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Due to the progressive aging of the society, the prevalence and socioeconomic burden of neurodegenerative diseases are predicted to
rise. The most common neurodegenerative disorders nowadays, such as Parkinson’s disease, Alzheimer’s disease, and amyotrophic
lateral sclerosis, can be classified as proteinopathies. They can be either synucleinopathies, amyloidopathies, tauopathies, or TDP-
43-related proteinopathies; thus, nanoparticles with a potential ability to inhibit pathological protein aggregation and/or degrade
already existing aggregates can be a promising approach in the treatment of neurodegenerative diseases. As it turns out,
nanoparticles can be a double-edged sword; they can either promote or inhibit protein aggregation, depending on coating, shape,
size, surface charge, and concentration. In this review, we aim to emphasize the need of a breakthrough in the treatment of
neurodegenerative disorders and draw attention to nanomaterials, as they can also serve as a diagnostic tool for protein aggregates
or can be used in a high-throughput screening for novel antiaggregative compounds.

1. Introduction

Undoubtedly, the progress in medical and biological studies
has led to increased quality of life and extension of life span.
Furthermore, the overall fertility has dropped and these two
factors contribute to the aging of the society. Due to this phe-
nomenon, the increase in prevalence of neurodegenerative
diseases is predicted to be more visible in the future than it
currently is. According to the World Health Organization,
it is projected that the number of people aged ≥ 65 will grow
from about 524 million in 2010 to around 1.5 billion in 2050
[1]. Neurodegenerative diseases impose burden not only on
people affected by this disorder but also on their caregivers.
There are three major neurodegenerative diseases whose per-
vasiveness and incidence significantly rise with age.

First of them and the most common one is Alzheimer’s
disease (AD), which affects approximately 30% of people
aged 85 or older. After the age of 85, the incidence of AD rises

gradually from 6 to 8% per year, in contrast to the 0.5% rise
per year when peoples’ age ranges between 65 and 75 [2].
The secondmost common is Parkinson’s disease (PD), which
affects 10-15 per 100 000 people annually [3]. Its prevalence
has been more than two times higher in 2016 (6.1 million
cases) comparing to 2010 (2.5 million cases) and may reach
2% among people aged ≥ 65. Consequently, it is estimated
that in 2050, there will be more than 12 million cases of PD
worldwide [4]. Subsequently, amyotrophic lateral sclerosis’s
(ALS) annual incidence is approximately 1-2.6 new cases
per 100 000 persons. This disease is characterized by rapid
progression with average survival 3-4 years from onset,
whereas the average age of onset nowadays is 59-60 years [5].

Indeed, there is a variety of symptoms of the aforemen-
tioned neurodegenerative diseases, but the exact pathophysi-
ology of these conditions is still elusive. Nevertheless, it
should be emphasized that they have some common patho-
genic features. Among them, genetic [6] and environmental
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[7] factors can be listed. Yet, the most classical feature of all
these diseases is protein misfolding in specific brain regions;
thus, these disorders can be classified as proteinopathies
(Table 1). The hallmark of proteinopathies is either intra-
or extracellular accumulation of aggregates in the central ner-
vous system that are abundant in β-sheets. In these diseases,
altered forms of proteins, which play a physiological role,
accumulate in the brain. They turn out to have pathological
functions after modifications of their 3D structure, which in
consequence leads to self-aggregation, aggregate growth,
and eventually precipitation [8].

Unfortunately, the current and only available treatment
of neurodegenerative diseases is strictly symptomatic. Treat-
ment of PD has not significantly changed over decades: L-
DOPA treatment is a gold standard for 60 years so far. Apart
from levodopa-carbidopa preparations, other dopamine ago-
nists, monoamine oxidase-B inhibitors, cholinesterase inhib-
itors, and selective serotonin and norepinephrine reuptake
inhibitors are also used as a drug regimen [13, 14]. The treat-
ment of AD is not much more sophisticated and is based on
cholinesterase inhibitors and NDMA receptor agonist,
namely, memantine. It addresses not only the behavioural
and cognitive symptoms but also covers for functional ones
[15]. A review of treatments for AD in clinical trials can be
found in a recent article [16], demonstrating that there is
no effective antiaggregative treatment so far. Similarly, the
information about PD drugs in clinical trials can be found
in another review [17]. When it comes to ALS, there is only
one FDA approved drug—riluzole, which has a glutamine
agonist activity and extends the survival of patients by only
2-3 months [18, 19].

Due to the abovementioned facts, in this review, we
aim to highlight the burden of neurodegenerative diseases
and discuss novel approaches to their treatment using
nanomaterials (Figure 1). Furthermore, we would like to
point out the versatility and impact of the nanoparticles
used to combat proteinopathies, on pathological protein
aggregation.

2. Protein Aggregation in Neurodegeneration

A body of evidence suggests that the accumulation and trans-
mission of α-synuclein (α-syn) aggregates in the midbrain
are highly associated with the pathogenesis of PD [20]. α-
Synuclein is a presynaptic protein, which probably plays a
regulatory function in modulation of synaptic plasticity, con-
trol of presynaptic vesicle pool size, release of neurotransmit-
ters, and vesicle recycling. Its structure can be divided into
three regions: an amphiphilic N-terminus, an acidic C-termi-
nus, and a hydrophobic central domain, which is known as
the nonamyloid β component (NAC). The NAC region is
crucial for α-syn aggregation and formation of β-sheet fibrils,
which are the main elements of Lewy bodies [21]. Studies
showed that electrostatic forces play a crucial role in α-syn
fibrillation; thus, this process can be obstructed by charged
nanoparticles [22].

Yet, interestingly, the exact molecular mechanism, time
of occurrence, and influence of protein misfolding on the
onset and/or progression of these particular diseases are still
beyond reach. According to Janezic et al. who introduced a
new mouse model for PD studies, neurophysiological
changes forerun and are not driven by α-syn aggregate for-
mation [23]. Nevertheless, the search for antiaggregative
agents is still highly desirable.

Amyloid β peptide has a leading role in the onset and
progression of AD. In this disease, amyloid plaques contain-
ing aggregated amyloid-β protein (Aβ) are surrounded by
morphologically altered neurons, cause synapse and memory
loss, and induce neurotoxicity [24].

As a matter of fact, Aβ is physiologically present and
derives from the amyloid precursor protein (APP), which is
implicated in regulation of synapse formation. Unfortu-
nately, under particular circumstances, it starts to aggregate
and initiates the disease progression [25]. Amyloid-β protein
monomers tend to aggregate into several forms, namely, sol-
uble oligomers, protofibrils, and insoluble amyloid fibrils
which can further aggregate into amyloid plaques. This

Table 1: Characteristics of the most common neurodegenerative diseases.

Disease Hallmarks Genetic factors Ref.

Alzheimer’s
disease

(i) Senile plaques comprising deposits of β-amyloid
(ii) Intracellular neurofibrillary tangles
(iii) Tau protein aggregation
(iv) Neuronal loss

(i) Presence of specific allelic variants of APOE
gene (ε2, ε3, and ε4)

(ii) Apoε4 allele specifically in sporadic form of AD
(iii) Mutations of gene coding for amyloid precursor

protein (APP), presenilin 1, and presenilin 2
(n or PSEN2) in the familial form of AD

[9]

Parkinson’s
disease

(i) Presence of Lewy bodies—neuronal inclusions
of fibrillated aggregates comprising α-synuclein
and ubiquitin

(ii) Degeneration and loss of dopaminergic neurons
especially in substantia nigra pars compacta

(iii) Dopamine deficiency

(i) Gene mutations: SNCA, Parkin, PINK1,
LRRK2, DJ-1, VPS35, PLA2G6, DCTN1,
FBX07, and ATP13A2

[9]

Amyotrophic
lateral sclerosis

(i) Presence of ubiquitinated inclusions comprising
TDP-43, FUS, OPTN, ATXN2, C9ORF72,
and UBQLN2

(ii) Slow and progressive degeneration
and loss of motor neurons

(iii) Neuroinflammation

(i) Gene mutations: SOD1, C9ORF72, FUS,
and TARDBP

[9–12]
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process is accompanied by oxidative stress, leading to the for-
mation of oxidized proteins and lipid peroxidation. Products
of lipid peroxidation, especially 4-hydroxynonenal, can in
turn disrupt function of glucose and glutamate transporters
and of ion-dependent ATPases [26]. Therefore, Aβ advocates
synaptic membrane depolarization, uncontrolled Ca2+ influx,
and mitochondrial damage, which cause undesirable changes
in cellular activity [27].

Additionally, tau protein is being hyperphosphorylated
because of changes in protein kinase activity, which are a
result of Aβ aggregation. The hyperphosphorylated form of
tau protein becomes a core of neurofibrillary tangle (NFT)
formation, whereas physiologically tau protein fosters the
assemblance of tubulin into microtubules and helps to main-
tain their stability. The link between the existence of NFTs
and neuronal dysfunction is straightforward. Notwithstand-
ing, the relation of Aβ and NTFs is intertwined, because the
inhibition of tau generation can impact production of Aβ
and its derivatives [28].

3. Nanoparticles as Therapeutics of the Future

A nanoparticle (NP) is defined as a particle of matter that
is between 1 and 100 nanometres in at least one dimen-
sion. Nanoparticles arose as attractive tools for both ther-
apeutic and diagnostic applications, especially in imaging,
diagnostics, and drug delivery. They can be synthesized
from a broad range of materials, such as polymers, metals,
or carbon-based molecules. NPs are also highly functional
because of the ease with which their shape, size, and sur-

face properties can be modified. Furthermore, NP proper-
ties can be also altered by attachment of other substances
to the surface or their entrapment within the NP cavities,
if these exist (Figure 2) [29].

3.1. Graphene Quantum Dots. Graphene quantum dots
(GQDs) are less than 100nm in size and are made of single-
or few-layer graphene (Figure 3). They have been widely used
in nanobiomedicine by virtue of their low cytotoxicity and
high biocompatibility [30]. The group of Kim et al. demon-
strated that GQDs were able to pass through the BBB. In
the brain, they reduced α-syn fibrillization and triggered fibril
disaggregation in a time-dependent manner by direct inter-
action with mature fibrils. The binding between GQDs and
α-syn is driven by negatively charged carboxyl groups of
GDQs and the positively charged α-syn region. Furthermore,
these GQDs did not manifest any long-term toxicity in vivo
and in vitro and also were able to prevent neuronal death,
diminish Lewy body and Lewy neurite formation, and allevi-
ate mitochondrial damage and dysfunction, and last but not
least, they have the ability to prevent neuron to neuron trans-
mission of pathological α-syn. Moreover, experiments per-
formed on a mouse model showed that GQD protected
against α-syn preformed fibril-induced loss of dopaminergic
neurons and alleviated motor deficits [31].

With regard to AD, GQDs were also used to inhibit Aβ
aggregation. The β-amyloid peptide consists of 39-42 amino
acids, where several regions can be defined. The His13-Lys16
(HHQK) region plays a significant role in oligomerization
and fibril formation. This region is a crucial component of

Mitochondrial dysfunction
AuNPs

GQDs

Dendrimers

Gene mutations

Synaptic plasticity impairment
and neuron dysfunction

Misfolded proteins
and protein aggregates

Neurodegeneration

Figure 1: Impact of NPs on neurodegeneration hallmarks.
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glycosaminoglycan (GAG) binding site, which facilitates a
conformational change of Aβ from soluble and unordered
α-helix to stable β-sheet [32]. A construct composed of
GQDs and tramiprosate, a mimic of GAGs, which specif-
ically binds to HQQK motif and inhibits Aβ peptide
aggregation, showed an inhibition of Aβ aggregation
driven by breaking β-sheets. Furthermore, GQDs com-
bined with tramiprosate evidently protected PC12 cells
from Aβ-induced cytotoxicity, meanwhile exhibiting a syn-
ergistic effect [33].

3.2. Dendrimers. Dendrimers are highly branched, tree-like
polymers with unique properties thanks to their terminal
functional surface groups (Figure 4). The size, shape, and sur-
face charge change with an increase in generation. Dendri-
mers are highly functional because of simplicity of
modifying their biological and/or physicochemical properties
[34, 35]. There is evidence that generations 3, 4, and 5 of
PAMAM dendrimers are able to interfere with Aβ aggrega-
tion by blocking growth of new fibrils and breaking the exist-
ing ones in a concentration- and generation-dependent

Ligands
(i) Amino acids

(ii) Antibodies
(iii) Antioxidants
(iv) Peptides

(i) Negative
(ii) Positive
(iii) Zwitterionic

Charge

(i) Carbon–based
(ii) Cerium
(iii) Gold
(iv) Iron
(v) Silica–based

(vi) Selenium
(vii) Others...

Core

(i) 1 nm
(ii) 10 nm
(iii) 100 nm

Size

(i) Inhibition of protein
aggregation

(ii) Drug screening
(iii) Diagnostics
(iv) Analyzing mechanisms

of protein aggregation

Application

(vii) Others...

(i) Bare
(ii) BSA

(iii) Chitosan
(iv) Citrate
(v) PEG
(vi) PGLA

Coating

Figure 2: Possible modifications of NPs for prevention and diagnostics of neurodegeneration.

Properties of GQDS:
(i) Low toxicity

(ii) High biocompatibility
(iii) Pass through BBB
(iv) Reduce 𝛼-syn fibrillization
(v) Prevent neuronal death
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(vii) Alleviate mitochondrial damage 

and dysfunction
(viii) Prevent neuron to neuron transmisssion 

of 𝛼-syn

Figure 3: The structure and properties of GQDs.
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manner: the higher the dendrimer concentration and gen-
eration, the lower number of new fibrils [36]. A similar
impact of dendrimers on α-syn aggregates has been
observed. The dendrimers inhibit formation of β-sheet
structures and disrupt remaining β-sheets or the agglomer-
ates, in concentration and generation axis [37]. Further-
more, only full-generation PAMAM dendrimers, which
have the cationic amino groups on their surface, were able
to interact with the basic amino acid N-terminal region of
α-syn responsible for the β-sheet formation and protein
aggregation, contrary to half-generation PAMAM dendri-
mers [38]. Third and fifth generations of polylysine dendri-
mers obstructed amyloid aggregation in solution, whereas
generation 3 dendrimers also protected SH-SY5Y cells
against amyloid-induced toxicity [39].

3.3. Metal Nanoparticles. Cerium oxide nanoparticles
(CeO2 NPs) or nanoceria are multifaceted polymers. They
are characterized by good bioavailability and ability to
mimic superoxide dismutase or catalase activity. They are
quite potent ROS and nitric oxide scavengers. The antiox-
idant properties of CeO2 NPs are linked to the Ce3+/Ce4+

redox shift. Additionally, research shows that nanoceria
are able to protect neurons against Aβ-induced mitochon-
drial fragmentation and also reduce DRP-1 hyperpho-
sphorylation on Ser616, which is related with AD and
neurodegeneration. Inhibiting this posttranslational modi-
fication turns out to be a potential mechanism of mito-
chondrial preservation [40]. Beyond that, another group
of researchers studied the influence of CeO2 NPs in a
yeast model of PD. Nanoceria significantly increased the
viability of yeast cells expressing α-syn. In addition, these
NPs decreased α-syn-induced ROS production and allevi-
ated mitochondrial dysfunction and fragmentation. The
most probable mechanism of inhibiting the formation of
α-syn aggregates occurs by a direct interaction of these
nanoceria with α-syn monomers or oligomers; hence, their
miscellaneous properties are also exhibited by the ability to
adsorb α-syn on the nanoparticle surface [41].

Gold nanoparticles (AuNPs) have been extensively used
in biomedicine because of their great biocompatibility, chem-
ical inertness, and effortless size control. AuNPs are also able
to abrogate aggregation of pathological proteins. Neverthe-
less, they may be toxic; toxicity of gold NPs significantly
depends on their size, charge, and coating. Large AuNPs
(36 nm and 18nm) increase Aβ fibrillation, whereas small
ones are able to delay (6 nm) or utterly inhibit (1.9 nm) this
process [42]. Particularly, smaller, anionic NPs exhibit better
ability to halt protein aggregation. The researchers have stud-
ied four different coatings (citrate, poly(acrylic acid) (PAA),
poly(allylamine) hydrochloride (PAH), or polyelectrolyte
surfaces) and three different sizes of AuNPs (8nm, 18 nm,
and 40nm). The results altogether demonstrated that PAA-
coated, 18 nm AuNPs exhibited superiority in the inhibition
of Aβ aggregation and were the least toxic towards human
neuroblastoma SH-SY5Y cells [43]. In order to improve the
ability of AuNPs to cross the BBB, Prades et al. created an
AuNP conjugated with two peptides, where one of the pep-
tide sequences was designed to interact with the transferrin
receptor. The authors suggest that this platform can increase
the efficiency of drug delivery into the brain [44]. Notewor-
thily, natural compounds are also able to obstruct amyloid
fibrillation and break existing amyloid fibrils, one of which
is curcumin [45]. Because of its hydrophobicity and thus
insolubility in water, curcumin has to be conjugated with
other compounds [46]. Water-soluble curcumin-
functionalized gold nanoparticles turned out to efficiently
inhibit amyloid fibrillation, but also to break and dissolve
Aβ fibrils. Furthermore, these curcumin-AuNPs protect
neuro2a cells from Aβ1-40 fibril-induced cytotoxicity, giving
nearly doubled improvement in viability. It is suspected that
the great inhibitory efficiency is a result of nanoparticle
binding to the fibrils via curcumin moiety and disrupting
the elongation phase of fibrillation [47].

3.4. Antioxidant-Loaded NPs. Apart from the abovemen-
tioned example, other phytochemicals have also arisen as
useful in prohibiting pathological protein aggregation
regarding neurodegenerative diseases (Figure 5). Among
them, baicalein [48], chlorogenic acid [49], gallic acid [50],
and many other natural compounds [51] are able to
inhibit the formation of α-syn aggregates and/or even dis-
aggregate existing ones. Selenium nanoparticles (SeNPs)
turned out to be an effective carrier of antioxidants. Their
peculiar biomedical applications and wide range of thera-
peutical properties are ascribed mainly to the ability to
modulate redox state. Moreover, SeNPs show low toxicity
and great biodegradability in vivo [52]. Yang et al. inves-
tigated anti-Aβ-aggregative and antioxidative properties of
SeNPs conjugated with chlorogenic acid (CGASeNPs).
These authors hypothesized that binding CGA with nano-
particles will improve its bioavailability and stability. They
proved that antiaggregative properties of CGASeNPs are
contributed by their ability to bind Aβ40 on their surface.
Furthermore, CGASeNPs effectively scavenged ROS and
protected PC12 cells against Aβ-induced toxicity [53].
Likewise, the same group designed SeNPs modified with
resveratrol and tested their properties against ion metal-

Branches

Core

Surface layer

Generation

Cavities

Figure 4: The structure of dendrimers.
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induced Aβ42 aggregation. They obtained similar effects
as described above, i.e., that resveratrol and SeNPs exhibit
synergistic effect regarding the inhibition of pathological
protein aggregation [54]. A nanocomposite engineered
from quercetin, SeNPs, and polysorbate 80 can serve as
another example of SeNPs combined with antioxidants.
In vitro analyses showed that the nanocomposite exhibited
greater solubility in water comparing to quercetin per se,
which has poor aqueous solubility. On top of that, such
nanocomposite had an exceptional antioxidative activity,
inhibited Aβ1-42 monomer aggregation, and protected
PC12 cells from hydrogen peroxide-induced cell death
[55]. Zhang et al. studied both EGCG-SeNPs and NPs
conjugated with EGCG and Tet-1 peptide. Tet-1-EGCG-
SeNPs showed better efficacy comparing to NPs without
the peptide. Both types of NPs not only protected PC-12
cells against amyloid-induced cytotoxicity and inhibited
Aβ fibrillation but were also able to dissociate existing
fibrils into nontoxic monomeric state. Nevertheless,
peptide-containing NPs had overall better performance
due to increased neuronal targeting efficiency in vitro
[56]. NPs loaded with other antioxidants, namely, ferulic
acid (as a powerful anti-inflammatory agent) and tannic
acid (acting as an inhibitor of α-syn fibrillation), exhibited
potent inhibitory effect onα-syn aggregation, diminished pro-
inflammatory responses, and reduced oxidative stress caused
by α-syn [57]. Additionally, curcumin-loaded NPs inhibited
amyloid-like aggregation of superoxide dismutase (SOD) 1,
which occurs in about 20% of familial ALS cases [58].

Nanoparticles loaded with synthetic antioxidants can
also serve as antiaggregative agents. Nitroxides exhibited
better efficacy in prevention of nitration reactions and
were more reactive than natural antioxidant, vitamin E
[59]. It has been established that nitroxide-containing
redox NPs are able to alleviate typical aspects of neurode-
generative diseases, namely, protect cells against oxidative

stress, improve mitochondrial function, and inhibit Aβ
aggregation [60, 61].

4. Other Therapeutic Approaches

Unquestionably, transition metals are among the main
culprits of pathological protein accumulation. Moreover,
they widely contribute to an altered redox state; thus,
chelators might bring alleviation of the toxic activity of
these metals. Liu et al. created a chelating nanoparticle,
in a nutshell—a NP conjugated with 2-methyl-N-(2′
-aminoethyl)-3-hydroxyl-4-pyridinone. This construct sig-
nificantly inhibited Aβ aggregation, protected human cor-
tical neuronal cells from Aβ-induced cytotoxicity, and
had no impact on cell proliferation [62].

Given the fact that the nanoparticle efficacy in inhibit-
ing protein aggregation greatly depends on the surface
charge, the use of amino acids as coating agents is not sur-
prising; they may enhance biocompatibility of nanoparti-
cles. It is mainly due to the fact that amino acids are
zwitterionic. Antosova et al. proved that amino acid-
coated superparamagnetic nanoparticles can be quite a
powerful tool for treatment of amyloidopathies. The group
showed that tryptophan-coated NPs exhibited the best anti-
aggregative properties [63]. Furthermore, others demon-
strated that histidine-coated nanoparticles can completely
suppress amyloid fibril formation [64]. Moreover, lysine-
coated Fe3O4 NPs were less toxic than bare iron oxide
NPs, strongly bound to monomeric α-syn, and inhibited
the early phases of its aggregation [65].

NPs can be also used as safer carriers for gene therapy,
instead of viral vectors. Niu et al. created multifunctional
magnetic nanoparticles which are a complex platform that
combines elements of cell targeting, controlled drug
release, and gene therapy. The authors developed a NP
that interferes with α-syn synthesis by shRNA, hence

Others...

Nitroxides

EGCG

Quercetin Chlorogenic acid

Figure 5: Possible ligands of antioxidant-loaded nanoparticles.

6 Oxidative Medicine and Cellular Longevity



alleviating its toxic effect, so cell death is inhibited both
in vitro and in vivo [66].

5. The Dark Side of the Nanoparticles with a
Useful Outcome

Despite undoubted success of some nanoparticles as promis-
ing antineurodegenerative compounds, it is important to
mention that there is also data on their possible contribution
to the disease progression. A plethora of evidence suggests
that the nanostructures can influence protein fibrillation
depending on various conditions, including the coating, size,
surface charge, and concentration. Such discrepancy has
been seen for example in silica-based nanoparticles, where
positively charged silica nanoparticles inhibited α-syn fibril-
lation and negatively charged one had an opposite effect
[67]. Also, it was also established that SiO2NPs upregulate
α-syn expression, inhibit protein levels of the ubiquitin-
proteasome system, and induce autophagy by interference
in the PI3K-Akt-mTOR signalling pathway [68].

Contrary to that, negatively charged gold nanoparticles
act as chaperones and prevent Aβ fibrillation [69]. Yet,
regarding α-syn, the opposite effect was seen: gold nano-
particles are also a double-edged sword. Citrate-capped
(negatively charged) AuNPs speeded up the formation of
α-syn aggregates in nanomolar concentrations, and time
of the nucleation phase was dependent on the surface
availability. The smaller the NPs (10-14 nm), the more
aggregate growth acceleration, whereas particular sizes
(22 nm) were able to inhibit the fibrils’ growth; thus, in
summary, the AuNP aggregative properties hinge on their
size and concentration [70].

Nowadays, numerous NPs have been used in a variety of
fields, namely, electronics, pharmaceuticals, cosmetics, and
fabrics; hence, their toxicity has started to be more widely
observed and studies on the health risks are a bit behind
the prompt development of nanotechnology, regardless of a
body of evidence of toxic effects of NPs, both in vitro and
in vivo [71]. For example, Shah et al. prove that nanoscale-
alumina can accumulate in the brains of exposed animals
and thus induce oxidative stress and neurodegeneration. It
promoted the production of toxic Aβ through the amyloido-
genic pathway, caused overexpression of APP, and increased
the β-secretase BACE1 activity that boosted the formation of
Aβ aggregates. Their findings suggest that exposure to
nanoalumina might increase the probability of the neurode-
generative disease onset [72].

It is worth mentioning that TiO2NPs are commonly used
in numerous daily use products like cosmetics or antiseptic
agents. These NPs turned up to induce α-syn fibrillation via
shortening its nucleation process and may contribute to PD
onset [73]. Additionally, there is a positive correlation
between α-syn expression levels and TiO2NP concentration
[74]. Moreover, exposure of wild-type mice to inhalation of
nickel-containing NP air for 3 h increased both Aβ40 and
Aβ42 amyloid peptide levels in the brain by 72-129% [75].

Moreover, Yarjanli et al. gave excellent examples of the
role of iron in neurodegeneration. They speculated whether
iron ions released from the NPs are capable to activate posi-

tive feedback loop among iron accumulation. First and fore-
most, there is evidence that released iron ions can support
Fenton’s reaction and produce ROS from hydrogen peroxide
and superoxide. Further than that, iron NPs can decrease
GSH content, which may lead to increased oxidative stress
and mitochondrial degradation. Due to these factors, it is
not a surprise that these NPs can boost protein aggregation.
Nevertheless, the authors emphasize that the toxicity of iron
NPs is dependent on their size, shape, surface charge, coating,
functional groups, and concentration and their utility must
be considered in regard to these aforementioned aspects [76].

In any case, the knowledge about the diverse nature of
nanoparticles was used to look for their other applications
in the field of neurodegenerative disorders. For the case in
point, nanoparticle-induced protein fibrillation can be
employed as a fast screening method for novel potential
antiaggregative compounds [77] and also as a methodol-
ogy for rapid detection of protein aggregation that can
be used to analyze the fibrillation process as well [78].
Likewise, NPs can serve as advanced, real-time screening
platform which will help to identify various mechanisms
of Aβ aggregation [79].

Here, SOD1-functionalized AuNPs served as a colori-
metric detection platform for SOD1 aggregate evaluation.
The test is simple and sensitive comparing to other methods
as it is based on absorbance; thus, such a sensor system can
serve as a diagnostic tool of SOD1 aggregates which are a
hallmark of a fraction of familial ALS [80].

A step further, some nanoparticles might be designed not
only to inhibit aggregation of pathological proteins but also
to serve as a diagnostic tool. The results presented by Skaat
et al. indicate that the conjugation of a BAM10 antibody to
the near-infrared fluorescent Fe3O4 nanoparticles not only
significantly hinders Aβ40 fibrillation but also acts as their
marker; thus, the aggregates can be detected by MRI or
fluorescence imaging [81]. Another example of “traceable”
and successful antineurodegenerative NPs is the superpara-
magnetic iron oxide nanoparticles conjugated with two cell
targeting molecules—a peptide with strong affinity to trans-
ferrin receptor used in order to enable NP crossing the BBB
and mazindol, a dopamine inhibitor which stimulates dopa-
mine transporter internalization to facilitate specific internal-
ization to dopaminergic neurons. EGCG attached to this NP
prevents α-syn aggregation [82].

6. Conclusions

This review gives an insight into the burden and predictions
of the prevalence of the most common neurodegenerative
diseases and the lack of effective treatment. Contemporary
regimen is solely symptomatic; thus, we wanted to point
out the emerging significance of nanoparticles as a promising
approach in the treatment and diagnostics of these disorders.
Despite the complexity of mechanisms underlying neurode-
generative diseases, some pathological aspects tend to over-
lap; thus, nanoparticles can act on many levels. Further,
both in vitro and in vivo studies are extremely important to
the discovery of the most efficient treatment of these diseases.
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AD: Alzheimer’s disease
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APP: Amyloid precursor protein
AuNPs: Gold nanoparticles
BBB: Blood-brain barrier
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L-DOPA: L-3,4-Dihydroxyphenylalanine
EGCG: Epigallocatechin gallate
GAGs: Glycosaminoglycans
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