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Kidney renal clear cell carcinoma (KIRC) is the most aggressive subtype of kidney tumours with poor prognosis as well as the
increasing incidence rate in worldwide. The conserved oligomeric Golgi (COG) complex is an eight-subunit (Cog1-8)
peripheral Golgi protein that controls membrane trafficking and protein glycosylation and plays vital roles in human disease
including cancers. Therefore, to uncover the prognostic value of COG complex in KIRC, a series of databases, including
UALCAN database, GEPIA database, and Kaplan-Meier plotter, were used to analyse the mRNA expression of COG complex
subunits and their prognostic values in patients with KIRC in this study. Compared with normal counterparts, mRNA
expression of six COG complex subunits was significantly downregulated in KIRC tissue in UALCAN database, while COG4
mRNA expression was significantly upregulated in KIRC tissue. Moreover, the survival analysis indicated that all members of
COG complex subunits were closely related with the prognosis of KIRC patients, while COG1 and COG4 were significantly
associated with unfavourable overall survival (OS), the rest of COG complex subunits were importantly correlated with
favourable OS. Simultaneously, higher mRNA expression of COG3, COG6, and COG8 exhibits better progression-free survival
(PFS) and disease-free survival (DFS) in KIRC patients. These results identified that COG complex subunits, especially COG3,
COG6, and COG8, are potential prognostic biomarkers of KIRC patients and may offer effective and new strategies for more
accurately diagnosing the patients with KIRC in advance.

1. Introduction

Kidney renal clear cell carcinoma (KIRC) accounting for 80-
90% of patients with renal cell carcinoma (RCC), one of the
most lethal malignant urinary tumours, has poor prognosis
[1, 2]. Chemotherapy and radiotherapy are poorly effective
for patients with KIRC due to the high resistance of KIRC,
leading to the higher mortality rate [3]. Although great prog-
ress has beenmade in the therapeutic treatment and themech-
anism of recurrence and metastasis, the mortality rate and the
diagnose rate are still far from being ideal. At present, the
progression of KIRC cannot be also accurately predicted by
clinical characteristics or common molecular biomarkers.
Therefore, novel useful biomarkers are needed to be identified
for early diagnosis, prevention, and personalized treatment.

The conserved oligomeric Golgi (COG) complex is an
important evolutionally conserved multisubunit tethering
complex at the Golgi apparatus [4, 5]. COG complex plays a
crucial role in endosome to Golgi transport, intra-Golgi retro-
grade vesicle trafficking, and Golgi homeostasis [6, 7]. In addi-
tion, COG complex is also essential for proper localization of
Golgi glycosylation machinery [8]. COG complex has eight
heteromeric subunits that subdivided into two lobes named
lobe A (COG1-4) and lobe B (COG5-8) [ 5], and COG1 and
COG8 form the major bridging interaction between the two
subcomplexes. Accumulating studies have shown that COG
complex regulates the intra-Golgi localization of glycosylation
enzymes to control N-and O-linked glycosylation of proteins
that can modify the behavior of tumour cells and is associated
with tumour grades and prognosis [9–11]. In addition,
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Figure 1: Continued.
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dysfunction of the COG complex can affect the separation of
glycosyltransferases from anterograde cargo molecules to
interfere normal protein glycosylation [11, 12]. Although the
role of COG complex in cancer is not reported more, the
abnormal expression of COG complex can affect tumour
invasion and metastasis by regulating the glycosylation of
protein. Therefore, understanding of the regulation and

molecular function of COG complex may identify potential
targets for the diagnosis and treatment of KIRC.

In the present research, to investigate the potential prog-
nostic value of COG complex in KIRC patients, we compre-
hensively analysed the mRNA expression of individual COG
subunits in KIRC by mining the databases and then explored
the prognostic roles of these genes in KIRC.
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Figure 1: mRNA expression of COG complex members varied in primary tumour and in corresponding normal tissues in KIRC patients
using UALCAN database. (a)–(h) mRNA expressions of all COG family members were analysed in KIRC tumour tissues compared to
normal tissues.
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Figure 2: Prognostic value of COG complex related with overall survival in KIRC patients using Kaplan-Meier plotter.
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Figure 3: The relationship between COG gene expression levels and patient outcomes in progression-free survival (PFS) of KIRC patients.
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Figure 4: The relationship between COG genes expression levels and patient outcomes in disease-free survival (DFS) of KIRC patients.

14 Disease Markers



NS
40

30

20
Tr

an
sc

rip
t p

er
 m

ill
io

n

10

0
Normal 
(n = 72)

Stage 1 
(n = 267)

Stage 2 
(n = 57)

TCGA samples

Expression of COG1 in KIRC based on individual cancer 
stages

Stage 3 
(n = 123)

Stage 4 
(n = 84)

NS NS NS

(a)

p<1E-12

p = 3.23E-08

40

30

20

Tr
an

sc
rip

t p
er

 m
ill

io
n

10

0

Expression of COG2 in KIRC based on individual cancer 
stages

Normal 
(n = 72)

Stage 1 
(n = 267)

Stage 2 
(n = 57)

TCGA samples

Stage 3 
(n = 123)

Stage 4 
(n = 84)

p = 4.44E-16

p = 1.62E-12

(b)

NS
NS

NA

25

20

15

10

Tr
an

sc
rip

t p
er

 m
ill

io
n

5

0

Expression of COG3 in KIRC based on individual cancer 
stages

Normal 
(n = 72)

Stage 1 
(n = 267)

Stage 2 
(n = 57)

TCGA samples

Stage 3 
(n = 123)

Stage 4 
(n = 84)

p = 1.57E-04

(c)

Figure 5: Continued.

15Disease Markers



NS NS

80

70

50

60

Tr
an

sc
rip

t p
er

 m
ill

io
n

40

20

10

30

Expression of COG4 in KIRC based on individual cancer 
stages

Normal 
(n = 72)

Stage 1 
(n = 267)

Stage 2 
(n = 57)

TCGA samples

Stage 3 
(n = 123)

Stage 4 
(n = 84)

p = 4.69E-02
p = 3.22E-04

(d)

p = 1.44E-03 p = 7.73E-05

p = 2.02E-03

NA

Expression of COG5 in KIRC based on individual cancer 
stages

Normal 
(n = 72)

Stage 1 
(n = 267)

Stage 2 
(n = 57)

TCGA samples

Stage 3 
(n = 123)

Stage 4 
(n = 84)

30

25

20

15

10

Tr
an

sc
rip

t p
er

 m
ill

io
n

5

0

(e)

p = 2.78E-04

p = 4.67E-11

p = 3.9E-09

NA

Expression of COG6 in KIRC based on individual cancer 
stages

Normal 
(n = 72)

Stage 1 
(n = 267)

Stage 2 
(n = 57)

TCGA samples

Stage 3 
(n = 123)

Stage 4 
(n = 84)

30

25

20

15

10

Tr
an

sc
rip

t p
er

 m
ill

io
n

5

0

(f)

Figure 5: Continued.

16 Disease Markers



2. Materials and Methods

2.1. UALCAN Database. UALCAN is a web resource which
provides a comprehensive cancer transcriptome data
(http://ualcan.path.uab.edu/) [13]. The whole COG complex
family member expression at mRNA and protein level in
KIRC tissues and in corresponding normal gastric tissues
was assessed by using UALCAN database. In addition, the
UALCAN database was also used to check the relationship
between individual COG family member in different clinico-
pathological features for KIRC patients.

2.2. Survival Analysis. Overall survival analysis of KIRC
patients with different expression levels of COG isoforms
was performed through the Kaplan–Meier plotter (http://
kmplot.com/analysis/) [14], a database containing gene
expression data and clinical data. Then, the progression-
free survival (PFS) of KIRC patients was performed by

UCSC Xena browse (http://xenabrowser.net/) [15], where it
contains the data from the Cancer Genome Atlas (TCGA).
In addition, the prognostic significance depended on
disease-free survival (DFS) in KIRC patients with different
expression levels of COG isoforms were performed through
Gene Expression Profiling Interactive Analysis (GEPIA,
http://gepia2.cancer-pku.cn/#survival) [16], which contains
TCGA and GTEX’ RNA sequencing expression data and
provides differential gene expression analysis and survival
analysis. A p value below 0.05 was considered significant.

3. Results

3.1. Transcriptional Levels of COG Complex in Patients with
KIRC. Eight members of COGs complex have been identi-
fied in mammalian cells. We compared the transcriptional
levels of 8 COG complex members in KIRC and corre-
sponding normal tissues by UALCAN databases (Figure 1).
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Figure 5: The relationship between COG complex members mRNA expression and tumour stages of KIRC patients in the UALCAN database.
(a)–(h) Boxplot showing relative expressions of COG family members in normal individuals or KIRC patients with stage 1, 2, 3, or 4 tumours.
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The results showed that the mRNA expression levels of
COG2, COG3, COG5, COG6, COG7, and COG8 were sig-
nificantly downregulated in KIRC (p < 0:05), while only
COG4 mRNA expression was significantly increased in
patients with KIRC (p = 0:0218).

3.2. Prognostic Values of COG Complex in KIRC Patients. In
order to assess the prognostic values of COG complex in
KIRC, we studied the relationship between COG complex
levels and patient outcomes, including overall survival
(OS), progression-free survival (PFS), and disease-free sur-
vival (DFS) thought using difference online analysis
methods. First, Kaplan–Meier plotter analysis showed that
among 8 individual COG genes, COG2, 3, 5, 6, 7, and
COG8 mRNA high expression was correlated with signifi-
cantly better OS for all GC patients while high mRNA
expression of COG1 and COG4 was significantly associated
with a poor prognosis (Figure 2). In addition, progression-
free survival (PFS) as the time from the start of treatment
to the date of disease progression or death has become a
commonly used outcome to assess the efficacy of cancer
drugs. To evaluate the association between PFS and health-
related quality of life in KIRC patients, we further assessed
the correlation between KIRC patients PFS and COG
complex gene expression, shown by Kaplan-Meier curves
(Figure 3). Moreover, we investigated the expression of
COG complex genes and its association with disease-free
survival of KIRC patients. Kaplan-Meier showed COG2, 3,

5, 6, and 8 were associated with disease-free survival of
patients with KIRC for patients with lower mRNA expres-
sion tend to have shorter disease-free survival (Figure 4).

3.3. Prognostic Values of COG in KIRC Patients with
Different Clinicopathological Features. The relation of COG
with other clinicopathological features of KIRC patients,
including individual cancer stages, and pathological grade
was analysed. The results showed that COG isoform expres-
sion was significantly correlated with individual cancer stages
of KIRC patients (Figure 5). In addition, Kaplan–Meier plotter
analysis showed that lower combinatory mRNA expressions
of some individual COG genes including COG 3, 6, 7, and 8
were associated with poorer overall survival (OS) in KIRC
patients with stage 3 and stage 4 (Figure 6). Similarly, high
mRNA expression of 5 of all COG isoforms (COG2, COG3,
COG5, COG6, COG7, and COG8) was also correlated with
favourable OS of KIRC patients with tumour grade 2, grade
3, and grade 4, while patients with low mRNA expression
of COG4 showed higher survival rate (Figure 7). mRNA
expression levels of COG subtypes depended on the tumour
grade, especially COG4, COG5, COG6, COG7, and COG8.
The highest mRNA expression of COG2 was found in
tumour grade 2, and the mRNA expression of COG3 was
only associated with grade 3. Taken together, mRNA expres-
sions of COGs family members were significantly linked with
clinicopathological features in KIRC patients.
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Figure 6: mRNA expressions of individual COG were significantly correlated with patients’ individual cancer stage 3 and stage 4 by using
Kaplan-Meier plotter.
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4. Discussion

Although novel diagnostic methods were developed to
improve the diagnostic efficiency of KIRC, the patients with
KIRC still showed the poor prognosis due to the limited
biomarkers. Therefore, in order to find new biomarkers for
early detection and prognosis, we analysed the expression
and clinical values of COGs in KIRC patients by data min-
ing. Our results demonstrate that the mRNA of individual
COGs was significantly lower expressed except COG4 whose
mRNA expression is significantly increased compared with
normal tissue. Moreover, the expression of COG genes is
also correlated with stage and grade or KIRC patients. In
addition, results from our study showed higher COG3,
COG6, and COG8 expression associated with favourable
survival, indicating that COG3, COG6, and COG8 may be
statistically significant prognostic biomarkers.

Glycosylation is important for tumour progression and
metastasis [17]. It has been well documented that aberrant gly-
cosylation contributes to tumorigenesis in multiple cancer
types [18–20]. In addition, aberrant glycosylation increased
cancer stem cell ability for tumour proliferation [21] and also
could weakened immune checkpoint blockade against cancer
cells [22, 23]. Simultaneously, accumulating data showed that
protein glycosylation and trafficking were regulated by the
conserved oligomeric Golgi (COG) complex [24]. COG com-
plex depletions resulted in the resident Golgi glycosyltransfer-
ases/glycosidases to be mislocalized or degraded, although
Golgi glycosyltransferases are mostly stable. Acute depletion
of COG complex subunits caused not only the mislocalization
of MAN2A1, MGAT1, B4GALT1, and ST6GAL1 but also
altered the stability and/or glycosylationmodifications of these
proteins [8]. MAN2A1 was reported to involve in glycosyla-
tion pattern in cancer cells, and its knockout strengthened
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Figure 7: The relationship between COG complex members mRNA expression and tumour grade of KIRC patients in the UALCAN
database. (a)–(h) mRNA expression of individual COGs was significantly correlated with tumour grades in KIRC patients.
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the PD-L1 blockade therapy and immune response against
cancer cells [22]. N-acetylglucosaminyltransferases (MGAT1)
regulated the tumour growth and invasion [25–27]. In addi-
tion, the sialyltransferase ST6GAL1 regulated the abnormal
glycosylation of some tumour suppressor genes to promote
tumourigenesis [28, 29], suggesting that COG complex acts
as upstream regulators of these genes to regulate their function
in tumours. Moreover, glycosylation and trafficking defects in
fibroblasts isolated from COG-deficient human patients have
been found through several experimental approaches, suggest-
ing that COG complex plays a key role in tumour metastasis
by regulating protein glycosylation. Therefore, COG complex
has the potentiality to be mined as cancer biomarkers. The
potential mechanism, function, and prognostic value of
COG complex in KIRC or other cancer types were needed to
be further illustrated for KIRC therapy.

5. Conclusion

This study evaluated the prognostic values of COG complex
genes in KIRC patients by mining the online database with
bioinformatic analysis. Our results suggested that high
mRNA expression levels of COG2, COG3, COG5, COG6,
COG7, and COG8 were associated with better OS, while
only COG4 was significantly related with worse OS in KIRC
patients. Moreover, further analysis with PFS and DFS of
patients showed that high expression of COG3, COG6, and
COG8 was closely correlated with favourable survival.
Besides, the analysis between COG genes expression and
clinicopathological characteristics in KIRC indicated that
COG genes are promising prognostic biomarkers in KIRC
patients and may offer novel targets for KIRC therapy. But
the mechanism of COG genes as tumour-related protein
in KIRC is still insufficient. More researches need to be
further elucidated.
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