeded production can induce cell death [91,92].
On the other hand, increased NOS expression and NO is correlated with glioma cell
proliferation [41,56,93]. Therefore, GTPCH1/BH4/NO signaling activation in GBM cells
may represent a chemoresistance mechanism, preventing cell death as in melanocyte and
keratinocyte cells submitted to radiation-induced ROS [51].

Increased expression of iNOS and eNOS have been related to esophageal squamous
cell carcinoma (ESCC). However, neither the regulation of NOS by BH4 nor the mechanism
of contribution to the pathogenesis of ESCC have not been investigated. AU-rich element
RNA-binding factor 1 (AUF1) is a family of proteins involved in the post-transcriptional
regulation process of mRNA and has been related as a promoter or inhibitor of cancer
progression [57,94–96]. Gao and colleagues found that AUF1 expression is higher in ESCC
when compared to normal or tumor-adjacent tissues. Interestingly, the AUF1 silencing
reduced GCH1 expression and NO amount, which in turn decreased cell growth and
increased apoptosis in squamous carcinoma Eca-109 cells [57]. Although not explored
by the authors, the data indicate that AUF1 downregulation causes NOS uncoupling via
GTPCH1 regulation in ESCC cells. Since ESCC growth suppression was triggered by
endoplasmic reticulum stress activation and increased ROS levels [97,98], NOS uncoupling
can be associated with oxidative stress-induced cell death. However, to confirm this
hypothesis BH4, BH4/BH2, and O2

•− analyses are required.
In a very elegant approach, Soula et al. showed that BH4 abrogates lipid peroxidation–

induced ferroptosis caused by glutathione peroxidase 4 (GPX4) inhibition [58]. Using
metabolism-focused CRISPR-Cas9 genetic screens it was shown that decreased expression
of enzymes from the de novo BH4 synthesis pathway is associated with cell death triggered
by RSL3, a GPX4 inhibitor, in different cancer cell lines. Exogenous BH4 supplementation
increased proliferation and restored the resistance of T- and B-cell acute lymphoblastic
leukemia and lymphomas to GPX4 inhibitors, indicating BH4 synthesis as a new target
therapy in those tumors. The authors showed that ferroptosis impairment was caused by
the ability of BH4 to act as a radical-trapping antioxidant in lipid membranes, avoiding lipid
peroxidation in accordance with another study using fibroblasts [43]. It was also suggested
that the protective role of BH4 was by an eNOS-independent mechanism. However, it
was assumed that NO formation by NOS promotes the oxidation of BH4 to BH2, reducing
BH4 bioavailability, which in turn triggers NOS uncoupling and O2

•− generation. BH4 is
not consumed in the reaction catalyzed by NOS, instead, it is regenerated by the enzyme
itself, not resulting in a BH4 decrease [99]. Moreover, BH4, NO, and O2

•− levels were not
evaluated to be able to infer about NOS activity. NOS inhibition or eNOS silencing renders
leukemic cells more sensitive to RSL3, suggesting the protective function of NO. This data
is in agreement with other studies showing that NOS activity is important in leukemia cell
survival [41,55].

In the early stages of colorectal cancers, PTPS was found to be elevated. Under hypoxia,
a common characteristic of aggressive cancers, AMPK-induced PTPS phosphorylation,
which in turn promotes LTBP (Latent TGF-β binding protein)-PTPS-iNOS interaction
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leading to LTBP nitrosylation and ubiquitin-dependent degradation. In this condition,
TGF-β secretion is increased contributing to colorectal tumor growth. PTS silencing im-
paired LTBP nitrosylation and cell proliferation, showing the involvement of the BH4/NO
pathway in colorectal cancer progression [59]. The apparent conflict with the study from
Cardnell et al. can be explained by the fact that the authors used an AMS/DSS-induced
murine colorectal cancer model. The treatment with AMS/DSS induces oxidative stress,
causing BH4 decrease and consequently, NOS uncoupling [52], contributing to malignant
transformation. In this case, L-sepiapterin supplementation decreased tumor incidence,
but not tumor growth, suggesting the role of uncoupled NOS in colorectal malignant
transformation instead of cancer progression.

4.2. Tumor Microenvironment and Angiogenesis

Heterogeneous cell types, including fibroblasts, endothelial, and immune cells, along
with extracellular matrix components comprise the tumor microenvironment (TME).
Through the secretion of various factors, cancer cells can reprogram and control the
function of the surrounding environment, contributing to biological processes, such as
angiogenesis [100]. Angiogenesis is a physiological process consisting of the growth of
new blood vessels from pre-existing ones, providing oxygen and nutrient supplies. In
cancer, pathological angiogenesis contributes to tumor development, increasing prolifera-
tion, growth, and metastasis [1,101]. Angiogenesis is maintained by the overproduction
of proangiogenic factors, including growth factors, matrix proteinases, and extracellular
matrix molecules [100,102]. Different approaches have already shown that eNOS-derived
NO signaling in endothelial cells is a critical mechanism of vascular homeostasis, me-
diating angiogenesis and contributing to increased cell proliferation and migration of
endothelial cells and consequently to tumor progression [103–105]. Since eNOS activity
requires BH4 as a cofactor for NO production, it was shown that the maintenance of
its bioavailability is essential for angiogenesis by many groups using different technical
procedures [60,61,106,107].

Experiments in vitro demonstrated that increased GCHI expression and L-sepiapterin
or BH4 supplementation augmented NO production, cell proliferation, migration, and
the capacity of endothelial cells of different species to form capillary-like structures
through PI3K/AKT signaling pathway activation [61,106,108]. Chen et al. showed that
L-sepiapterin triggers GTP-bound wild-type Ras, increasing AKTSer473 and eNOSSei1177

phosphorylation and NO production. Increased cell proliferation, migration, and tube
formation required PI3K signaling since LY treatment, a PI3K signaling inhibitor, abro-
gated it. Furthermore, Ras activation and PI3K/Akt/eNOS up-regulation were impaired
by L-NAME, suggesting a positive feedback mechanism. It was shown that NO caused
S-nitrosylation (SNO) of p21Ras in Cys118, triggering the activation of ERK/MAPK signal-
ing pathway and the proliferation of innumerous cells as neural stem cells, breast cancer,
and endothelial cells [109–111]. Accordingly, AKT activates eNOS, increasing NO synthesis
that promotes S-nitrosylation of Ras in Cys118, which drives the PI3K/Akt pathway to
maintain angiogenesis and consequently growth of tumors.

On the other hand, the treatment with 2,4-diamino-6-hydroxypyrimidine (DAHP), a
GTPCHI inhibitor, and decreased GCHI expression in vitro impaired angiogenesis through
abrogation of AKT activation, eNOS phosphorylation, NO production, and consequently
reduction of endothelial cell proliferation, migration, and tubulogenesis [60,62,112]. The
treatment of endothelial cells with ribavirin, an IMP dehydrogenase inhibitor, decreased
GMP synthesis, the GTP cyclohydrolase substrate, causing BH4 and consequently NO
reduction, which in turn impaired cell proliferation and tube formation [106].

Many authors evaluate the participation of BH4 in angiogenesis in vivo. To analyze
the proangiogenic potential of BH4 in tumor stromal fibroblasts, BALB/c SCID mice were
implanted with a construction where the gene GCH1 was cloned into a plasmid that
contains tetracycline responsive element under cytomegalovirus promoter control. In the
presence of doxycycline (DOX), GCH1 expression is abrogated. Mice with tumors around
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100 mm3 in size (25th day after implantation) were then fed with DOX in drinking water to
inhibit GCH1 expression or injected with DAHP (300 mg/kg/day) for 7 days. Although
angiogenesis was reduced, as showed by decreased CD34-positive microvessels, tumor
growth was not inhibited [61]. Interestingly, eNOS expression was also reduced in DOX- or
DAHP-treated mice. However, the BH4 concentration was not reduced in DAHP-treated
animals, only after the treatment with DOX, suggesting that angiogenesis reduction was
BH4-independent. DAHP may have additional inhibitory effects on tumor angiogenesis
through downregulating of eNOS expression. Furthermore, it was shown that DAHP
reduced the expression of cytokine-induced expression of vascular cell adhesion molecule
1 (VCAM-1) and the transcription factor NF-κB in endothelial cells, both proteins involved
in the angiogenic process [113–117]. Therefore, the decreased neovascularization observed
after DAHP treatment can be associated with the inhibition of other angiogenic factors.

On the other hand, Dai et al. observed that DAHP treatment (80 mg/kg/day) for two
weeks once tumors reached 100 mm3 in size inhibited AKT/eNOS pathway activation
and decreased BH4 and NO concentration in hepatocellular carcinoma tissue. Hence,
CD31 staining was significantly lower in DAHP-treated mice showing impairment of
angiogenesis and tumor growth [60]. Some factors can be associated with these different
results between the two studies. Although they observed reduced angiogenesis in DAHP-
treated animals, only the treatment with 80 mg/kg/day for two weeks abrogated tumor
growth, suggesting that this phenomenon is dose and time-dependent. Moreover, the
animals used by Dai et al. were male mice aged 4–6 weeks, while Chen et al. worked with
6- to 8-week-old females [61]. Finally, and more importantly, Chen et al. did not observe a
decrease in BH4 content in tumor stromal fibroblasts after DAHP treatment. However, it
was reported that the growth of cancer-associated fibroblast (CAFs) is BH4-dependent [63].

CAFs are found in the tumor microenvironmental surrounding the malignant lesion
and, through dysregulated cell signaling and communication with tumor cells, contribute
to malignant transformation, proliferation, metabolic program, and metastasis [118]. Fur-
thermore, the presence of CAFs has been correlated with poor outcomes in different cancers,
including breast cancer [119–121]. GTPCH1 was overexpressed in stromal fibroblasts of
breast cancer when compared with normal tissue. Moreover, high GTPCH1 was signifi-
cantly associated with aggressiveness and low recurrence-free survival [63]. Interestingly,
GTPCH1-expressing fibroblasts induced BH4-dependent breast cancer proliferation and
migration by secreting angiopoietin-1 (Ang-1), which in turn triggers Tie2 phosphory-
lation and the activation of Ras/PI3K/AKT and ERK pathways. Furthermore, breast
tumor growth in vivo and angiogenesis was also enhanced by GTPCH-expressing fibrob-
last complaints [63]. The authors suggested that Ang1/Tie2 interaction increases breast
cancer growth through activation of Ras/PI3K/Akt signaling pathway as was shown in
endothelial cells [61]. This study did not investigate NO/O2

•− amount or NOS expression;
therefore, the relationship between BH4 and enzyme activity was not discussed. However,
studies have indicated that NO can induce Ang1/Tie2 interaction [122,123]. Zacharek et al.
showed that treatment with a NO donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)
aminio] diazen-1-ium-1,2-diolate (DETA-NONOate), increased Ang1 and Tie2 expression
in stroke rats. Furthermore, DETA-NONOate induced capillary tube formation in mouse
brain endothelial cells, attenuated by Ang1 blockage [123]. Since NO-derived NOS also
stimulates endothelial cell proliferation by Ras/PI3K/AKT activation and NO is associated
with breast cancer growth [124,125], BH4-induced NO can contribute to breast cancer pro-
gression. Moreover, eNOS activity is also increased by Ang1/Tie2-induced Ras/PI3K/AKT
activation, suggesting a feedback mechanism [126]. Therefore, further studies are needed
to investigate whether Ang1 induction is related to NO production by NOS coupling or
directly by increased BH4 in CAFs.

Showing that the anti-angiogenic and consequently anti-tumor role of DAHP is time-
dependent, Pickert et al. showed that the administration of DAHP (100 mg/kg) twice
daily orally immediately after tumor cells inoculation reduced the formation of blood
vessels as indicated by decreased CD31 and αvβ3 integrin staining [62]. Importantly,
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DAHP treatment diminished BH4 plasma concentration. Reduction of angiogenesis at-
tenuated tumor growth of B16F10 murine melanoma cells and HT29 human colon can-
cer cells in vivo. Blood vessels formation in shGCH1-transduced HT29 xenotransplants
was analyzed to investigate if the production and release of BH4 from cancer cells also
contribute to angiogenesis. In addition to decreasing CD31 and αvβ3 integrin amount,
the development of shGCH1-transduced HT29 xenotransplants was reduced when com-
pared with control cells. Moreover, DAHP treatment has been associated with impaired
immune-induced tumorigenesis, since tumor-associated macrophages (TAMs) with an
antitumoral M1-like phenotype were infiltrating tumor microenvironmental. These data
are in accordance with the studies showing that macrophages polarized towards an anti-
inflammatory M2 phenotype instead of M1-like phenotype are involved in high angiogenic
activity [127,128]. However, the mechanism underlying increased angiogenesis by pro-
tumoral M2 polarized macrophages is not associated with increased NOS expression but
instead with elevated arginase activity and consequently with reduced NO concentra-
tion [129]. Therefore, the axis GTPCH1/BH4/NOS/NO could be a compensatory pathway
to maintain NO-induced angiogenesis.

Important components of the TME in various types of cancer, TAMs exhibit a wide
spectrum of phenotypic and functional profiles regulated by different signals of the sur-
rounding environment [130,131]. Therefore, functional reprogramming of TAMs to a more
anti-tumorigenic profile has been explored as presenting a therapeutic potential [132,133].
CA1d human breast cancer cells and M2 macrophages treated with sepiapterin produced
higher levels of NO than polyamines. This rise in NO/polyamine ratio was accompanied
by p-STAT3 inhibition and programmed death-ligand 1 (PD-L1) downregulation in mam-
mary tumor cells. Furthermore, sepiapterin treatment of M2-macrophages increased iNOS,
STAT1, and IL-12 (M1 macrophage markers) expression, while decreasing M2 markers
(CD163, IL-10, and STAT3) [64]. NO and polyamines are products of arginine metabolism
by NOS and arginase, respectively. Studies have reported that beyond substrate com-
petition, these two pathways can inhibit each other [134,135]. Furthermore, both have
an important role in macrophage polarization, so that NOS/NO is related to M1; on the
other hand, arginase/polyamine to the M2 pro-tumor phenotype [129]. In fact, elevated
levels of polyamines have been related to different types of cancer and associated with
a poor prognosis of breast cancers [136,137]. Interestingly, ex vivo analysis showed that
100 µM sepiapterin reduced PD-L1 expression and tumor epithelial density (cytokeratin
14 staining), while reprogramming TAMs from M2 to M1 phenotype in culture tumors
derived from MMTV-PyMT mice [64]. PD-L1 expression has not only been associated
with poor prognosis in breast cancer patients but was also considered a target for im-
munotherapy [138–140], with an important role of TAMs in this scenario [141]. Therefore,
redirecting arginine metabolism by BH4 synthesis in cancer cells and TAMs can improve
breast cancer immunogenicity.

Recently, the effects of BH4 on T cells and its role in breast cancer were also investi-
gated. Although the normal development of T cells in mice knocked to Gch1 specifically
for these cells, there was a reduction in BH4 levels accompanied by a decrease in the
proliferation of mature T cells induced via TCR (T cell receptors). A similar result was
shown by inhibiting sepiapterin reductase through the SPRi3 inhibitor. On the other hand,
the increased BH4 levels by GCH1 overexpression or L-sep/BH4 treatment enhanced the
proliferation of stimulated CD4+ and CD8+ T cells. Interestingly, on the orthotopic breast
cancer model (E0771 cells), the tumor growth was rejected in GCH1-overexpressing mice.
Consistently, BH4 supplementation (100 mg/kg−1/day, intraperitoneally) decreased tumor
growth and increased tumor-infiltrating CD4+ and CD8+ T cells. Furthermore, stimulated
BH4-deficient T cells showed decreased iron levels and reduced mitochondrial respiration
and oxygen consumption [65]. Thus, the authors indicate mitochondrial dysfunction via de-
fective iron-redox cycling of cytochrome c as a mechanism for the effects of BH4 deficiency
in TCR-activated T cells. However, the antioxidant activity of BH4 is controversial [19] and
its role as a cofactor of NOS cannot be discarded. Although there is no difference in iNOS
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expression in stimulated T cells, other NOS isoforms could be involved, since its activity
has been described in these cells [142,143]. In addition, the fact that Gch1-ablated T cells do
not show a difference in nitrite levels compared to control cells does not completely exclude
the participation of NOS, since the enzyme in stimulated T cells may be in a state of partial
uncoupling, that is, producing NO and O2

•− [144]. Consistently, increased O2
•− levels

were found in stimulated T cells, which were potentiated in BH4-deficient cells [65].
The fact that hypoxia induces GTPCH1 expression and BH4 synthesis corroborate

their critical role in angiogenesis [62]. Reduced oxygen apport triggers the expression of the
transcription factor hypoxia-inducible transcription factor (HIF-α), which in turn induces
the expression of more than 60 genes, including VEGF that induces NO signaling-mediated
angiogenesis [145].

Angiogenic vasculature structure found in solid tumors is poorly organized, lead-
ing to heterogeneous blood flow, increased interstitial pressure, and intermittent hypoxia
contributing to radioresistance and the low ratio of drug delivery [146]. One of the mecha-
nisms associated with dysfunctional tumor vasculature is NOS uncoupling caused by the
decreased bioavailability of BH4 [147]. Normalization of abnormal cancer vasculature can
result in a transient period to ameliorate drug delivery [125,148]. In a spontaneous breast
tumor mice model, L-sepiapterin induced NOS recoupling, which in turn reduced hypoxia,
restored perfusion leading to increased doxycycline uptake and cell death. Moreover,
sepiapterin also increased radiation-induced apoptosis [66]. Although NO-derived NOS
improves tubulogenesis through stimulation of endothelial cell proliferation and migra-
tion, uncoupling NOS also contributes to disruption of angiogenic vasculature impairing
treatment. It is important to note that there is a therapeutic window where sepiapterin
supplementation can be used to abrogate cancer cell resistance to radio- and chemotherapy.

4.3. Migration and Invasion

Metastasis is a complex process comprising a sequence of steps that begins with local
invasion (migration and extracellular matrix degradation), then intravasation into lym-
phatic and blood vessels, survival in hematogenous and lymphatic systems, extravasation
into the parenchyma of distant tissues, and finally the formation and growth of small
niches of cells, the metastatic lesions [149,150].

Kanugula et al. showed that statin treatment reduced invasion and induced apoptosis
of triple-negative breast cancer cells, by iNOS-mediated NO production [67]. Statins
are inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (a rate-
limiting enzyme of the mevalonate pathway) and have been used in the treatment of
patients with cardiovascular diseases [151,152]. Fluvastatin enhanced iNOS expression,
NO production, and nitrite levels in breast cancer cells, while reduced transferrin receptor
(Tfr1) expression and iron uptake leading to cell death. These effects were abrogated in the
presence of mevalonate, ADMA, or 1400 W. In addition, this statin decreased H2O2 levels
and downregulated MMP-2 and MMP-9 transcripts, inhibiting the invasive potential of
the cells, which was reversed in the presence of a catalase inhibitor [67]. Since studies
reported that fluvastatin and others statins increased eNOS-mediated NO production via
upregulation of GTPCH and consequent increase BH4 levels [153–155], the antitumor
effects of fluvastatin found by Kanagula and colleagues can be associated with iNOS
coupling. Consistently, the authors showed that sepiapterin treatment (50 µM for 24 h)
was able to reduce Tfr1 expression and iron uptake in MDA-MB-231 cells. Furthermore,
inhibition of iNOS by 1400 W reversed H2O2 levels reduction and the anti-invasive effect of
fluvastatin in these cells [67]. Although not exploring the role of BH4/NOS, other studies
have also demonstrated the anti-tumor propriety of fluvastatin on breast, hepatocellular,
ovarian, and prostate cancer cells [156–158].

In ovarian cancer cells, sepiapterin abrogated the increase in migration and prolifera-
tion triggered by vascular endothelial growth factor-A (VEGF-A) and p70S6K-dependent
VEGRF2 expression in a NO-independent mechanism. Surprisingly, sepiapterin increased
migration and proliferation of ovarian cancer cells in the absence of growth factors, which
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is mediated by a NO-dependent activation of ERK, AKT, and p70S6K signaling [68]. Since
VGFR2 activation promotes ROS increase which is associated with ovarian cancer develop-
ment [159–161], impairment of cell growth in the presence of sepiapterin can be attributed
to NOS recoupling. These results suggest that the role of sepiapterin in cancer is related
to the modulation of signaling pathways by NO or ROS. Elevated expression of the three
NOS isoforms has been associated with ovarian cancer carcinogenesis [40,162]. Some
authors documented that increased iNOS expression is correlated with poor prognosis.
In iNOS-positive patients, the authors observed an increase in the risk of disease relapse,
lower disease-free survival period, and high death incidence [40,163,164]. However, NOS
activity was not evaluated. So, expression of the NOS isoforms can be useful as a prognostic
factor in ovarian cancer; however, as a therapeutic target, its real activity must be taken
into account. It is also important to note, that NOS uncoupling can be partial, implicating
the NO and O2

•− synthesis at the same time.
Some important acquisitions of cancer cells during tumor progression and metastatic

colonization are the ability of anchorage-independent growth and resistance to a pro-
grammed cell death known as anoikis. This type of apoptosis is induced by loss of at-
tachment to extracellular matrix or inappropriate cell-matrix interactions, preventing cell
adhesion to inadequate locations [165,166]. Campos et al. also showed that uncoupled
eNOS contributes to anoikis-resistance of melanocytes submitted to anchorage impedi-
ment [81]. Superoxide production was higher in melanocytes maintained in suspension,
which was reversed in the presence of L-sep or inhibiting NOS by L-NAME. Curiously,
DAHP treatment enhanced O2

•− and reduced NO levels in these cells. Furthermore,
sepiapterin and Mn(III)TBAP (a superoxide scavenger) were able to decrease melanocyte
and metastatic melanoma cell survival in suspension, but not in adhesion [53]. In fact,
malignant melanocyte transformation has been associated with higher production of ROS,
characterizing disrupted redox homeostasis [167]. The control in ROS and NO concen-
trations can mediate the acquisition of the appropriate phenotype in different steps of
tumor progression and prevents cancer cell death under adverse conditions [168]. Cell
lines corresponding to distinct stages of melanoma progression increased O2

•− produc-
tion and decreased NO levels compared to parental melanocytes. In addition, in vivo
analysis showed that the treatment with L-NAME before and during sequential cycles of
anchorage blockade impairs melanocyte malignant transformation [53]. Taken together,
these results indicate that BH4 synthesis and eNOS coupling has anti-tumor effects on
melanoma development.

5. Conclusions

Altered signaling pathways are associated with malignant transformation and the
acquisition of an aggressiveness phenotype. The expression, activity, and cell localization
of these transduction signals are regulated by innumerous factors, including ROS and
NO-induced post-translational modifications. Different studies have shown that ROS and
NO amount and the balance between these reactive species contribute to tumor growth,
chemoresistance, and metastasis. Moreover, the contribution of ROS and RNS from tumor
microenvironmental in cancer development has to be considered. Since NOS can be a
source of both ROS and NO, understanding its activity is essential to improve cancer
management. Therefore, the dual role of the BH4/NOS pathway in carcinogenesis can be
explained by the status of transduction pathways found in distinct cancers (Figure 3).
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