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ABSTRACT: Accurate and rapid predictions of the binding affinity of a compound to a
target are one of the ultimate goals of computer aided drug design. Alchemical
approaches to free energy estimations follow the path from an initial state of the system
to the final state through alchemical changes of the energy function during a molecular
dynamics simulation. Herein, we explore the accuracy and efficiency of two such
techniques: relative free energy perturbation (FEP) and multisite lambda dynamics
(MSλD). These are applied to a series of inhibitors for the bromodomain-containing
protein 4 (BRD4). We demonstrate a procedure for obtaining accurate relative binding
free energies using MSλD when dealing with a change in the net charge of the ligand.
This resulted in an impressive comparison with experiment, with an average difference of
0.4 ± 0.4 kcal mol−1. In a benchmarking study for the relative FEP calculations, we found
that using 20 lambda windows with 0.5 ns of equilibration and 1 ns of data collection for
each window gave the optimal compromise between accuracy and speed. Overall, relative
FEP and MSλD predicted binding free energies with comparable accuracy, an average of
0.6 kcal mol−1 for each method. However, MSλD makes predictions for a larger molecular space over a much shorter time scale than
relative FEP, with MSλD requiring a factor of 18 times less simulation time for the entire molecule space.

■ INTRODUCTION

Alchemical free energy calculations are important in drug
design and development.1 The accurate and reliable prediction
of ligand binding free energies presents a way to minimize the
number of compounds made in the laboratory, while also
giving synthetic chemists the confidence to embark on novel
and often challenging syntheses of molecules with the potential
to be lead compounds. A common use of alchemical methods,
such as free energy perturbation (FEP)2,3 and thermodynamic
integration (TI),4,5 is in postdocking refinement, where more
accurate predictions of binding affinity, compared to docking
scores, are desired.6,7 This often involves small modifications
made to a hit compound to increase its potency or improve
physicochemical properties without compromising potency.
A reduction in the computational expense of alchemical

methods would facilitate their use for the high throughput
estimation of binding free energies in drug discovery projects,
in both an industrial and academic setting. Lambda
dynamics8,9 presents an opportunity to improve this
throughput. These types of free energy calculations can predict
the relative binding free energy (RBFE) for large sets of
compounds in a small number of simulations. Multisite lambda
dynamics (MSλD),10 an extension of lambda dynamics, also
allows for modifications at multiple sites of a ligand scaffold in
a single simulation, which is more realistic of the types of
changes that are made to a compound in typical lead
optimization projects.

Herein, the application of relative FEP and MSλD
simulations to a set of molecules for the inhibition of the
first bromodomain (BD1) of the bromodomain-containing
protein 4 (BRD4) is explored. The accuracy of performing four
MSλD calculations is assessed, compared to over 150 relative
FEP calculations for the equivalent perturbations. This is
considered in the context of the time saved in manual
intervention required for the methods and their computational
expense. In addition, some of the calculations involve a change
in net charge. This is one of the most difficult aspects of
alchemical calculations. We propose and validate a strategy for
dealing with such changes.
BRD4 is a member of the bromodomain and extraterminal

domain (BET) family. BET proteins play a crucial role in
regulating gene expression.11 Furthermore, as histone
acetylation readers, they contribute to tumorigenesis, making
them important targets for the development of small molecule
drugs to inhibit these epigenetic interactions. BRD4 is the
most extensively studied member of the BET family, due to its
promise as a therapeutic target for diseases such as cancer,

Received: October 9, 2021
Published: March 8, 2022

Articlepubs.acs.org/jcim

© 2022 American Chemical Society
1458

https://doi.org/10.1021/acs.jcim.1c01229
J. Chem. Inf. Model. 2022, 62, 1458−1470

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ellen+E.+Guest"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Luis+F.+Cervantes"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Stephen+D.+Pickett"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Charles+L.++Brooks++III"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jonathan+D.+Hirst"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.1c01229&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01229?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01229?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01229?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01229?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01229?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jcisd8/62/6?ref=pdf
https://pubs.acs.org/toc/jcisd8/62/6?ref=pdf
https://pubs.acs.org/toc/jcisd8/62/6?ref=pdf
https://pubs.acs.org/toc/jcisd8/62/6?ref=pdf
pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jcim.1c01229?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org/jcim?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


neurodegenerative disorders, inflammation, and obesity.12−19

As a result, the computational chemistry guided synthesis of
new compounds is being used (in various guises) by several
teams. In the first study on absolute binding free energies for a
diverse set of drug-like molecules, Aldeghi et al.20 studied a set
of BRD4 inhibitors using absolute FEP simulations. Although
this method was considered, at the time of the study, too
computationally intensive to be feasibly integrated into lead
optimization projects, the highly accurate binding predictions,
a mean absolute error of 0.6 kcal mol−1, demonstrated the
amenability of BRD4 to alchemical calculations.
For the assessment of relative FEP and MSλD approaches to

this system, we use a set of inhibitors that has been previously
studied in silico by Coveney and co-workers.21 The compounds
studied (Figure 1) are based on a tetrahydroquinoline (THQ)
scaffold and represent a good range of chemical functionality
and binding affinities. There are four points of substitution,
which we refer to as sites 1 to 4. All derivatives of the scaffold
have a net neutral charge except for those with the benzoic acid
and piperidine substituents at site 4. These groups are charged
under physiological conditions and present an opportunity for
the refinement of RBFE calculations that involve a change in
charge.

Experimental binding affinities are available for 15 THQ
compounds, based on different combinations of the sub-
stituents on the scaffold. These have a pIC50 range of ≤4.3 to
7.9, which corresponds to a binding free energy range of ∼5
kcal mol−1.21 This range in activity, coupled with the relatively
small modifications on each of the sites, makes this series of
compounds a good test case for RBFE calculations. Wan et
al.21 described binding free energy calculations on this series
using two free energy protocols. The first approach was termed
“enhanced sampling of molecular dynamics with approxima-
tion of continuum solvent” (ESMACS)22 and is based on MM-
PBSA, where the solvent is treated implicitly. The second
approach involved TI with enhanced sampling (TIES).23

ESMACS was used for the full set of compounds, while the
TIES calculations were split into three subsets of compounds,
so that perturbations involved derivatives with the same net
charge. A good correlation with experimental data was found,
with a Spearman rank correlation coefficient, rs, of 0.78 for the
ESMACS 3-trajectory calculations and 0.92 for TIES.
Furthermore, the ESMACS protocol showed good reproduci-
bility, with a Spearman correlation of 0.98 ± 0.02 between two
independent studies performed on different supercomputers.
In this study, we investigate how the calculation of RBFE

compares when using relative FEP2,3 and MSλD10 protocols.

Figure 1. Compound in the center shows the THQ scaffold of a series of BRD4-BD1 inhibitors. In the four boxes are the groups of perturbations
performed using MSλD.
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Relative free energy calculations involve constructing a
thermodynamic cycle so that the vertical legs involve making
a simple modification to a ligand, with the compound in the
solvent phase on one side and the compound in complex with
the receptor on the opposite side of the cycle (Figure 2). The

change in free energy for each of these alchemical trans-
formations is measured. Providing that the overall binding
mode of the ligand is conserved, it is possible to determine the
relative difference in the free energy of binding, ΔΔG, between
the two derivatives. FEP simulations use a series of alchemical
intermediate states, called λ windows, to calculate the free
energy change for each vertical leg of the thermodynamic cycle.
Force field parameters assigned to the “disappearing” atoms on
the ligand are slowly decoupled from the system, while
parameters for the “appearing” atoms are introduced, with the
progression of the λ windows. Within this study, the optimal
number of λ windows and simulation time is assessed for this
BRD4-BD1 system.
In contrast to FEP, TI or slow-growth, nonequilibrium

methods,24 MSλD calculations utilize λ as a dynamic variable
that propagates throughout a simulation, along with the
coordinates.25 Similar to relative FEP calculations, lambda
dynamics is particularly applicable when applied to lead
optimization tasks where knowing the difference in binding
affinity between small changes on a common scaffold is
required. However, by introducing additional λ coordinates,
one can estimate the relative ΔΔG values of multiple different
variations of a scaffold in a single simulation, obviating the
need to do a separate simulation for each pairwise set of
compounds. Furthermore, in MSλD, it is possible to perform
perturbations simultaneously on more than one substitution
site of a scaffold, and ΔΔG values for the combinatorial set of
substituents are obtained, with the consequence that MSλD
simulations can be significantly more efficient than traditional
FEP calculations.26 This concept is demonstrated herein,
where the computational expense and accuracy of these
methods are investigated.

■ MATERIALS AND METHODS

Molecular Docking. Receptor coordinates were taken
from the X-ray crystal structure (PDB: 4BJX) of BRD4-BD1 in
complex with a small molecule inhibitor, I-BET726,21 which is
the compound in this series with the best binding affinity. Prior
to docking, the protein structure was minimized for 20,000
steps using a conjugate gradient and line search algorithm and
equilibrated for 1.5 ns in the NVT ensemble and 18.5 ns in the
NPT ensemble. The cocrystallized ligand was retained for the
equilibration period. Solvation and periodic image setup for
the equilibration period is outlined in the relative FEP
methodology section below. Once the protein structure was
equilibrated, all water molecules were removed, with the
exception of the highly conserved network of five water
molecules, which line the binding pocket of BRD4-BD1. These
water molecules are important for ligand binding and
stabilizing the protein structure.27−30 Furthermore, previous
work using molecular docking and absolute free energy
perturbation showed good agreement with reproducing
experimental binding poses and binding free energies when
retaining this water network and removing any remaining
crystallographic water molecules.31 Using receptor generation
software from the OpenEye docking toolkit,32,33 I-BET726 was
assigned as the ligand and is treated as noninteracting during
the molecular docking. A box centered around the original
ligand with sides of length 17.7 × 19.7 × 17.0 Å was situated to
cover the BRD4-BD1 binding cavity fully, giving a total
receptor volume of 5906 Å3. The 15 THQ compounds were
protonated according to physiological pH and prepared using
OpenEye OMEGA.33 Conformers were generated using a
truncated form of the MMFF94s force field34 with a maximum
energy difference of 20 kcal mol−1 set from the lowest energy
conformer. A maximum of 1000 conformers was allowed, and
those within 0.5 Å RMSD of any others were considered
duplicates and removed. Docking was performed using
OpenEye FRED32 using the high resolution setting with
rotational and translational step sizes of 1 Å. Once docked,
OpenEye FRED provides ten sets of ligand coordinates that
display the best docking scores. With the exception of
compound 7, all compounds exhibited one conserved binding
mode, with little variation between each set of the ten best
coordinates. Within the small movements of this binding
mode, the pose taken forward for each compound was chosen
to optimize the overlap between the common core of the THQ
scaffold. Compound 7 displayed two binding modes, with the
common binding pose also taken forward for free energy of
binding evaluation.

Multisite λ-Dynamics Simulations. Atoms belonging to
all derivatives of the THQ scaffold were identified using a
maximum common substructure (MCS) search. The common
core used for the neutral set of substituents is shown in red in
Figure 3, and the core used for the charged substituents is
shown in blue. All remaining atoms were fragments or anchor
atoms, which are coupled and decoupled from the system as
their corresponding λ variables propagate through the
simulation. Fragments correspond to the parts of the
compound that are treated as substituents. Anchor atoms are
the attachment points between the common core and the
fragments and become part of the substituents once the
simulation is initiated. Once an initial common core was
identified, the core, fragments, and anchor atoms were
manually altered so that additional atoms became part of the

Figure 2. A thermodynamic cycle describing the binding of two
ligands, L1 and L2, to a receptor, R. The relative free energy of
binding can be calculated from either the physical (ΔG2 − ΔG1) or
alchemical (ΔG4 − ΔG3) legs of the cycle. In FEP calculations, the
transformations of the alchemical pathways are modeled.
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fragments. Although all atom types on the amide and THQ
groups of the ligand scaffold are consistent, regardless of the
substituents, not all atoms are chosen to belong to the
common core. This is to allow a change in the partial charges
assigned to each of the atoms, which are affected by the
substituent attached, thereby enabling a better representation
of the electrostatics of the ligand.
During λ dynamics, the charge of the compound must sum

to an integer net charge, regardless of the combination of
substituents at each site. Therefore, the partial charges of
substituents at one particular site are normalized so that each
substituent has the same total net partial charge. An exception
is when a charge perturbation is performed, with the addition
of a protonated or deprotonated substituent. The alteration of
partial charges for the preparation of λ dynamics is termed
charge renormalization and is performed using an algorithm
developed by the Brooks group (Supporting Information).
Initial partial charges were obtained from atom type matching
with existing parameters in the CHARMM force field, using
CGenFF.35 There was an average RMSD of 0.015 e between
the original CGenFF charges and the adjusted charges. All
other parameters, attributed to bond lengths and angles and
dihedral angles, remained unchanged from the CGenFF initial
parameter assignments.
Two systems were built, one composed of the ligand in

solution and the second with the ligand in complex with
BRD4-BD1 (PDB: 4BJX21). The ligand, receptor, and solvent
coordinates for the complex site were obtained from the
equilibrated structure and molecular docking, as detailed
above. Ligand topologies were constructed using a multiple
topology approach.8,36 This is a similar method to the dual
topology approach in FEP, where all substituents explicitly
exist in the topology, attached to the same common core. The
hybrid multitopology models used in MSλD are created
without internal energy terms that span two substituents. This
is achieved through the delete connectivity command in
CHARMM.37 For the ligand in solvent system, the ligand was
solvated in a cubic periodic boundary cell with 1755 TIP3P
water molecules.38 All simulations were performed using the
CHARMM molecular simulation package with the domain
decomposition (DOMDEC) computational kernels on
GPU.37,39,40 MD simulations were run in the NPT ensemble
at 298 K and 1 atm using a Nose−́Hoover thermostat41 and
Langevin pressure piston with a friction coefficient of 20
ps−1.42 A time step of 2 fs was used, with hydrogen-heavy atom
bond lengths constrained with the SHAKE algorithm.43 A
cutoff distance of 12 Å was used for van der Waals pairs, with a

switching function at a distance of 10 Å. The electrostatic
potential energy was computed using the Particle Mesh Ewald
method.
The THQ compounds were split into four sets as shown in

Figure 1: compounds with a net neutral charge were split into
two groups, those with a net charge of +1 (compounds 10−
12) and finally those with a net charge of −1 (compounds 13−
15). Considering only compounds with a net neutral charge,
there is one substituent at site 1, one at site 2, three at site 3,
and seven at site 4. Similar to FEP, the accuracy of MSλD is
impacted by the sizes of the perturbations. Although there are
no hard rules about the number of substituents or sites that can
be handled, generally, the smaller the perturbation between
each substituent, the more substituents or sites that can be
used. In our data set, seven quite varied substituents on one
site, along with other sites of substitution, means that it is
sensible to split it into two sets of calculations. Substituents on
site 4 were split into two groups based on their similarity, with
the phenyl, methoxyphenyl, isoxazole, and ethylpyrazole
substituents in one group and the phenyl, hydrogen, pyridyl,
and dimethoxyphenyl substituents in the second. The phenyl
substituent was included in both sets as the reference
compound. For comparison, a single MSλD calculation with
all neutral substituents was performed. Similar ideas have been
utilized in a recent large-scale benchmarking of MSλD by
Raman et al.44

For all MSλD calculations, adaptive landscape flattening26,36

(ALF) was used to enhance the sampling. To estimate
differences in free energies accurately, it is necessary to have
sufficient sampling of all physically meaningful end states. In
alchemical transformations, sampling can be limited by high
energy barriers, and so ALF is applied to calculate the biases
needed to flatten the energy surface between end points. A
soft-core potential was also used to scale all nonbonded
interactions by λ and to prevent end-point singularities.36,45,46

To identify initial biases for the complex system, 50 serial
simulations of 100 ps each were performed, followed by 30
simulations of 1 ns to refine the biases. ALF was performed for
the ligand in solution for 50 simulations of 100 ps, followed by
20 simulations of 1 ns. Production simulations were run for 20
and 50 ns for the solution and complex systems, respectively,
with the first 5 ns of each discarded as equilibration. Five
replicas of each production run were performed using a
different random seed. End-state populations were binned
using a λ ≥ 0.99 cutoff criterion, and the final relative free
energy of binding values were calculated by Boltzmann
reweighting end-state populations to the original biases and
then using eq 1.8,9 Uncertainties were calculated as the
standard deviation of the mean value over the five independent
runs.

ΔΔ = −→G k
P

P
lni j

j

i
B

(1)

Eq 1 shows how relative binding free energies are calculated
as the ratio of the amount of time one ligand is sampled
compared to a reference ligand. In our calculations, compound
3 was chosen as the reference ligand, because the hydrogen
atom at site 1 and methyl groups at sites 2 and 3 are the most
common substituents at these sites across all of the
compounds. Furthermore, the phenyl group at site 4 is most
similar to all other substituents at this position and therefore
involves the smallest perturbation between substituents. To

Figure 3. Common cores used in MSλD calculations. Atoms in red
were used as the core for calculations involving neutral substituents.
Atoms in blue were used as the core for charged substituents. All
other atoms on the THQ scaffold are treated as substituents or anchor
atoms, which are perturbed during MSλD.
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check that there had been sufficient sampling of unsymmetrical
substituents at site 4, the dihedral angle around the site 4-
phenyl bond was measured along the trajectory. These figures
can be found in the Supporting Information.
As changing the net charge of the compound adds a layer of

complexity, MSλD calculations involving charged substituents
were constructed in a different way to the neutral substituent
calculations. Separate simulations were performed with the
neutral form of each charged substituent as the reference
compound. For example, for the negatively charged com-
pounds, benzoic acid was used as the reference substituent on
site 4. The deprotonated form, benzoate, was included as a
substituent for MSλD. Substituents attributed to compound 3
were also included in the MSλD calculation, so that the relative
binding free energy with respect to compound 3 could be
calculated, for consistency. Using benzoic acid on site 4 as the
reference, compared to a phenyl group, meant there was a
smaller perturbation and the change in net charge could be
accounted for more effectively. The same approach was used
for compounds with a piperidine substituent, which is
protonated at physiological pH.
Relative Free Energy Perturbation Simulations. Dual

topologies were constructed, with compound 3 as the
reference compound, for each alchemical transformation. For
example, Figure 4 shows the ligand topology for the

transformation of compound 3 to compound 1. When λ = 0,
the phenyl group is interacting with the system, and when λ =
1, the methoxybenzene is interacting. Using input generated by
CHARMM-GUI,47 all complex systems were solvated in a
cubic periodic boundary cell with edge distances of 18 Å to

construct an explicitly modeled solvent consisting of around
22,000 TIP3P water molecules.38 Depending on the net charge
of the ligand, Na+ or Cl− ions were added, to neutralize the
system. To optimize the solvent positions, all heavy atoms
were fixed, except for water molecules, during 50 steps of
steepest descent and 50 steps of Adopted Basis Newton−
Raphson minimization. Potential energy evaluations were
performed with the CHARMM force field.48 To ensure a fair
comparison of binding free energies obtained from FEP and
MSλD calculations, the charge renormalized ligand parameters,
adapted from CGenFF,35 were used. Systems containing the
ligand in solution, without the receptor, were also set up using
input from CHARMM-GUI.47 Ligands were solvated in a
cubic periodic boundary cell with around 2,300 TIP3P water
molecules. Minimization and equilibration were performed
using the same protocol as for the protein−ligand complexes.
Once set up, all systems were minimized for 20 ps using a

conjugate gradient and line search algorithm using the NAMD
simulation software.49 Protein backbone and side chain
restraints were applied using harmonic constraints with force
constants of 10 kcal mol−1 Å−2 and 5 kcal mol−1 Å−2 during a
heating period of 50 ps. Systems were heated to 298 K in
increments of 10 K. Restraints were removed for 0.1 ns of
equilibration in the NVT ensemble and 4.9 ns in the NPT
ensemble, with a 2 fs time step. The temperature was
controlled using Langevin dynamics parameters, with a friction
coefficient of 5 ps−1 for all equilibration and FEP simulations.
Constant pressure was maintained using the Langevin piston
Nose−́Hoover method42 with a target pressure of 1 atm.
During equilibration, a cutoff distance of 12 Å was used for van
der Waals pairs, with a switching function at a distance of 10 Å.
Long-range electrostatic interactions were computed using the
PME method.50 The SHAKE algorithm43 was also used.
To develop an efficient protocol for FEP calculations on

these BRD4 inhibitors, a series of benchmark calculations were
performed. The relative free energy of binding of compound 1,
with respect to compound 3, was calculated using 8, 10, 16, 20,
and 25 λ windows. For each λ window, 2 ns of equilibration
was performed, followed by 1 ns of data collection.
Electrostatic interactions of outgoing atoms were decoupled
from the system from λ = 0 to λ = 0.5, while the electrostatics
for incoming atoms were coupled to the system from λ = 0.5 to
λ = 1. For all simulations, a soft-core potential was used to
avoid “end-point catastrophes”. The effect of reducing the
length of the data collection period for each λ window was
then tested by performing the perturbation with 20 λ windows,
2 ns of equilibration, and 0.5 ns of data collection. Finally,
equilibration of lengths 1 and 0.5 ns were tested, using 20 λ
windows and 1 ns of data collection. The average value over
three replicas was calculated for each combination of FEP

Figure 4. Dual topology constructed for the alchemical trans-
formation of a phenyl group (orange) to a methoxybenzene group
(blue), attached to a THQ scaffold (gray).

Figure 5. To calculate the binding free energy of compound 15, relative to compound 3, an intermediate step is required. The relative binding free
energy is the sum of ΔΔG1 and ΔΔG2. Substituents being added or transformed are shown in red.
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parameters, with free energy values evaluated using the BAR
method51 as implemented in the ParseFEP tool in VMD.52

Once the optimal number of λ windows, equilibration
length, and data collection length were established, the relative
free energies of binding were calculated for the remaining
compounds. As substituents on two sites of the common
scaffold are modified, compared to compound 3, for
compounds 8, 9, and 11 to 15, an intermediate FEP step
was required. For example, to calculate the relative free energy
of binding of compound 15, FEP calculations were performed
for the changes shown in Figure 5. First, site 4 was perturbed
from a phenyl group to a benzoic acid substituent. In a
separate simulation, the hydrogen atom on site 1 was then
transformed to a chlorine substituent. The sum of the free
energy changes for these transformations resulted in the total
relative free energy of binding of compound 15, with respect to
compound 3. Compound 1 served as the reference for
transformations to compounds 8 and 9, and compound 10
was the reference for transformations to compounds 11 and
12. Therefore, including replicas, reverse transformations, and
ligand in solution simulations, to obtain the full RBFE data set
for the 14 compounds, with respect to compound 3, a total of
168 FEP simulations were required.

■ RESULTS AND DISCUSSION

Relative FEP parameters such as number of λ windows,
equilibration, and data collection length are often a balance
between obtaining sufficient sampling of each λ state, while
keeping the calculation to a reasonable time scale. Therefore,
we first present our findings for the most effective parameters
to use for our system of interest. Next, we discuss the
calculation of the biasing potentials for the MSλD calculations.
On demonstration of the reliability of our procedures, we
compare the accuracy of relative FEP and MSλD with respect
to experimental binding affinities. Lastly, an assessment of the
investment required for each method, in terms of both
computational and human time, is presented.
Relative FEP Benchmarking. To establish the best

number of λ windows to use for relative FEP calculations on
this series of BRD4 inhibitors, perturbations from compound 3
to compound 1 were performed with 25, 20, 16 10 and 8
windows. This alchemical perturbation involved the trans-
formation of a phenyl substituent on site 4 of the THQ
compound to a methoxybenzene substituent. To assess the
performance of the calculations, three criteria were taken into
account. First, a comparison between the predicted relative
free energy of binding and the experimental value was made.
Second, the standard deviation of the mean BAR free energy
estimate over three independent replica runs was calculated.

Third, the convergence was measured by plotting the relative
binding free energy calculated using an increasing fraction of
the simulation data. The free energies using the reverse
proportion of the data were also plotted. Convergence plots
are important for ensuring that the free energy is being
measured for an equilibrated system. This graphical method of
assessing convergence, outlined by Klimovich et al.,53 helps
identify any nonequilibrated regions throughout the simu-
lation.
Table 1 shows the mean predicted relative binding free

energies over three replicas, their errors, and the absolute
difference with experimental values. All predicted values are
within chemical accuracy of the experimental values, which is
generally considered to be 1 kcal mol−1. However, there is an
increase in their absolute differences with a decreasing number
of λ windows. Furthermore, the error also increases. This is to
be expected, as decreasing the number of intermediate steps
between the transformation means that there will be a poorer
overlap of phase space between each window. For reliable
estimations, an error of no more than 0.5 kcal mol−1 is
desirable. This corresponds to a variation in a pIC50 value of
approximately 0.4. Although FEP with 25 lambda windows
results in the lowest error of 0.3 kcal mol−1, using 16 or 20
windows still gives acceptable errors of ≤0.5 kcal mol−1.
Additionally, using fewer windows results in a saving of
computational time. With this in mind, FEP with 16 or 20 λ
windows appears to be the best approach. Figure 6 shows the
convergence plots for these perturbations. Convergence plots
for all benchmark FEP calculations can be found in the
Supporting Information. An agreement, within error, between
the forward and reverse free energies is a sign of an
equilibrated system. The shaded bar on the plots indicates
an error range of 0.5 kcal mol−1, centered on the final relative
free energy value. These plots show that FEP with 20 λ
windows results in free energies that are better converged.
Therefore, relative binding free energies in this study are
predicted using 20 intermediate steps between the initial and
final states.
In an attempt to gain computational speed, perturbations

with data collection periods of 0.5 ns for each λ window were
tested. This resulted in an error of 0.6 kcal mol−1 (Table 1).
Furthermore, poor convergence was observed. Therefore, 1 ns
of data collection for each λ window was performed for all FEP
calculations. Equilibration periods of 1 and 0.5 ns were also
tested for each λ window. Reducing the equilibration of the
windows to 0.5 ns did not affect the error or convergence of
the predicted relative binding free energies. Therefore, we
conclude that a protocol of using 20 λ windows with 0.5 ns of

Table 1. Benchmarking of Relative FEP Protocolsa

λ windows equilibration (ns) data collection (ns) ΔΔGcalc (kcal mol−1) error (kcal mol−1) absolute difference (kcal mol−1)

25 2 1 −0.5 0.3 0.2
20 2 1 −0.8 0.4 0.5
16 2 1 −0.6 0.5 0.3
10 2 1 −1.2 0.6 0.9
8 2 1 0.3 0.6 0.8
20 2 0.5 −0.8 0.6 0.5
20 1 1 −1.1 0.4 0.8
20 0.5 1 −0.5 0.4 0.2

aVarying numbers of λ windows, equilibration time, and data collection time were tested. RBFE predictions are compared to experiment. Errors are
calculated as the standard deviation of free energy estimates over three replicates.
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equilibration and 1 ns of data collection results in a good
compromise between accuracy and computational efficiency.
Adaptive Landscape Flattening. ALF is the process of

calculating the biases to flatten the alchemical potential energy
landscape between substituents on a given site, to ensure
sufficient sampling of all substituents.26,36 To assess the fixed
biases that were used for MSλD, their convergence along the
serial ALF simulations was investigated. Figure 7 shows that at
the end of each ALF process, the biases were stable and
therefore suitable to be used for data collection.
Relative Binding Free Energies. Accuracy and Reli-

ability. Relative binding free energies are shown in Table 2.
Results shown for the neutral compounds using MSλD are
RBFEs calculated from splitting the compounds into two
separate calculations, as this improved the accuracy. RBFE
predictions when including all substituents in one calculation
can be found in the Supporting Information. Overall, the two
methods have similar levels of accuracy compared to
experiment. MSλD calculations resulted in an average
difference of 0.6 ± 0.7 kcal mol−1 to experiment, and for
relative FEP predictions this was 1.0 ± 1.3 kcal mol−1.
Furthermore, when discounting the large deviation from
experiment found for compound 9, the average differences
for the MSλD and relative FEP calculations become 0.6 ± 0.7
kcal mol −1 and 0.7 ± 0.5 kcal mol−1, respectively, showing
there is little difference in accuracy between the two methods.

The Spearman correlations (rs) between the rank order of the
predicted and experimental RBFEs have also been calculated,
which shows that both methods have a good, and comparable,
correlation with experiment. RBFE predictions calculated using
MSλD have an rs of 0.80, while relative FEP predictions have
an rs of 0.70. With this small data set, these differences in rs are
not statistically significant. These results show that MSλD and
relative FEP (using the λ window parameters selected from
benchmarking) are accurate methods for the prediction of
RBFEs and ranking highly active compounds out of a set of
congeneric compounds. While the comparison to experiment is
similar to the ESMACS (rs 0.78) and TIES (rs of 0.92)
methods presented by Wan et al.,21 MSλD predicts ΔΔG
values for the combinatorial set of substituents at each site, and
so a larger space of 28 compounds is explored using the four
MSλD simulations presented in this work. This is discussed in
more detail in the computational expense section.
As discussed previously, all neutral substituents on site 4

were initially included as part of one MSλD calculation. For
comparison, the substituents were also split into two
calculations. The average RBFE compared to experiment was
1.4 ± 1.4 kcal mol−1 when all of the substituents were included
in one simulation, while the difference was 0.8 ± 0.8 kcal
mol−1 when splitting them into two sets of calculations.
Furthermore, RBFE predictions obtained from one calculation
have an rs of 0.30, compared to an rs of 0.84 for the two sets.
The increased accuracy when splitting the substituents into
two calculations is not surprising. When including all site 4
substituents with a net neutral charge, there are seven possible
substituents, which means that all combinations of physically
meaningful end points are sampled less during the simulation
and less likely to achieve converged results. This is also
reflected by the larger uncertainties of the single MSλD
simulation, which have an average of 0.4 ± 0.2 kcal mol−1

compared to 0.2 ± 0.2 kcal mol−1 for the two calculations.
Solutions for more accurate predictions in a single simulation
could be to use longer simulation times or enhanced sampling
methods.44 A study by Vilseck et al.54 demonstrated that
accuracy within 0.8 kcal mol−1 can be achieved for
perturbation sites with seven substituents when using MSλD
with biasing potential replica exchange,55 to enhance end-state
sampling.
A common limitation to RBFE methods is a lack of

reproducibility.56 Like all MD-based methods, this arises from

Figure 6. Convergence assessment of the transformation of a phenyl
substituent at site 4 to a methoxybenzene substituent. (Top) Using 20
λ windows with 2 ns of equilibration and 1 ns of data collection.
(Bottom) Using 16 λ windows with 2 ns of equilibration and 1 ns of
data collection. The forward (purple line) and the reverse (green line)
simulation time series are shown. The horizontal shaded bar indicates
the equilibrated region.

Figure 7. Convergence of the fixed bias for each substituent at site 4
as the ALF simulations progress. Substituents at site 4 include
methoxyphenyl (red), ethylpyrazole (green), isoxazole (light blue),
hydrogen (orange), pyridyl (purple), and dimethoxyphenyl (dark
blue).
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the ensemble averaging of macroscopic properties over
microscopic states. Therefore, the quality of the predictions
relies on how well the microscopic states have been sampled.
To address this issue, it is common practice to run multiple

independent calculations with different initial velocities and
take an average of the free energy changes across the replicas.
Uncertainties can be estimated by calculating the standard
deviation around the averaged free energies. In our

Table 2. Predictions of Binding Affinity for a Series of BRD4-BD1 Inhibitors Based on a THQ Scaffold (Figure 1)a

aPredictions calculated using MSλD and relative FEP are compared to experiment. All free energy differences are shown in kcal mol−1.
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calculations, five replicas were performed for the data
collection stages of the MSλD calculations, and three replicas
were performed for the relative FEP calculations. Three
replicas were chosen for relative FEP due to the significantly
higher computational cost associated with this method
(discussed in the next section). The uncertainties associated
with the predictions were lower for the MSλD calculations,
with an average of 0.2 ± 0.2 kcal mol−1, compared to an
average of 0.5 ± 0.1 kcal mol−1 for the relative FEP
calculations. Therefore, more reliable estimations of binding
affinity are achieved using MSλD, especially when there are
more than two sites of perturbation. In these cases, to obtain
RBFE values using relative FEP, intermediate transformations
are necessary, and the uncertainty accumulates over the two
simulations (Free energies and their associated uncertainties
for the intermediate calculations can be found in the
Supporting Information.). Using MSλD, only one calculation
is required, with an uncertainty that is comparable to when
there is only one site of perturbation.
Outliers. Compound 9 has a pIC50 of ≤4.3 and an

experimental RBFE of ≥3.4 kcal mol−1 with respect to
compound 3, indicating that it has no activity toward BRD4-
BD1. The difference in substituents between compound 9 and
compound 1, which has a pIC50 of 7.0 ± 0.1, is an isopropyl
group at site 2, compared to a methyl group. As noted by Wan
et al.,21 the position of site 2 occupies a small lipophilic site in
the BRD4-BD1 binding pocket, which offers little room for
large substituents without structural reorganization. Therefore,
we infer that the isopropyl group is too large for this part of the
binding pocket. A representative compound in the binding site
of BRD4-BD1 is shown in Figure 8. The large discrepancy

between the experimental and predicted RBFEs for compound
9 suggests that MSλD and relative FEP methods are less
accurate when predicting nonbinders. Additionally, isopropyl is
not well represented in the CGenFF force field,35 particularly
the dihedral angle parameters when attached to an amide,
which may also contribute to the deviation from experiment.
A difference larger than 1.5 kcal mol−1 from experiment was

also found for compound 5 for both RBFE methods.
Investigation into the force field parameters and interactions

made by the pyrazole derivative at site 4 of compound 5 is
ongoing to try and identify a reason for this difference.

Charge Perturbations. Perturbations that involve a
change in net charge of the ligand are difficult to predict
with current methods, and the general advice is to avoid them.
Cournia et al.6 explain that this is due to the PME treatment of
long-range interactions, which is likely to introduce an error
when changing the net charge of the system. Additionally, care
must be taken to ensure that enough time is allowed for the
rearrangement of solvent molecules around the ligand when
there is a change in charge. Cournia et al. advise that changes
in charge should be made to the ligand experimentally, with
the results forming the basis for a new series of compounds,
with a consistent net charge. Despite this, we believe there was
value in investigating how MSλD handles changes in the
charge of a ligand, with relative FEP as a comparison, especially
as there are few examples in the literature.
As described in the Materials and Methods section, the setup

of MSλD calculations was slightly modified for the positively
charged piperidine and the negatively charged benzoic acid
substituents. A separate MSλD calculation was performed for
the positively and negatively charged set of compounds, where
the neutral form of the substituent at site 4 was used for each.
A phenyl group at site 4 was included in the multiple topology
setup so that the RBFE with respect to compound 3 could still
be calculated. Figure 9 illustrates the changes in binding free

energy calculated for the MSλD perturbation of compound 3
to compound 10. It should be noted that ethyl and propyl
substituents at site 2 were also included so that values of RBFE
were obtained for compounds 11 and 12 in the same
simulation. Using this approach, the average difference from
experiment for the charged compounds was 0.4 ± 0.4 kcal
mol−1. In comparison, MSλD calculations for the charged
substituents without using the neutral reference compound
showed an average difference of 0.9 ± 0.3 kcal mol−1 from
experiment. Therefore, the impressive agreement with experi-
ment shown by our protocol demonstrates that there is a
benefit to using a neutral intermediate compound.
Relative FEP predictions for charge perturbations at site 4

also show good agreement with experiment, with an average
difference of 0.6 ± 0.3 kcal mol−1. The position of site 4 on the
THQ scaffold fills the narrow ZA channel in the binding site of
BRD4-BD1 and points toward the solvent exposed region
(Figure 8). It appears that both MSλD and relative FEP
methods accurately predict RBFEs that involve a charge
perturbation at this region of the binding pocket.

Computational Expense. To estimate the computational
expense of relative FEP and MSλD calculations applied to this
compound series, the simulation time required for each
method is calculated. Over four MSλD calculations, 119 ns
of ALF and 210 ns of data collection are required. This means

Figure 8. Binding site of BRD4-BD1 with inhibitor I-BET726 bound
(PDB 4BJX57). I-BET726 (compound 15) is represented as the stick
in orange, the protein is shown as the blue cartoon, and sticks and
water molecules are shown as red spheres.

Figure 9. Setup for charge perturbations using MSλD. In this
example, the neutral form of compound 10 is used as the reference to
calculate the RBFE compared to compound 3 and the protonated
form of compound 10.
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the full set of RBFE predictions using MSλD can be calculated
with 329 ns of simulation time. This is for predictions where
the neutral substituents at site 4 have been split into two
calculations, with five replicas performed for each. In contrast,
240 ns of simulation time is required for the RBFE prediction
of one pairwise set of compounds using relative FEP, totalling
3360 ns of simulation time for the full set of 14 predictions.
Therefore, the MSλD calculations require less simulation time
by a factor of ∼10, compared to relative FEP, when
considering these 14 compounds. However, as MSλD
calculates the RBFE for all combinations of substituents at
each site, there is a simulation time saving of a factor of 18,
when considering the total molecule space explored. Taking
this into account, MSλD provided values for an additional 14
compounds, beyond the 14 presented in Table 2. The
compound predicted as having the best binding affinity,
relative to compound 3 out of the compounds with
experimental data, was compound 15. This matches experi-
ment, with it having the highest pIC50.

21 From the additional
perturbations that MSλD provided, we found that a methyl to
ethyl perturbation on site 2 of compound 15 results in an
equivalent binding affinity (compound 25 in the Supporting
Information). RBFEs for all additional 14 compounds can be
found in the Supporting Information. It is also possible for
further substituents to be considered at each site with limited
additional cost, which would substantially extend the number
of compounds evaluated overall.
A nontrivial aspect of relative free energy calculations is the

manual time it takes to set up a simulation. These setups are
often complicated and prone to human error, and although
tools for their automation are being developed, most are in
their early stages or are limited to specific simulation
programs.58−60 Therefore, even with advancements in
computational resources and GPU acceleration,61 the
“human time” required for these calculations often becomes
a limitation for the rapid estimation of RBFE for large
compound data sets, especially in an academic setting. We have
found that for an experienced user and once the initial input
scripts have been written, the setup of one MSλD calculation is
comparable to the setup of one relative FEP calculation. The
difference occurs when considering that one MSλD calculation
can provide a large number of binding affinity predictions,
whereas a separate simulation is required for every pairwise set
of compounds when using relative FEP. Furthermore, the
automated MSλD workflow44 recently implemented in
BIOVIA Discovery Studio and Pipeline Pilot packages62

facilitates the needs of MSλD such as setting up multi-
topologies, which will further accelerate the MSλD method
and make it an even more promising alternative to relative FEP
for the accurate prediction of ligand binding affinity.

■ CONCLUSIONS
An investigation into the applicability of MSλD and relative
FEP calculations to a series of inhibitors of BRD4-BD1, a
prominent therapeutic target, has been carried out. First,
benchmarking of relative FEP protocols was performed.
Varying numbers of λ windows, equilibration, and data
collection periods were used, with the accuracy, uncertainty,
and convergence tested for each combination. We found that
using 20 λ windows with 0.5 ns of equilibration and 1 ns of
data collection was optimal and presented a good compromise
between accuracy and efficiency. When applied to the full set
of 14 compounds, relative FEP resulted in RBFE predictions

with an average accuracy of 0.6 ± 0.6 kcal mol−1, when
discounting one outlier.
The THQ scaffold has four sites of perturbation, with two

substituents at site 1, three at site 2, three at site 3, and nine at
site 4. Two of the substituents at site 4 have a charge under
physiological conditions and were investigated using separate
simulations. To test how well MSλD handles the remaining
combinations, all 2 × 3 × 3 × 7 perturbations were considered
simultaneously within a single calculation. This resulted in an
average accuracy of 1.4 ± 1.4 kcal mol−1 and limited
correlation between the computed and experimental rank
order (rs = 0.30). MSλD achieved more accurate results when
splitting the neutral set of substituents into two independent
simulations, with an average accuracy of 0.6 ± 0.7 kcal mol−1

for the 14 compounds with experimental values available. A
number of perturbations at site 4 involved a change in net
charge. Through performing perturbations from the neutral to
the charged states of each of these substituents, high accuracy
was obtained for these charge changes, with an 0.4 ± 0.4 kcal
mol−1 average difference from experiment.
MSλD and relative FEP simulations achieved comparable

levels of accuracy for this data set. However, the difference lies
in the computational cost of the methods. Comparing the
amount of simulation time required for each, MSλD required a
factor of ∼10 less than relative FEP simulations when
considering only those compounds with known free energies
but is a factor of ∼18 quicker when the entire molecule space is
considered. Furthermore, as a much larger number of
compounds can be evaluated using a single MSλD calculation,
there is also a saving on manual setup time. Overall, it is clear
that MSλD has great potential for the high-throughput
prediction of accurate binding affinities in future lead
optimization projects.

■ DATA AND SOFTWARE AVAILABILITY
Relative FEP calculations were performed using the NAMD
3.0 Alpha simulation software (http://www.ks.uiuc.edu/
Research/namd/alpha/3.0alpha). MSLD calculations were
performed with the CHARMM molecular simulation package
(https://www.charmm.org). All simulation parameters were
comprehensively described in the Materials and Methods
section, and all relevant molecular structures are available in
the Supporting Information.
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