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The Acoustic Dissection of Cough: Diving Into Machine
Listening-based COVID-19 Analysis and Detection
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SUMMARY: Objectives. The coronavirus disease 2019 (COVID-19) has caused a crisis worldwide. Amounts
Accep
From

ing, Uni
German
don, Lo
Graz, G
Graz, Au
Addre

Embedd
Research
Addres

of Phoni
E-mail a
Journa
0892-1
© 202

tion. Thi
(http://cr
https:/
of efforts have been made to prevent and control COVID-190s transmission, from early screenings to vaccinations
and treatments. Recently, due to the spring up of many automatic disease recognition applications based on
machine listening techniques, it would be fast and cheap to detect COVID-19 from recordings of cough, a key
symptom of COVID-19. To date, knowledge of the acoustic characteristics of COVID-19 cough sounds is limited
but would be essential for structuring effective and robust machine learning models. The present study aims to
explore acoustic features for distinguishing COVID-19 positive individuals from COVID-19 negative ones based
on their cough sounds.
Methods. By applying conventional inferential statistics, we analyze the acoustic correlates of COVID-19
cough sounds based on the COMPARE feature set, i.e., a standardized set of 6,373 acoustic higher-level features.
Furthermore, we train automatic COVID-19 detection models with machine learning methods and explore the
latent features by evaluating the contribution of all features to the COVID-19 status predictions.
Results. The experimental results demonstrate that a set of acoustic parameters of cough sounds, e.g., statistical
functionals of the root mean square energy and Mel-frequency cepstral coefficients, bear essential acoustic infor-
mation in terms of effect sizes for the differentiation between COVID-19 positive and COVID-19 negative cough
samples. Our general automatic COVID-19 detection model performs significantly above chance level, i.e., at an
unweighted average recall (UAR) of 0.632, on a data set consisting of 1,411 cough samples (COVID-19 positive/
negative: 210/1,201).
Conclusions. Based on the acoustic correlates analysis on the COMPARE feature set and the feature analysis in
the effective COVID-19 detection approach, we find that several acoustic features that show higher effects in con-
ventional group difference testing are also higher weighted in the machine learning models.
Key words: Acoustics−Automatic disease detection−Computational paralinguistics−Cough−COVID-19.
INTRODUCTION
A novel coronavirus named severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) caused a disease that
quickly spread worldwide at the end of 2019 and the begin-
ning of 2020. In February 2020, the World Health Organi-
zation (WHO) named the disease COVID-19 and shortly
after that declared the COVID-19 outbreak a global pan-
demic. Globally, as of February 2022, more than
434,150,000 confirmed cases of COVID-19, including more
than 5,940,000 deaths were reported to the WHO.1

Both the presenting symptoms and the symptom severity
vary considerably from patient to patient, ranging from
asymptomatic infections or a mild flu-like clinical picture to
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severe illness or even death. Commonly reported symptoms
of COVID-19 include (1) respiratory and ear-nose-throat
symptoms such as cough, shortness of breath, sore throat
and headache, (2) systemic symptoms such as fever, muscle
pain, and weakness, as well as (3) loss of smell and/or taste.2

Less common ear-nose-throat symptoms associated with
COVID-19 are pharyngeal erythema, nasal congestion, ton-
sil enlargement, rhinorrhea, and upper respiratory tract
infection.3
Diagnostic approaches
The early detection of a COVID-19 infection in a patient is
essential to prevent the transmission of the virus to other
hosts and provide the patient with appropriate and early
treatment. A series of laboratory diagnosis instruments
have been proposed to test for COVID-19, e.g., computed
tomography (CT), real-time reverse transcription polymer-
ase chain reaction (rRT-PCR) tests, and serological
methods.4,5 CT and X-ray detect COVID-19 based on chest
images.6-9 An rRT-PCR test focuses on analyzing the virus’
ribonucleic acid (RNA) and synthesized complementary
deoxyribonucleic acid (cDNA) from a nasopharyngeal
swab and/or an oropharyngeal swab.10 Serological instru-
ments measure antibody responses to the corresponding
infection and confirm the COVID-19 status.5 However, the
instruments mentioned above are costly and/or not always
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available, since they can only be conducted by professionals
and require special equipment and a certain time of analysis.
Even though rapid antigen and molecular tests are more and
more used by non-professionals/the test person him- or her-
self to quickly detect COVID-19, e.g. in everyday life set-
tings, they result in a huge amount of waste due to the
testing kits as well as their packing. Thus, it is essential to
develop low-cost, real-time, easy-to-apply, and eco-friendly
screening instruments that are ready-to-use every day and
basically everywhere.
Disease detection based on bioacoustic signals
A promising approach for a screening tool fulfilling these
requirements could be based on bioacoustic signals such as
speech sounds or cough sounds.11-14 Several studies have
reported acoustic peculiarities in the speech of patients
who have diseases associated with symptoms affecting
anatomical correlates of speech production, such as bron-
chial asthma15,16 or vocal cord disorders.17-19 Differences
in various acoustic parameters were also found in recent
studies comparing speech samples of COVID-19 positive
and COVID-19 negative individuals.20,21 Motivated by
acoustic voice peculiarities found for various diseases,
machine learning has been increasingly applied to auto-
matically detect medical conditions from voice, such as
upper respiratory tract infection,22 Parkinson’s disease,23

and depression.24 Recent studies on the automatic detec-
tion of COVID-19 from speech signals achieved promising
results through both traditional machine learning13,25-27

and deep learning techniques.13,28,29 Although research on
the automatic detection of diseases based on speech is rap-
idly expanding, it faces a number of challenges in terms of
algorithm generalizability and potential application in
real-world scenarios. These challenges include gender and
age distribution, the presence of different mother tongues,
dialects, sociolects, or cognitive aspects such as individual
speech-language and reading competence that may affect
various acoustic parameters.30-36 Studies on COVID-19
face additional challenges related to the fact that COVID-
19 is a relatively new and not yet well understood disease
with a wide range of symptoms and divergent symptom
severity.37,38 Studies need to consider the symptom hetero-
geneity of COVID-19 positive patients and the fact that
many symptoms may also occur in other diseases such as
bronchial asthma or flu. Therefore, it is essential to con-
sider the inclusion of patients with COVID-19-like symp-
toms but other diagnoses into COVID-19 negative study
groups.

In contrast to speech, the acoustic parameters of cough
sounds are less dependent on language-related aspects.
Therefore, systems based on voluntarily produced cough
sounds may be more easily applicable to a broader target
group than speech-based systems. Cough is not only a
promising bioacoustic signal since it reflects a body function
performed by all people regardless of their culture or lan-
guage competence, but is also one of the most prominent
symptoms of COVID-19 and is closely related to the lung
primarily affected by COVID-19.
Physiology of cough
Cough is an important defense mechanism of the respiratory
system as it cleans the airways through high-velocity airflow
from accidentally inhaled foreign materials or materials
produced internally in the course of infections. A cough is
composed of an inspiratory, a compressive, and an expira-
tory phase.39 It is initiated with the inspiration of air (about
50% of vital capacity), followed by a prompt closure of the
glottis and the contraction of abdominal muscles and other
expiratory muscles. This process allows the compression of
the thorax and the increase of subglottic pressure. The next
phase of a cough constitutes the rapid opening of the glottis
resulting in a high-velocity airflow (peak expiratory airflow
phase), followed by a steady-state airflow (plateau phase)
for a variable − voluntarily controllable − duration.40,41

The optional final phase is the interruption of the airflow
due to the closure of the glottis.42 Cough can be classified
into two broad categories: wet/productive cough with spu-
tum excreted and dry/non-productive cough without spu-
tum.43 Cough sounds were found to vary significantly due
to a person’s body structure, sex, and the kind of sputum.43

For example, the sound spectrograms of wet coughs contain
clear vertical lines that appear once continuous sounds
break off. This manifests in audible interruptions. More-
over, the duration of the second cough phase was longer for
wet coughs compared to dry coughs, whereas the durations
of the first and third cough phase did not differ significantly.
Also Hashimoto and colleagues44 revealed that the ratio of
the duration of the second phase to the total cough duration
was significantly higher for wet coughs than for dry coughs.
Chatrzarrin and colleagues45 compared acoustic character-
istics of wet and dry coughs and found that the number of
peaks of the energy envelope of the cough signal and the
power ratio of two frequency bands of the second expiratory
phase of the cough signal significantly differentiated
between the two cough types. Wet cough sounds presented
with more peaks and a reduced frequency band power ratio,
indicating more spectral variation as compared to dry cough
sounds.
Disease detection from cough sounds
A number of researchers have been interested in potential
acoustic differences between voluntarily produced cough
sounds of patients with pulmonary diseases and healthy
individuals. Knocikova and colleagues46 compared the
cough sounds of patients with chronic obstructive pulmo-
nary disease (COPD), patients with bronchial asthma, and
healthy controls. They found that patients with COPD
had the longest cough duration and the highest power
among the three groups. Higher frequencies were detected
in the cough sounds of the bronchial asthma group com-
pared with the COPD group. Furthermore, in the bron-
chial asthma group, the power of cough sound was shifted
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to a higher frequency range compared with the control
group.46 Another study47 found that cough duration,
MFCC1 (Mel-frequency cepstral coefficient), and MFCC9
features were the most important acoustic features for clas-
sification of pulmonary disease state (i.e., bronchial
asthma, COPD, chronic cough, healthy) and disease sever-
ity, defined based on a patient’s forced expiratory volume
in the first second (FEV1) divided through the forced vital
capacity (FVC). Similar to the speech/voice domain, vari-
ous automatic approaches have proved to be effective at
detecting pulmonary diseases from cough sounds47,48;
good performance was even achieved when differentiating
between two obstructive pulmonary diseases, namely
bronchial asthma and COPD.49 Furthermore, using acous-
tic features extracted from cough sounds, Nemati and col-
leagues47 automatically classified the symptom severity of
patients with pulmonary diseases. In another study,50

cough sound analysis was used to predict spirometry
results, i.e., FVC, FEV1, and FEV1/FVC, for patients
with obstructive, restrictive, and combined obstructive-
restrictive pulmonary diseases as well as healthy controls.
Machine learning algorithms were also applied to distin-
guish pertussis coughs from croup and other coughs in
children.51 Nemati and colleagues52 used a random forest
algorithm to classify wet and dry coughs based on a com-
prehensive set of acoustic features and achieved an accu-
racy of 87%. Notably, the accuracy is calculated as the
average of the sensitivity (88%) and specificity (86%) for
classification of wet and dry cough sounds. Based on
improved reverse MFCCs, Zhu and colleagues53 achieved
an accuracy in the classification of wet and dry coughs of
93.66% using hidden Markov models.
COVID-19 detection based on cough sounds
A set of studies have investigated detecting COVID-19 from
cough sounds. Alsabek and colleagues54 compared MFCC
acoustic features in cough, breathing, and voice samples of
COVID-19 positive and COVID-19 negative individuals.
They found a higher correlation between the COVID-19
positive group and the COVID-19 negative group for the
voice samples than for the cough and breathing samples.
Therefore, they concluded that the cough and breathing of a
patient may be more suitable for detecting a COVID-19
infection than his or her voice. Another study55 collected
cough sounds from public media interviews with COVID-
19 positive patients and analyzed them for the number of
peaks present in the energy spectrum and power ratio
between the first two phases of each cough event. They
found the majority of cough sounds to have a low power
ratio and a high number of peaks, a characteristic pattern
previously reported for wet coughs.45 Brown and col-
leagues11 compared several hand-crafted features extracted
from their collected crowd-sourced cough sounds of
COVID-19 positive and COVID-19 negative individuals.
They found that coughs from COVID-19 positive individu-
als are longer in total duration, and have more pitch onsets,
higher periods, and lower root mean square (RMS) energy.
In contrast, their MFCC features have fewer outliers com-
pared to those of COVID-19 negative individuals.

The reported differences in acoustic features extracted
from cough sounds of COVID-19 positive and COVID-19
negative individuals are promising for the automatic detec-
tion of COVID-19. To process hand-crafted features, tradi-
tional machine learning methods such as support vector
machines (SVMs) and extreme gradient boosting were
utilised.11,13,56 End-to-end deep learning models were devel-
oped to detect COVID-19 from the log spectrograms of
cough sounds, and performed better than the linear SVM
baseline.57 Similarly, deep learning was also successfully
used to process MFCCs28,58,59 or Mel spectrograms60 of
cough sounds. The studies above have raised the potential
and shown the effectiveness of machine learning for a cough
sound-based detection of COVID-19.
Contributions of this work
Due to advancements in signal processing and machine
learning technology, today’s computers are able to “listen
to” sounds and identify acoustic patterns which often
remain hidden for human listeners. The rapidly growing
field of machine listening aims to teach computers to auto-
matically process and evaluate audio content for the pur-
pose of a wide range of acoustic detection/classification
tasks. In the present study, we analyze acoustic differences
in cough sounds produced by COVID-19 positive and
COVID-19 negative individuals and further explore the fea-
sibility of machine listening techniques to automatically
detect COVID-19. On the one hand, we include COVID-19
positive and COVID-19 negative individuals irrespective of
the presence or absence of any symptoms associated with
COVID-19. On the other hand, this study aims to address
the above-mentioned challenges of symptom heterogeneity
of COVID-19 positive patients including asymptomatic
COVID-19 infections as well as similarities of symptoms to
symptom characteristics of other diseases. Thus, we also
investigate the isolated scenarios of COVID-19 positive and
COVID-19 negative individuals all of which showing
COVID-19-associated symptoms, and of COVID-19 posi-
tive and COVID-19 negative individuals all of which not
showing any COVID-19-associated symptoms. Data for
our experiments is taken from the open COUGHVID data-
base61 that provides 27,500 cough recordings in conjunction
with information about present symptoms. We analyse the
acoustic features of the COMPUTATIONAL PARALINGUISTICS

CHALLENGE (COMPARE) feature set that recently achieved
good performance for COVID-19 detection from cough
sounds.13 Furthermore, we train an effective (i.e., signifi-
cantly better than the chance level) machine learning classi-
fier based on the extracted COMPARE features. Finally, we
investigate the contribution of the acoustic features
extracted from the cough sounds to the COVID-19 status
predictions of the machine learning classifier.



TABLE 1.
Total and Gender-Specific Distribution of Number of
Cough Samples Across COVID-19 Status and Symptom
Conditions.

Status Symptoms Total Gender (f/m)

neg neg− no 996 293/703
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MATERIALS AND METHODS
In this study, we apply standard audio processing, statistics,
and machine learning methodology to recorded cough
sounds in order to address different tasks of interest. We set
a special focus on explainability. Therefore, our analyses
are based on established acoustic features initially extracted
from the audio files.
neg+ respiratory only 124 48/76

muscle pain/fever

only

57 20/37

both symptoms 24 8/16

S 1 201 369/832

pos pos− no 111 36/75

pos+ respiratory only 40 13/27

muscle pain/fever

only

27 12/15

both symptoms 32 14/18

S 210 75/135

neg, COVID-19 negative; pos, COVID-19 positive; f, female; m, male; +,

symptomatic; −, asymptomatic.
Databases and tasks
Data preprocessing

The dataset in our study is selected from the ongoing crowd-
sourcing COUGHVID data collection.61,62 The COUGH-
VID database is collected via a web interface.63 Thus, the
recordings can be collected with personal computers, laptops,
or smartphones. All cough recordings are voluntarily pro-
duced by the participants. The participants receive safe
coughing instructions on the web page, e.g., holding the
smartphone at arm’s length and coughing into the crook of
the elbow, putting the phone into a plastic zip bag. Each
audio recording lasts up to 10 seconds. At the time of analy-
sis for this study, the latest released COUGHVID database
consists of 27,550 cough sound files. There are three statuses
of a cough sample for each participant to self-report: healthy,
symptomatic without COVID-19 diagnosis, and COVID-19.
There are 2,800 audio recordings annotated by experts,
including a diagnosis, severity level, and whether or not audi-
ble health anomalies are present, such as dyspnea, and wheez-
ing. As only a small proportion of the data have expert
labels, the expert labels are not used in our work. Addition-
ally, it is optional for each participant to report the geo-
graphic location (latitude, longitude), age, gender, and
whether she/he has other preexisting respiratory conditions
and muscle pain/fever symptoms. Apart from the self-
reported information, the data collectors trained an extreme
gradient boosting (XGB) classifier on 121 cough sounds and
94 non-cough sounds to predict the probability of a recording
containing cough sounds to exclude non-cough recordings.61

Since the participants with the symptomatic status did
not explicitly report whether they were diagnosed with
COVID-19, we only include the samples labelled as healthy
(i.e., negative) and COVID-19 (i.e., positive) in the present
study. Furthermore, we exclude samples with cough sound
probabilities below or equal to 0.99 trying to ensure that
each recording contains useful cough sounds. We note that
no participant information was released in Orlandic and
colleagues.61 We assume the audio files with the same
location, age, and gender were recorded from the same par-
ticipant. To better implement subject-independent experi-
ments, we aim to include only one cough sound file per
participant. Therefore, the audio files with the same loca-
tion, age, and gender are reduced into a single one by ran-
dom selection. Moreover, all audio files containing noise
and speech are manually excluded. The final dataset for this
study contains 1,411 audio files (3.75 hours) with a mean
duration of 9.57 § 3.30 s standard deviation (SD); the audio
files are re-sampled into 16 kHz.
For each status (i.e., COVID-19 negative, COVID-19
positive), four classes of clinical conditions are considered:
no symptoms, respiratory symptoms only, muscle pain/fever
symptoms only, and both aforementioned symptoms. For
each symptom class, the total number of samples and their
gender distributions are listed in Table 1. Similar to other
COVID-19 related acoustic databases,13,64 the sample num-
bers at the two statuses are imbalanced. Furthermore, the
age distribution is examined across all symptom conditions
(see Figure 1).
Task definition

This study has three major aims. Firstly, we aim to identify
useful acoustic features for COVID-19 detection. To this
end, we compare a set of acoustic features extracted from
cough sounds of COVID-19 positive and COVID-19 nega-
tive individuals by means of conventional inferential statis-
tics (Section: Acoustic feature extraction and analysis).
Secondly, we aim to demonstrate basic feasibility of auto-
mated COVID-19 detection based on cough sounds by
applying machine listening methodology. Thirdly, we aim
to investigate explainability of automatic COVID-19 detec-
tion by comparing feature relevance in the machine listening
approach to feature relevance according to conventional
group difference testing. To achieve these aims, we group
the dataset based on the related COVID-19 and symptom
status into:

� samples of COVID-19 positive participants with respi-
ratory and/or muscle pain/fever symptoms (pos+)

� samples of COVID-19 positive participants without
respiratory and/or muscle pain/fever symptoms (pos−)

� samples of COVID-19 negative participants with respi-
ratory and/or muscle pain/fever symptoms (neg+)



FIGURE 1. The age distribution of the 1,411 cough samples of the dataset for COVID-19 neg(ative) or (pos)itive. Mus., muscle; fev., fever.
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� samples of COVID-19 negative participants without
respiratory and/or muscle pain/fever symptoms (neg−).

Based on these subgroups, we implement three clinically
meaningful tasks:

� Task 1: COVID-19 positive (pos) vs COVID-19 nega-
tive (neg). This task addresses the three aims of this
study by including all samples of COVID-19 positive
participants (210) and all samples of COVID-19 nega-
tive participants (1,201) irrespective of the presence or
absence of symptoms.

� Task 2: COVID-19 positive with symptoms (pos+) vs
COVID-19 negative with symptoms (neg+). This task
addresses the three aims of this study by including only
samples of COVID-19 positive participants with respi-
ratory and/or muscle pain/fever symptoms (99) and
samples of COVID-19 negative participants with respi-
ratory and/or muscle pain/fever symptoms (205).

� Task 3: COVID-19 positive without symptoms (pos−)
vs COVID-19 negative without symptoms (neg−). This
task addresses the three aims of this study by including
only samples of asymptomatic COVID-19 positive par-
ticipants (111) and samples of asymptomatic COVID-
19 negative participants (996).

Apart from all three tasks, it is interesting to investigate
the performance in these tasks under different genders or
age ranges, as previous studies have shown gender and age
differences in cough behaviour.65,66 As shown in Figure 1,
the median of the age ranges is around 30, which is used to
split the data into two age groups for each task.
Acoustic feature extraction and analysis

Both instrumental phonetic analysis and traditional
machine learning build upon acoustic features in the cough
signals. We extract features from every audio recording by
the open-source toolkit openSMILE67 according to the
COMPARE feature set, which is the standard baseline feature
set in the INTERSPEECH COMPARE series68 and has
proven effective in COVID-19 detection from cough
sounds.13 The COMPARE feature set consists of 6,373 fea-
tures calculated by several supra-segmental functionals, e.
g., mean value, over segmental low-level descriptors
(LLDs), e.g., loudness (! mean [loudness] = mean of loud-
ness). The LLDs, in the form of sequential features, are gen-
erated by analysing short-time segments, while the
functionals focus on mapping the LLDs into a feature vec-
tor through computing statistical features inside each LLD
and over multiple LLDs. The details of the COMPARE fea-
ture set can be found in Schuller and colleagues.68

Using the Kolmogorov-Smirnov test, we determine at a
5% significance level that most class-specific feature distri-
butions are unlikely to come from standard normal distribu-
tions. Thus, we apply the non-parametric two-sided Mann-
Whitney U test to analyze the extracted features for distri-
bution differences between the COVID-19 positive and
COVID-19 negative samples in each task. We further com-
pute the effect size r as the correlation coefficient calculated
as the z-value divided by the square root of the number of
samples. Finally, we rank the features according to the
effect size’s absolute value. Features showing at least a
weak correlation effect (|r| ≥ 0.1) are considered relevant for
the respective task. These features are referred to as top fea-
tures.
Automatic COVID-19 detection

Classifiers. Based on all 6,373 extracted ComParE fea-
tures, we apply machine learning methodology to study
automatic COVID-19 detection in (three) binary classifica-
tion tasks. Several classification approaches come into con-
sideration, including linear models and non-linear models.
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A linear model learns a linear mapping between the inputs,
i.e., the features, and the labels, i.e., the COVID-19 status; a
non-linear model learns a non-linear mapping. In our work,
a set of models are applied to detect COVID-19 from cough
sounds. The employed linear models consist of linear regres-
sion models, i.e., least absolute shrinkage and selection
operator (LASSO), Ridge, and ElasticNet, and a linear
SVM model. Linear regression models, i.e., logistic regres-
sion in classification tasks, construct a linear model with dif-
ferent penalties, i.e., L1, L2, and a combination of L1 and
L2, leading to the three models: LASSO, Ridge, and Elastic-
Net, respectively. The coefficients of the features in a linear
regression model can be considered as the feature impor-
tance. Additionally, an SVM model is trained to find a
hyperplane to maximize the margin between two classes. In
linear SVM models, the coefficients of this hyperplane can
be regarded as weights, whose absolute values indicate the
relevance of each feature in the decision function − the
larger the absolute value, the more important the respective
feature.69,70 Apart from the linear models, the utilized non-
linear models contain decision tree, random forest, and
multilayer perceptron (MLP). A decision tree constructs a
tree-like model by learning simple decision rules from the
features, and a random forest is composed of a number of
decision trees for performance improvement. Both decision
tree and random forest are able to calculate the feature
importance, which is computed as the total reduction of the
criterion brought by each feature. A set of hidden layers in
MLP leads to a highly non-linear function between the
inputs and the labels, which makes it challenging to inter-
pret each feature’s role in the model. To learn the feature
importance of neural networks (e.g., MLP), a set of meth-
ods have been proposed, such as deep learning important
features71 and causal explanation (CXPlain).72

The COMPARE features have shown effectiveness in vari-
ous audio classification tasks, including pathological-
speech-related disease detection,73 on small to medium-sized
datasets and represent one of the official machine learning
pipelines of the INTERSPEECH COMPARE series.13,68 In
this study, we reapply this well-proven feature set in combi-
nation with the aforementioned models to investigate the
basic feasibility of detecting COVID-19 from cough sounds.
The whole COMPARE features extracted from the audio
samples are used as the input of the machine learning
models.

Due to the limited size of the data, splitting the dataset
into training, development, and test may lead to unreliable
results. Hence, a five-fold cross validation strategy is used to
generate the predictions over all audio samples. The whole
dataset is equally split into five folds, each of which is used
as the test set while the other four are employed as the train-
ing set. We combine all test sets in the 5-fold cross valida-
tion for performance evaluation; the final results are
obtained on the combined dataset. The best hyperparameter
is then selected corresponding to the best performance on
the combined dataset. The linear regression models and
the SVM model are optimized from multiple inverse
values of regularization strength and complexity parameters
C 2 {10�6,10�5,10�4,10�3,10�2,10�1,1} respectively. Ran-
dom forest is optimized from tree numbers in
{50,100,150,200,250,300}. The decision tree is learnt with
the default parameters in scikit-learn.74 In the MLP model,
three linear layers with the numbers of output neurons
1,024, 256, and 2. To avoid overfitting problems, the first
two layers are followed by dropout operations with the
probabilities of setting a neuron as 0.2 and 0.3, respectively.
Notably, balanced class weights are applied to each SVM
model in order to mitigate the data imbalance problem.

Evaluation metrics. We use the unweighted average
recall (UAR) to evaluate the classification performance
purposefully without considering the data imbalance char-
acteristics. UAR is the average of recalls on all classes.
Additionally, we report the area under the receiver operat-
ing characteristic curve (AUC-ROC) calculated based on
the probability estimates of each audio sample being pre-
dicted as the COVID-19 positive class. The AUC score may
be inconsistent with the UAR, since the probability of a pre-
diction is calibrated by Platt scaling and fit by an additional
cross-validation procedure on the training data. Finally, the
confusion matrices for all three classification tasks are
depicted to show the detailed performance.

Explainability of automatic COVID-19 detection. To
provide an insight into the best performing linear classifier
of each task, we export the respective model’s feature coeffi-
cients and calculate mean weights across all cross-validation
folds. We then rank the features for relevance, i.e., accord-
ing to the absolute value of the mean feature weights. The
explainability of automatic COVID-19 detection via linear
classification models is quantified by comparing feature rele-
vance in the linear classification model to feature relevance
according to the effect size in the non-parametric group dif-
ference test.
RESULTS

Feature analysis
The analysis of the extracted 6,373 COMPARE features yields
a number of features relevant for the investigated tasks. For
Task 1 (pos vs neg), we identify 220 top features, i.e., fea-
tures with an absolute value of the effect size r greater than
or equal to .1 in the non-parametric group difference test.
For Task 2 (pos+ vs neg+) and Task 3 (pos− vs neg−), 1,567
and 46 features are found relevant, respectively. Table 2
reveals the LLDs underlying the respective top features of
each task. All LLD categories of the COMPARE set turn out
to be relevant for the differentiation of symptomatic partici-
pants with and without COVID-19 (Task 2). However,
when including asymptomatic participants (Task 1) or
exclusively focusing on asymptomatic participants (Task 3),
only selected energy-related, spectral, and voicing-related
LLDs are found to differ at an absolute value of the effect
size |r| ≥ 0.1. Figure 2 depicts the group-wise probability



TABLE 2.
Categorization of the 65 Low-Level Descriptors (LLDs) of the COMPARE Feature Set and Specification of Involvement (x) or
Non-Involvement (£) in a Top Feature of the Respective Differentiation Task (Task 1: pos vs neg, Task 2: pos+ vs neg+, and
Task 3: pos− vs neg−).

Group Energy-related LLDs (4) Task 1:

pos vs neg

Task 2:

pos+ vs neg+

Task 3:

pos− vs neg−

Prosodic Auditory spectrum sum (loudness) x x x
Prosodic RASTA-filtered auditory spectrum sum x x £
Prosodic RMS energy x x x
Prosodic zero-crossing rate £ x £
Group Spectral LLDs (55) pos vs neg pos+ vs neg+ pos− vs neg−

Cepstral MFCC 1−14 x x x
Spectral Psychoacoustic harmonicity x x x
Spectral Psychoacoustic sharpness £ x £
Spectral Spectral centroid £ x £
Spectral Spectral energy 250−650Hz, 1−4 kHz x x x
Spectral Spectral entropy £ x £
Spectral Spectral flux x x x
Spectral Spectral kurtosis x x £
Spectral Spectral roll-off point 0.25, 0.50, 0.75, 0.90 x x £
Spectral Spectral skewness £ x £
Spectral Spectral slope x x x
Spectral Spectral variance £ x £
Spectral RASTA-filtered auditory spectral band 1−26 x x x
Group Voicing-related LLDs (6) pos vs neg pos+ vs neg+ pos− vs neg−

Prosodic Fundamental frequency £ x £
Quality HNR x x x
Quality Jitter (local and DDP) £ x £
Quality Shimmer £ x £
Quality Voicing probability £ x £
DDP, difference of differences of periods; HNR, harmonics-to-noise ratio; MFCC, Mel-frequency cepstral coefficient; neg, COVID-19 negative; pos, COVID-19

positive; RASTA, relative spectral transform; RMS, root mean square; +, symptomatic; −, asymptomatic.
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density estimates of the respective top one feature of each
task, i.e., the mean inter-peak distance of the RMS energy
with |r| ≥ 0.15 for Task 1, the mean inter-peak distance of
the fourth MFCC with |r| ≥ 0.26 for Task 2, and again the
mean inter-peak distance of the RMS energy with |r| ≥ 0.15
for Task 3. Fourteen out of 6,373 features are found to be
jointly relevant for the differentiation between COVID-19
positive and COVID-19 negative in both symptomatic and
asymptomatic participants (Table 3).
Automatic COVID-19 detection
The performance of the machine learning models for our
three tasks is shown in Table 4. All best UARs for the three
tasks significantly exceed chance level (UAR: 0.5) in a one-
tailed z-test (pos vs neg: p < 0.001; pos+ vs neg+: p < 0.001;
and pos− vs neg−: p < 0.001). Correspondingly, the confu-
sion matrices of all three results are depicted in Figure 3. All
negative classes in the three tasks are classified with high
true negative rates, while the true positive rates are around
0.5. Among the three tasks, for the task of pos− vs neg− we
achieve the lowest UAR at the highest ratio of COVID-19
positive samples being incorrectly assigned to the negative
class (see Figure 3). In Table 5, the performance on the data
from the male participants is marginally better than that on
data from the female participants. Furthermore, the perfor-
mance for participants under or equal to 30 years is better
for two of the three tasks than the performance for partici-
pants over 30 years.
Explainability of the COVID-19 detection model
Our closer look at the weighting of acoustic features in the
trained linear models reveals that identified top features
according to the effect size in the non-parametric group dif-
ference test are also higher weighted in the respective best
performing linear classification model for each task, i.e.,
Ridge for Tasks 1 and 2, and ElasticNet for Task 3 (see
Figure 4). The 220 top features of Task 1 have a mean rank
of 1,496 § 1,640 SD amongst the features ranked according
to the absolute value of the Ridge weights. Forty-nine out
of the 220 top features are also among the first 220 Ridge



FIGURE 2. Comparison between part A: COVID-19 positive (pos) and COVID-19 negative (neg) participants (Task 1), part B: symptom-
atic COVID-19 positive (pos+) and symptomatic COVID-19 negative (neg+) participants (Task 2), and part C: asymptomatic COVID-19
positive (pos−) and asymptomatic COVID-19 negative (neg−) participants (Task 3) by means of the probability density estimate (PDE) of
the top one feature of the respective differentiation task. MFCC, Mel-frequency cepstral coefficient; RMS, root mean square; *, real mea-
surement unit does not exist as feature values refer to the amplitude of the digital audio signal.
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weight ranked features. The 1,567 top features of Task 2
have a mean rank of 1,166 § 1,084 SD amongst the Ridge
weight ranked features. Herein, 1,173 out of the 1,567 top
features are among the first 1,567 Ridge weight ranked
TABLE 3.
Joint Top Features Between the pos+ vs neg+ (Symp-
tomatic COVID-19 Positive vs Symptomatic COVID-19
Negative) and the pos− vs neg− (Asymptomatic COVID-
19 Positive vs Asymptomatic COVID-19 Negative) Differ-
entiation Tasks Listed According to Their Mean Ranks
Rounded to Integers.

Mean rank Feature

17 Flatness (D spectral energy 250−650Hz)
19 Flatness (spectral energy 250−650Hz)
27 Flatness (RMS energy)

33 Flatness (spectral flux)

149 Mean inter-peak distance (RMS energy)

194 Quartile 3 (HNR)

195 IQR 1−3 (HNR)

196 IQR 2−3 (HNR)

202 Mean inter-peak distance (loudness)

291 Mean inter-peak distance (spectral flux)

410 Skewness (D RASTA-filtered auditory

spectral band 12)

635 Mean value of peaks (RMS energy)

725 Mean inter-peak distance (spectral

harmonicity)

786 Mean value of peaks (loudness)

HNR, harmonics-to-noise ratio; IQR, interquartile range; RASTA, relative

spectral transform; RMS, root mean square; D= first-order derivative.
features. The best performing model for Task 3, i.e., Elastic-
Net, only builds upon 250 non-zero feature coefficients.
The 250 features with non-zero coefficients include 42 out of
the 46 top features of Task 3. Eighteen out of the 46 top fea-
tures are also among the first 46 ElasticNet weight ranked
features.
DISCUSSION
This study considers the presence/absence of COVID-19-
associated symptoms when comparing acoustic features
extracted from cough sounds produced by COVID-19 posi-
tive and COVID-19 negative individuals and when applying
machine listening technology to detect COVID-19 automat-
ically. Although the classification performance of the SVM
used in our study is significantly better than chance level,
there are studies reporting better performances for COVID-
19 detection based on cough sounds.11,57 Brown and col-
leagues11 studied three classification tasks: COVID-19/non-
COVID, COVID-19 with cough/non-COVID with cough,
and COVID-19 with cough/non-COVID asthma cough.
The second and the third tasks were based on cough sounds
and breath sounds, respectively, whereas the first task was
based on both cough and breath sounds. All three tasks
achieved over 80%, higher than those in our three tasks,
which is possibly caused by two reasons. Firstly, the number
of users in Brown and colleagues11 is quite small and poten-
tially less representative75 as compared to our study: The
number of users in Brown and colleagues11 for each task is
62/220, 23/29, and 23/18, respectively, whereas the task-wise
numbers of samples in our study are 210/1,201, 99/205, and
111/996. Secondly, the first and third tasks utilized breath



TABLE 4.
Classification Performance in Terms of Unweighted Average Recall (UAR) and Area Under the Receiver Operating Charac-
teristic Curve (AUC) for the Three Tasks.

Task (1) pos vs neg (2) pos+ vs neg+ (3) pos− vs neg−

Samples (#) 210/1,201 99/205 111/996

Models UAR AUC UAR AUC UAR AUC

Linear LASSO 0.586 0.625 0.573 0.547 0.536 0.549

Ridge 0.632 0.671 0.653 0.641 0.558 0.594

ElasticNet 0.615 0.650 0.598 0.596 0.565 0.591

SVM 0.610 0.642 0.601 0.609 0.563 0.617

Non-linear Decision Tree 0.521 0.521 0.538 0.538 0.501 0.501

Random Forest 0.500 0.651 0.544 0.606 0.500 0.600

MLP 0.558 0.600 0.593 0.606 0.505 0.570

neg, COVID-19 negative; pos, COVID-19 positive; +, symptomatic; −, asymptomatic.
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sounds, which perhaps provide some discriminative fea-
tures. Coppock and colleagues57 trained deep neural net-
works on the log spectrograms of both cough and breath
sounds from the same crowd-sourced dataset as in Brown
and colleagues11 and achieved better results on the three
tasks compared with the baseline, where SVMs processed
the COMPARE features. The AUCs in two of the three tasks
are above 82% and the UARs are above 76%. Similarly, the
better performance of this work could be caused by the lim-
ited number of participants (26/245, 23/19, and 62/293) and
features from breathing sounds. In addition, an extra task
of distinguishing COVID-19 and healthy participants with-
out symptoms was set in Coppock and colleagues.57 Never-
theless, the performance on COVID-19 positive samples
without symptoms was not reported independently. In con-
trast, such performance is evaluated in our Task 3, which is
crucial for preventing COVID-19 transmission. The found
minor gender and age differences in detection performance
are most probably related to imbalances in the dataset.
There are more than twice as many data samples from male
than from female participants. With regard to age, it has to
be considered that with increasing age the likelihood of
FIGURE 3. Confusion matrices for the three classification tasks comple
neg, part B: (Task 2) pos+ vs neg+, part C: (Task 3) pos− vs neg−. neg,
average recall; +, symptomatic; −, asymptomatic.
chronic lung and voice diseases/problems also increases
which might to some extent mask symptoms caused by an
acute respiratory disease.

Our study reveals several acoustic peculiarities in
COVID-19. As shown in Table 2, a set of LLDs could be
helpful for differentiating COVID-19 positive individuals
from COVID-19 negative ones. Across the three tasks, there
are common LLDs of high relevance according to the effect
size in the non-parametric group difference test, namely
loudness, RMS energy, MFCCs, psychoacoustic harmonic-
ity, spectral energy, spectral flux, spectral slope, RASTA-fil-
tered auditory spectral bands, and HNR. Differences in
RMS energy and MFCC-related features between the
coughs of COVID-19 positive and COVID-19 negative indi-
viduals are also reported in Brown and colleagues.11 In con-
trast to Tasks 1 and 3, i.e., tasks including asymptomatic
participants, in our Task 2 all LLD categories of the COM-

PARE set are found to bear relevant acoustic information to
distinguish between the two groups. This might be due to an
increased acoustic variability of symptomatic coughs (as
compared to asymptomatic coughs) being reflected in a
wider range of acoustic parameters. In other words, the
mentary to the best results given in Table 4. Part A: (Task 1) pos vs
COVID-19 negative; pos, COVID-19 positive; UAR, unweighted



TABLE 5.
Gender-Wise and Age Group-Wise Classification Perfor-
mance in Terms of Unweighted Average Recall (UAR) and
Area Under the Receiver Operating Characteristic Curve
(AUC) for the Three Tasks. The first two tasks (pos vs neg
and pos+ vs neg+) are achieved by the Ridge models, and
the third one (pos− vs neg−) is achieved by the ElasticNet
models. neg, COVID-19 negative; pos, COVID-19 positive;
y, years; +, symptomatic; −, asymptomatic.

Task Female Male

UAR AUC UAR AUC

(1) pos vs neg 0.602 0.620 0.601 0.636

(2) pos+ vs neg+ 0.573 0.563 0.679 0.676

(3) pos− vs neg− 0.517 0.508 0.604 0.584

Task Age ≤ 30y Age > 30y

UAR AUC UAR AUC

(1) pos vs neg 0.604 0.604 0.590 0.609

(2) pos+ vs neg+ 0.699 0.667 0.549 0.502

(3) pos− vs neg− 0.500 0.496 0.551 0.562
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difference between coughs of symptomatic individuals with
COVID-19 and individuals with symptoms caused by any
other disease acoustically manifests more manifold than the
difference between COVID-19-related and non-COVID-
related coughs in a sample that also or exclusively contains
asymptomatic individuals. However, the lower number of
available cough samples for Task 2 as compared to the
other tasks might also cause a biased distribution of feature
values. The analyzed feature weights within the linear
FIGURE 4. Feature ranking according to the absolute value of Ridge f
pos+ vs neg+, as well as of ElasticNet feature weights for part C: (Task
effect size in the non-parametric group difference test. A different x-ax
upon 250 non-zero feature coefficients.
classification models show consistency with the features’
effect sizes, i.e., most top features according to the effect
size also have higher weights in the linear classification mod-
els. This is a relevant finding towards the explainability of
the applied machine learning approach. As indicated in
Table 2, there are less top LLDs for Task 3. That might be
because LASSO tends to use less features due to the nature
of L1 regularization. As a combination of LASSO and
Ridge, ElasticNet is based on less features compared with
Ridge.

As both speech and cough sounds are produced by the
respiratory system, we herein compare and analyze peculiar
acoustic parameters of patient’s speech and cough sounds.
When analyzing the acoustic peculiarities of patients with
diseases that affect the anatomical correlates of speech pro-
duction, the related studies reported that the peculiar acous-
tic parameters of the patients’ speech include fundamental
frequency (fo), vowel formants, jitter, shimmer, HNR, and
maximum phonation time (MPT).15,16,18,19 Additionally,
the peculiar acoustic parameters of voice samples of
COVID-19 positive and COVID-19 negative participants
were reported to include fo standard deviation, jitter, shim-
mer, HNR, the difference between the first two harmonic
amplitudes (H1−H2), MPT, cepstral peak prominence,20

mean voiced segment length, and the number of voiced seg-
ments per second.21 We can find that there are common
acoustic peculiarities between the voice of COVID-19
patients and patients with some other diseases: fo-related
features, jitter, shimmer, HNR, and MPT. In Table 2, sev-
eral acoustic LLDs of cough sounds have shown potential
for distinguishing COVID-19 positive and COVID-19 nega-
tive individuals. Particularly, fo, jitter, shimmer, and HNR
have high effective sizes in Task 2, i.e., pos+ vs neg+. The
above findings indicate that there are similarities in acoustic
eature weights for part A: (Task 1) pos vs neg and part B: (Task 2)
3) pos− vs neg−. Green bars indicate top features according to the
is scaling is used for (Task 3) as the ElasticNet model only builds
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peculiarities of speech and cough sounds of COVID-19
patients.
Limitations
The classification performance reported in our study needs
to be interpreted in the light of the well-known challenges of
data collection via crowdsourcing, including data validity,
data quality, and participant selection bias.76-78 The
COUGHVID database does not allow to verify the
COVID-19 status of the participants, as the participants
were not asked to provide a copy or confirmation of their
positive or negative COVID-19 test. Another limitation is
that the participants have not been instructed to record the
data during a defined time window after the positive or neg-
ative COVID-19 test. Therefore, it is possible that some par-
ticipants recorded their cough at the beginning of their
infection, whereas others did the recording towards the end
of their infection. Interestingly, the disease stage of
COVID-19 was found to influence the nature of the cough
(shifting from dry at an early disease stage to more wet at a
later disease stage), concomitantly affecting acoustic param-
eters of the cough.55 Moreover, the participants were asked
to answer whether they had respiratory and/or muscle/pain
symptoms, but no information on the severity of their symp-
toms is available. Although the safe recording instructions
provided on the web page are reasonable with regard to the
transmission of the virus, the suggestion to put the smart-
phone into a plastic zip bag while recording is suboptimal
from an acoustic perspective. Another limitation of our
study is that the participants did not receive clear instruc-
tions on how to cough, e.g., how often, or whether to take a
breath between two coughs. Various audio recording devi-
ces and settings are inherent for crowdsourcing; we expect
no bias towards one of the participant groups concerning
the use of recording devices. We reduced files with the same
location, age, and gender into a single one to promote that
only one cough sound file per participant is included, but we
cannot guarantee that our dataset has only one sample per
participant or that we have not mistakenly merged record-
ings from various individuals living in the same household.

Our target in this work was to explore the hand-crafted
features’ importance for automatic COVID-19 detection.
Some classifiers like k-nearest neighbours were not utilized
as it might be difficult for them to output the feature coeffi-
cients/importance. Other approaches, such as transfer learn-
ing and end-to-end deep learning, were not used, as their
inputs are either the original audio waves or simple time-fre-
quency representations. Therefore, it is challenging to
explain the features’ contribution with these methods. Addi-
tionally, we decided to apply a cross-validation schema due
to the small dataset size, thus, testing was not entirely inde-
pendent from the training as hyper-parameters were opti-
mized on the test partitions.

We decided to employ just a single dataset rather than
multiple datasets in this study. We selected the COUGH-
VID dataset because it contains enough data and sufficient
meta information to analyze the effects of COVID-19-
related symptoms on acoustic parameters and automatic
COVID-19 detection. Coswara79 was also considered at
the start of the experiments. However, the symptom infor-
mation is not complete and well-organized for our study to
analyze the effect of symptoms for detecting COVID-19.
We also considered well-structured data, including Univer-
sity of Cambridge dataset collected by the COVID-19
Sounds app,11 diagnosis of COVID-19 using acoustics
(DiCOVA) 2021 challenge data,64 and INTERSPEECH
COMPARE 2021 challenge data.13 However, these databases
did not provide (sufficient) symptom information.
CONCLUSIONS
In this study, we acoustically analyzed cough sounds and
applied machine listening methodology to automatically
detect COVID-19 on a subset of the COUGHVID database
(1,411 cough samples; COVID-19 positive/negative: 210/
1,201). Firstly, the acoustic correlates of COVID-19 cough
sounds were analyzed by means of conventional statistical
tools based on the COMPARE set containing 6,373 acoustic
higher-level features. Secondly, machine learning models
were trained to automatically detect COVID-19 and evalu-
ate the features’ contribution to the COVID-19 status pre-
dictions. A number of acoustic parameters of cough sounds,
e.g., statistical functionals of the root mean square energy
and Mel-frequency cepstral coefficients, were found to be
relevant for distinguishing between COVID-19 positive and
COVID-19 negative cough samples. Among several linear
and non-linear automatic COVID-19 detection models
investigated in this work, Ridge linear regression achieved a
UAR of 0.632 for distinguishing between COVID-19 posi-
tive and COVID-19 negative individuals irrespective of the
presence or absence of any symptoms and, thus, performed
significantly better than chance level. With regard to
explainability, the best performing machine learning models
were found to have put higher weight on acoustic features
that yielded higher effects in conventional group difference
testing.
OUTLOOK
Automatic COVID-19 detection from cough sounds can be
helpful for the early screening of COVID-19 infections, sav-
ing time and resources for clinics and test centers. Specifi-
cally, machine listening applications distinguishing between
cough samples of symptomatic COVID-19 positive individ-
uals and those of individuals with other diseases could
advise the patient to stay at home and contact her/his doctor
by phone before entering clinics/hospitals to meet medical
professionals. This would help to prevent the spread of the
virus in an especially vulnerable population. By distinguish-
ing between cough samples produced by asymptomatic
COVID-19 positive and COVID-19 negative individuals, an
easy-to-apply instrument, such as a mobile application and
a hand-held testing device, could help to prevent the
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unconscious transmission of the virus from asymptomatic
COVID-19 positive individuals.

From our point of view, it is highly important for future
studies to specify the symptoms more clearly (e.g., severity
estimates, onset time of symptoms), to include additional
aspects potentially affecting the cough sound, such as smok-
ing and vocal cord dysfunctions, and to differentiate in the
COVID-19 negative group between participants with
chronic respiratory diseases such as asthma or COPD and
patients with a temporary infection such as the flu. Further-
more, it would be interesting for future studies to acousti-
cally analyze the cough phases separately, as previous
studies reported certain phase-specific acoustic peculiarities
for wet and dry coughs.44,45 Moreover, it will be encourag-
ing to consider more sound types (e.g., breathing and
speech) and evaluate the physical and/or mental status of
COVID-19 positive patients (e.g., anxiety) from speech for
comprehensive COVID-19 detection and status monitoring
applications.80,81

From the perspective of machine learning, feature selec-
tion methods will be investigated to extract useful features
only. Deep learning models shall be explored for better per-
formance due to their strong capability of extracting highly
abstract representations. Particularly, when developing real-
life applications for COVID-19 detection, it will be more
efficient to skip the feature extraction procedure through
training an end-to-end deep neural network with the input
of audio signals or time-frequency representations. In addi-
tion to explaining linear classification models by analyzing
the weights of the acoustic features in this study, explaining
deep neural networks along the dimension of time frame or
frequency will need to be investigated to provide a detailed
interpretation for each specific cough sound, i.e., when and
at which frequency band a cough sound shows COVID-19-
specific acoustic peculiarities. For this purpose, a set of
approaches could be employed, e.g., local interpretable
model-agnostic explanations,82 shapley additive explana-
tions (SHAP),83 and attention mechanisms.84,85
DECLARATIONS OF INTEREST
None.
ACKNOWLEDGMENTS
The authors want to express their gratitude to the holders of
the COUGHVID crowdsourcing dataset for providing col-
lected data for research purposes. Above all, thanks to all
participants for their coughs. This work is supported by the
European Union's Horizon 2020 research and innovation
programme under Marie Sklodowska-Curie Actions Initial
Training Network European Training Network project
TAPAS (grant number 766287), the Deutsche Forschungs-
gemeinschaft's Reinhart Koselleck project AUDI0NO-
MOUS (grant number 442218748), and the Federal
Ministry of Education and Research (BMBF), Germany,
under the project LeibnizKILabor (grant No. 01DD20003).
REFERENCES
1. World Health Organization. WHO Coronavirus (COVID-19) Dash-

board. 2022. Accessed at: February 28, 2022. Accessed from: https://
covid19.who.int/.

2. Esakandari H, Nabi-Afjadi M, Fakkari-Afjadi J, et al. A comprehen-
sive review of COVID-19 characteristics. Biol Proced Online.
2020;22:19. https://doi.org/10.1186/s12575-020-00128-2.

3. El-Anwar MW, Elzayat S, Fouad YA. ENT manifestation in COVID-
19 patients. Auris Nasus Larynx. 2020;47:559–564. https://doi.org/
10.1016/j.anl.2020.06.003.

4. Long C, Xu H, Shen Q, et al. Diagnosis of the coronavirus disease
(COVID-19): rRT-PCR or CT? Eur J Radiol. 2020;126: 108961.
https://doi.org/10.1016/j.ejrad.2020.108961.

5. Tang Y-W, Schmitz JE, Persing DH, et al. Laboratory diagnosis of
COVID-19: Current issues and challenges. J Clin Microbiol. 2020;58:
e00512–e00520. https://doi.org/10.1128/JCM.00512-20.

6. Jiang Y, Chen H, LoewM, et al. COVID-19 CT image synthesis with a
conditional generative adversarial network. IEEE J Biomed Health
Inform. 2021;25:441–452. https://doi.org/10.1109/JBHI.2020.3042523.

7. Raptis CA, Hammer MM, Short RG, et al. Chest CT and coronavirus
disease (COVID-19): a critical review of the literature to date. AJR Am J
Roentgenol. 2020;215:839–842. https://doi.org/10.2214/AJR.20.23202.

8. Tabik S, G�omez-Ríos A, Martín-Rodríguez JL, et al. COVIDGR
dataset and COVID-SDNet methodology for predicting COVID-19
based on chest X-ray images. IEEE J Biomed Health Inform.
2020;24:3595–3605. https://doi.org/10.1109/JBHI.2020.3037127.

9. Zhang Y, Liao Q, Yuan L, et al. Exploiting shared knowledge from
non-COVID lesions for annotation-efficient COVID-19 CT lung infec-
tion segmentation. IEEE J Biomed Health Inform. 2021;25:4152–4162.
https://doi.org/10.1109/JBHI.2021.3106341.

10. Rahbari R, Moradi N, Abdi M. rRT-PCR for SARS-CoV-2: analyti-
cal considerations. Clin Chim Acta. 2021;516:1–7. https://doi.org/
10.1016/j.cca.2021.01.011.

11. Brown C, Chauhan J, Grammenos A, et al. Exploring automatic diag-
nosis of COVID-19 from crowdsourced respiratory sound data. Proc
ACM SIGKDD. 2020:3474–3484. https://doi.org/10.1145/3394486.
3412865.

12. Hecker P, Pokorny F, Bartl-Pokorny K, et al. Speaking corona?
Human and machine recognition of COVID-19 from voice. Proc Inter-
speech. 2021:1029–1033. https://doi.org/10.21437/Interspeech.2021-
1771.

13. Schuller BW, Batliner A, Bergler C, et al. The INTERSPEECH 2021
computational paralinguistics challenge: COVID-19 cough, COVID-
19 speech, escalation & primates. Proc Interspeech. 2021:431–435.
https://doi.org/10.21437/Interspeech.2021-19.

14. Schuller BW, Schuller DM, Qian K, et al. COVID-19 and computer
audition: an overview on what speech & sound analysis could contrib-
ute in the SARS-CoV-2 Corona crisis. Front Digit Health. 2021;3:
564906. https://doi.org/10.3389/fdgth.2021.564906.

15. Balamurali BT, Hee HI, Teoh OH, et al. Asthmatic versus healthy
child classification based on cough and vocalised /a:/sounds. J Acoust
Soc Am. 2020;148:EL253. https://doi.org/10.1121/10.0001933.

16. Dogan M, Eryuksel E, Kocak I, et al. Subjective and objective evalua-
tion of voice quality in patients with asthma. J Voice. 2007;21:224–
230. https://doi.org/10.1016/j.jvoice.2005.11.003.

17. Falk S, Kniesburges S, Schoder S, et al. 3D-FV-FE aeroacoustic lar-
ynx model for investigation of functional based voice disorders. Front
Physiol. 2021;12: 616985. https://doi.org/10.3389/fphys.2021.616985.

18. Jesus LMT, Martinez J, Hall A, et al. Acoustic correlates of compensa-
tory adjustments to the glottic and supraglottic structures in patients
with unilateral vocal fold paralysis. Biomed Res Int. 2015;704121.
https://doi.org/10.1155/2015/704121.

19. Petrovi�c-Lazi�c M, Babac S, Vukovi�c M, et al. Acoustic voice analysis
of patients with vocal fold polyp. J Voice. 2011;25:94–97. https://doi.
org/10.1016/j.jvoice.2009.04.002.

20. Asiaee M, Vahedian-Azimi A, Atashi SS, et al. Voice quality evalua-
tion in patients with COVID-19: an acoustic analysis. J Voice. 2020;
S0892-1997:30368-4. https://doi.org/10.1016/j.jvoice.2020.09.024.

https://covid19.who.int/
https://covid19.who.int/
https://doi.org/10.1186/s12575-020-00128-2
https://doi.org/10.1016/j.anl.2020.06.003
https://doi.org/10.1016/j.anl.2020.06.003
https://doi.org/10.1016/j.ejrad.2020.108961
https://doi.org/10.1128/JCM.00512-20
https://doi.org/10.1109/JBHI.2020.3042523
https://doi.org/10.2214/AJR.20.23202
https://doi.org/10.1109/JBHI.2020.3037127
https://doi.org/10.1109/JBHI.2021.3106341
https://doi.org/10.1016/j.cca.2021.01.011
https://doi.org/10.1016/j.cca.2021.01.011
https://doi.org/10.1145/3394486.<?A3B2 re 3j?>3412865
https://doi.org/10.1145/3394486.<?A3B2 re 3j?>3412865
https://doi.org/10.21437/Interspeech.2021-1771
https://doi.org/10.21437/Interspeech.2021-1771
https://doi.org/10.21437/Interspeech.2021-19
https://doi.org/10.3389/fdgth.2021.564906
https://doi.org/10.1121/10.0001933
https://doi.org/10.1016/j.jvoice.2005.11.003
https://doi.org/10.3389/fphys.2021.616985
https://doi.org/10.1155/2015/704121
https://doi.org/10.1016/j.jvoice.2009.04.002
https://doi.org/10.1016/j.jvoice.2009.04.002
https://doi.org/10.1016/j.jvoice.2020.09.024


ARTICLE IN PRESS

Zhao Ren, et al The Acoustic Dissection of Cough 13
21. Bartl-Pokorny KD, Pokorny FB, Batliner A, et al. The voice of COVID-
19: acoustic correlates of infection in sustained vowels. J Acoust Soc Am.
2021;149:4377–4383. https://doi.org/10.1121/10.0005194.

22. Albes M, Ren Z, Schuller B, et al. Squeeze for sneeze: compact neural
networks for cold and flu recognition. Proc Interspeech. 2020:4546–
4550. https://doi.org/10.21437/Interspeech.2020-2531.

23. Yaman O, Ertam F, Tuncer T. Automated Parkinson’s disease rec-
ognition based on statistical pooling method using acoustic features.
Med Hypotheses. 2020;135: 109483. https://doi.org/10.1016/j.
mehy.2019.109483.

24. Ringeval F, Schuller B, Valstar M, et al. AVEC 2019 workshop and
challenge: state-of-mind, detecting depression with AI, and cross-cul-
tural affect recognition. Proc AVEC. 2019:3–12. https://doi.org/
10.1145/3347320.3357688.

25. Han J, Brown C, Chauhan J, et al. Exploring automatic COVID-
19 diagnosis via voice and symptoms from crowdsourced data.
Proc ICASSP. 2021:8328–8332. https://doi.org/10.1109/
ICASSP39728.2021.9414576.

26. Shimon C, Shafat G, Dangoor I, et al. Artificial intelligence enabled
preliminary diagnosis for COVID-19 from voice cues and question-
naires. J Acoust Soc Am. 2021;149:1120–1124. https://doi.org/10.1121/
10.0003434.

27. Stasak B, Huang Z, Razavi S, et al. Automatic detection of COVID-19
based on short-duration acoustic smartphone speech analysis. J
Healthc Inform Res. 2021;5:201–217. https://doi.org/10.1007/s41666-
020-00090-4.

28. Hassan A, Shahin I, Alsabek MB. COVID-19 detection system using
recurrent neural networks. Proc CCCI. 2020:1–5. https://doi.org/
10.1109/CCCI49893.2020.9256562.

29. Pinkas G, Karny Y, Malachi A, et al. SARS-CoV-2 detection from
voice. IEEE Open J Eng Med Biol. 2020;1:268–274. https://doi.org/
10.1109/OJEMB.2020.3026468.

30. Mendonça Alves L, Reis C, Pinheiro Â. Prosody and reading in dys-
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