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Abstract: The present study investigated the possible anti-obesity and hypoglycemic effects of
Poncirus trifoliata L. extracts. Mature fruit were divided into flavedo (PF) and juice sacs (PJ), and
extracts from them were tested on C57BL/6 mice fed a high-fat diet (HFD) for thirteen weeks. Both
fruit extracts (40 mg/kg body weight, respectively) showed anti-obesity and hypoglycemic effects.
Consumption of PF and PJ extracts reduced body weight by 9.21% and 20.27%, respectively. Liver
and adipose weights, fasting glucose, serum triglyceride (TG), and low density lipoprotein cholesterol
(LDL-c) levels decreased significantly, while serum high density lipoprotein cholesterol (HDL-c) and
oral glucose tolerance levels increased significantly in response to two fruit extracts. These effects
were due in part to the modulation of serum insulin, leptin, and adiponectin. Furthermore, transcript
levels of fatty acid synthase (FAS) and stearoyl-CoA desaturase 1 (SCD1) were reduced while those
of carnitine palmitoyltransferase 1α (CPT1α) and insulin receptor substrate 2 (IRS2) were increased
in the liver of C57BL/6 mice, which might be an important mechanism affecting lipid and glucose
metabolism. Taken together, P. trifoliata fruit can be potentially used to prevent or treat obesity and
associated metabolic disorders.
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1. Introduction

Noninfectious chronic diseases (NCDs) such as obesity and diabetes have emerged as a global
health problem. In 2014, according to World Health Organization, more than 1.9 billion adults were
estimated to be overweight, with over 600 million being obese [1]. Development of obesity is usually
accompanied with other metabolism disorders such as hyperlipidemia, diabetes and inflammation [2].
Many NCDs interact with each other and developments of different NCDs are usually multifactorially
affected. Dietary intervention is an important strategy to prevent and control these metabolic syndrome
related NCDs since there are many structurally diverse food-derived molecules targeting different
metabolism pathways in vivo [3,4].

Edible plants provide diverse bioactive compounds, which can be used for efficient prevention
and treatment of the multifactorial NCDs. For example, anthocyanin from mulberry and cherry
prevented oxidative stress and inflammation in diet-induced obese C57BL/6 mice [5]. Neohesperidin
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from Citrus aurantium had hypolipidemic and hypoglycemic effects in KK-Ay mice [6]. Poncirus
trifoliata L., a member of the Rutaceae family, has been cultivated in China for more than 2000 years,
and is a commonly used rootstock for the Citrus genus. The fruit has diverse nutritional properties,
and it has a long history of use as a Chinese medicine—for example, as a potential anti-leukemic
candidate since it induced apoptosis in human promyelocytic leukemia HL-60 cells [7] and for the
anti-inflammatory activity of compounds in fruit extracts [8]. Lee et al. reported that neohesperidin
and poncirin isolated from the fruit have protective effects on potential gastric disease [9] and aqueous
extract of immature fruit of P. trifoliata suppressed body weight gain in Sprague–Dawley rats [10].
The bioactivities in fruit extracts are due to the various compounds, which accumulate differently
in various fruit tissues and developmental stages, but to date there has been very few studies on
anti-obesity and hypoglycemic effects of different tissues of mature P. trifoliata fruit.

In the present study, the possible anti-obesity and hypoglycemic effects of P. trifoliata flavedo
(PF) and juice sac (PJ) extracts were investigated. Anti-obesity and metabolic-related activities were
evaluated by using the high-fat diet (HFD) C57BL/6 mice model.

2. Results

2.1. LC-MS Identification and HPLC Quantification

Four flavanones were identified using LC-MS, i.e., narirutin and its isomer naringin, and didymin
and its isomer poncirin (Table 1). Naringin and poncirin had neohesperidose in R1, while the other
two had rutinose in R1 (Table 1).

Table 1. Structural and chromatographic characteristics of four main flavanones in P. trifoliata extracts.
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Quantification of four flavanones in P. trifoliata extracts was accomplished by HPLC (Figure 1),
which was carried out according to the retention time and peak area compared with their standards.
PJ extract had higher amounts of the four flavanones (184.91 mg/g) compared to PF (99.21 mg/g) and
the major flavanones were naringin in PF (77.05 ˘ 8.16 mg/g) and poncirin in PJ (107.46 ˘ 12.82 mg/g)
(Table 2).

Table 2. Contents of four main flavanones in P. trifoliata flavedo (PF) and juice sacs (PJ) extracts.

No. Flavanone PF (mg/g) PJ (mg/g)

1 Narirutin 14.92 ˘ 1.94 9.43 ˘ 1.84
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Figure 1. P. trifoliata fruit (A) and HPLC chromatograms of four flavanone standards (B); P. trifoliata 
flavedo (PF) (C); and juice sacs (PJ) (D) extracts (λ = 280 nm). 

2.2. Effects of P. trifoliata Extracts on Lipid Related Parameters 

At the end of the animal experiment (13-weeks), the body weight of HFD mice was 33.30 ± 0.84 g, 
which was significantly higher than that of the low-fat diet (LFD) mice (23.89 ± 0.69 g) at the same 
stage (Figure 2A). Treatments of the HFD mice with both PF and PJ resulted in significantly 
decreased body weight, reduced by 9.21% (30.23 ± 0.34 g) and 20.27% (26.55 ± 1.20 g), respectively, at 
week 13 (Figure 2A). No significant difference was observed in food intake of the different groups 
(Figure 2B). In addition, the weights of liver, epididymal adipose, and perirenal adipose were 
significantly reduced in the groups treated with fruit extracts, compared to the HFD control group  
(p < 0.05, p < 0.01, p < 0.001) (Table 3). 

 
Figure 2. Effects of PF and PJ extracts (40 mg/kg body weight, respectively) on body weight (A) and 
food intake (B) in high-fat diet (HFD) C57BL/6 mice (13 weeks). Data are presented as mean ± SEM  
(n = 6–10). ** p < 0.01, *** p < 0.001, compared to the HFD group treated with water. 

Figure 1. P. trifoliata fruit (A) and HPLC chromatograms of four flavanone standards (B); P. trifoliata
flavedo (PF) (C); and juice sacs (PJ) (D) extracts (λ = 280 nm).

2.2. Effects of P. trifoliata Extracts on Lipid Related Parameters

At the end of the animal experiment (13-weeks), the body weight of HFD mice was 33.30 ˘ 0.84 g,
which was significantly higher than that of the low-fat diet (LFD) mice (23.89 ˘ 0.69 g) at the same
stage (Figure 2A). Treatments of the HFD mice with both PF and PJ resulted in significantly decreased
body weight, reduced by 9.21% (30.23 ˘ 0.34 g) and 20.27% (26.55 ˘ 1.20 g), respectively, at week 13
(Figure 2A). No significant difference was observed in food intake of the different groups (Figure 2B).
In addition, the weights of liver, epididymal adipose, and perirenal adipose were significantly reduced
in the groups treated with fruit extracts, compared to the HFD control group (p < 0.05, p < 0.01,
p < 0.001) (Table 3).

Serum, triglyceride (TG) increased significantly in HFD control mice (1.95 ˘ 0.35 mmol/L)
compared to the LFD group (1.00 ˘ 0.09 mmol/L) and PF and PJ treatments resulted in
significantly lower TG, i.e., 0.888 ˘ 0.05 mmol/L and 0.64 ˘ 0.03 mmol/L, respectively (Table 3).
In addition, HFD control mice showed significantly lower high-density lipoprotein cholesterol (HDL-c)
(1.42 ˘ 0.20 mmol/L) and higher low-density lipoprotein cholesterol (LDL-c) (0.65 ˘ 0.06 mmol/L),
when compared with the LFD group. Both fruit-extract-treated HFD groups showed significantly
lower LDL-c (p < 0.05, p < 0.01) and improved levels of HDL-c (p < 0.01), although there was no
significant difference in serum total cholesterol (TCH) between HFD and LFD groups or within the
HFD groups (Table 3).

Histological observation showed intense lipid accumulation in the liver of HFD mice treated
with water, compared with the LFD mice (Figure 3A). Both PF and PJ treatments markedly inhibited
lipid accumulation in the liver of HFD mice (Figure 3A). Hypertrophy of the adipocytes was observed
in the epididymal adipose tissue of the HFD mice treated with water, when compared with LFD
mice (Figure 3B). This was attenuated by PF and PJ treatments, which resulted in decreased size of
epididymal adipocytes in mice (p < 0.01, p < 0.001) (Figure 3B,C).
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Figure 2. Effects of PF and PJ extracts (40 mg/kg body weight, respectively) on body weight (A) and
food intake (B) in high-fat diet (HFD) C57BL/6 mice (13 weeks). Data are presented as mean ˘ SEM
(n = 6–10). ** p < 0.01, *** p < 0.001, compared to the HFD group treated with water.

Table 3. Effects of PF and PJ extracts on weight of different tissues and serum lipids in high-fat diet
(HFD) C57BL/6 mice.

Parameter LFD + Water HFD + Water HFD + PF HFD + PJ

Weight of tissues

Liver (g) 0.96 ˘ 0.03 ** 1.15 ˘ 0.05 0.91 ˘ 0.02 *** 0.85 ˘ 0.05 ***
Epididymal adipose (g) 0.21 ˘ 0.02 ** 0.56 ˘ 0.08 0.39 ˘ 0.02 * 0.25 ˘ 0.04 **

Perirenal adipose (g) 0.05 ˘ 0.01 * 0.18 ˘ 0.04 0.11 ˘ 0.01 0.06 ˘ 0.01 *

Serum lipids

TG (mmol/L) 1.00 ˘ 0.09 * 1.95 ˘ 0.35 0.88 ˘ 0.05 ** 0.64 ˘ 0.03 **
TCH (mmol/L) 2.96 ˘ 0.04 3.01 ˘ 0.12 2.88 ˘ 0.13 2.69 ˘ 0.13

HDL-c (mmol/L) 2.24 ˘ 0.09 ** 1.42 ˘ 0.20 2.22 ˘ 0.09 ** 2.21 ˘ 0.14 **
LDL-c (mmol/L) 0.49 ˘ 0.02 * 0.65 ˘ 0.06 0.42 ˘ 0.04 ** 0.46 ˘ 0.03 *

Data are presented as mean ˘ SEM (n = 6–10). * p < 0.05, ** p < 0.01, *** p < 0.001, compared to the HFD group
treated with water. LFD: low fat diet; TG: triglyceride; TCH: total cholesterol; HDL-c, high-density lipoprotein
cholesterol; LDL-c: low-density lipoprotein cholesterol.
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Figure 3. Effects of PF and PJ extracts on morphological changes (ˆ200) in liver (A) and epididymal
adipose (B); and relative adipocyte size (C) in HFD C57BL/6 mice. Data are presented as mean ˘ SEM
(n = 6–10). ** p < 0.01, *** p < 0.001, compared to the HFD group treated with water.
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2.3. Effects of P. trifoliata Extracts on Glucose Related Parameters

HFD mice treated with water began to show hyperglycemia symptoms from week 8, where the
fasting glucose was 8.03 ˘ 0.54 mmol/L compared with that of the LFD mice (5.59 ˘ 0.28 mmol/L,
p < 0.001) (Figure 4A). In week 10, fasting glucose of the HFD control group reached 10.40 ˘ 0.34 mmol/L,
and 7.02 ˘ 0.21 mmol/L in LFD mice. PF and PJ treatments significantly decreased fasting glucose both
in week 8 and week 10 (p < 0.001) (Figure 4A). After the oral glucose tolerance test (OGTT), the blood
glucose levels remained high at 17.04 ˘ 0.73 mmol/L at 1 h and 9.84 ˘ 0.14 mmol/L at 2 h after the oral
intake of glucose in HFD control group (Figure 4B), which indicated an apparent impairment of the
glucose tolerance. Administration of either of the fruit extracts exerted significant effects on the glucose
tolerance, where the blood glucose levels were reduced to 8.37 ˘ 0.29 mmol/L and 8.20 ˘ 0.23 mmol/L
at 2 h, respectively, for the PF-treated and PJ-treated mice (Figure 4B,C).
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Figure 4. Effects of PF and PJ extracts on fasting glucose (A); oral glucose tolerance test (OGTT) (B);
and area under curve (AUC) (C) in HFD C57BL/6 mice. Data are presented as mean ˘ SEM (n = 6–10).
** p < 0.01, *** p < 0.001, compared to the HFD group treated with water.

2.4. Effects of P. trifoliata Extracts on Insulin, Leptin and Adiponectin

Compared to the LFD mice, the HFD mice showed hyperinsulinemic and insulin-resistant
symptoms (Figure 5A,B). The insulin level in HFD control group was 28.97 ˘ 3.50 mU/L and the
homeostasis model assessment of insulin resistance (HOMA-IR) level was 4.34 ˘ 0.41. PF and PJ
treatments significantly decreased serum insulin (p < 0.01, p < 0.001) and HOMA-IR levels (p < 0.05,
p < 0.001) in HFD mice (Figure 5A,B), indicating that they could ameliorate insulin resistance.
Compared to the LFD mice, the HFD mice also showed high serum leptin (2.91 ˘ 0.51 ng/mL)
and low serum adiponectin (3.39 ˘ 0.20 mg/L) levels (Figure 5C,D), but both PF and PJ treatments
significantly decreased serum leptin levels (p < 0.05, p < 0.001) and increased serum adiponectin levels
in the HFD mice (p < 0.01) (Figure 5C,D).
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2.5. Gene Expression Analysis

The genes studied were fatty acid synthase (FAS), stearoyl-CoA desaturase 1 (SCD1), acetyl-CoA
carboxylase α (ACCα), acyl-CoA oxidase (ACOX), carnitine palmitoyltransferase 1α (CPT1α), and
insulin receptor substrate 2 (IRS2). For the genes involved in fatty acids biosynthesis, the transcript
levels of FAS and SCD1 in HFD mice were higher than in the LFD mice, while they were significantly
reduced by both PF and PJ treatments in the HFD mice (Figure 6A,B). Meanwhile, the expression of
ACCα showed no significant difference between HFD and LFD or among HFD groups (Figure 6C).
For the genes involved in fatty acids oxidation, the expressions of both ACOX and CPT1α were
significantly inhibited by HFD, when compared with the LFD (Figure 6D,E). PF treatment of HFD
mice resulted in significantly higher CPT1α gene expression (Figure 6E). In the HFD control group,
IRS2 gene expression was significantly lower than in mice on LFD and was significantly increased by
treatment with PJ extract (p < 0.01) (Figure 6F).

Molecules 2016, 21, 453 6 of 13 

 

 
Figure 5. Effects of PF and PJ extracts on serum insulin (A); homeostasis model assessment of insulin 
resistance (HOMA-IR) (B); leptin (C); and adiponectin (D) in HFD C57BL/6 mice. Data are presented 
as mean ± SEM (n = 6–10). * p < 0.05, ** p < 0.01, *** p < 0.001, compared to the HFD group treated with 
water. 

2.5. Gene Expression Analysis 

The genes studied were fatty acid synthase (FAS), stearoyl-CoA desaturase 1 (SCD1), acetyl-CoA 
carboxylase α (ACCα), acyl-CoA oxidase (ACOX), carnitine palmitoyltransferase 1α (CPT1α), and insulin 
receptor substrate 2 (IRS2). For the genes involved in fatty acids biosynthesis, the transcript levels of 
FAS and SCD1 in HFD mice were higher than in the LFD mice, while they were significantly 
reduced by both PF and PJ treatments in the HFD mice (Figure 6A,B). Meanwhile, the expression of 
ACCα showed no significant difference between HFD and LFD or among HFD groups (Figure 6C). 
For the genes involved in fatty acids oxidation, the expressions of both ACOX and CPT1α were 
significantly inhibited by HFD, when compared with the LFD (Figure 6D,E). PF treatment of HFD 
mice resulted in significantly higher CPT1α gene expression (Figure 6E). In the HFD control group, 
IRS2 gene expression was significantly lower than in mice on LFD and was significantly increased 
by treatment with PJ extract (p < 0.01) (Figure 6F). 

 
Figure 6. Effect of PF and PJ extracts on relative gene expression of FAS (A); SCD1 (B); ACCα (C); 
ACOX (D); CPT1α (E); and IRS2 (F) in livers of HFD C57BL/6 mice. Data are presented as mean ± 
SEM (n = 4). * p < 0.05, ** p < 0.01, compared to the HFD group treated with water. 

Figure 6. Effect of PF and PJ extracts on relative gene expression of FAS (A); SCD1 (B); ACCα (C);
ACOX (D); CPT1α (E); and IRS2 (F) in livers of HFD C57BL/6 mice. Data are presented as mean ˘ SEM
(n = 4). * p < 0.05, ** p < 0.01, compared to the HFD group treated with water.



Molecules 2016, 21, 453 7 of 13

3. Discussion

C57BL/6 mice are susceptible to diet-induce obesity and exhibit metabolic abnormalities such
as dyslipidemia and hyperglycemia that phenotypically resemble obesity and type 2 diabetes [11,12].
In our study, the HFD mice treated with water also had significantly higher body weight and blood
glucose compared to the LFD mice. Both the PF and PJ extracts showed anti-obesity and hypoglycemic
effects in the HFD C57BL/6 mice, where administration of PF and PJ extracts (40 mg/kg body weight)
reduced body weight by 9.21% and 20.27%, respectively. Liver and adipose weights, fasting glucose,
TG, LDL-c, insulin, and leptin levels all decreased significantly, while serum HDL-c, adiponectin, and
oral glucose tolerance levels were increased significantly in mice treated with either two fruit extract.
Shim et al. reported that an aqueous extract of immature fruit of P. trifoliata (200 mg/2 mL/animal/day)
suppressed body weight gain by 6% in Sprague-Dawley rats after 10 weeks [10]. However, there was
no significant change in plasma TG and other serum biochemical parameters and relative organ weight.
In addition, administration of the same fruit extract at low dosage of (20 mg/animal/day) did not
reduce body weight gain [10]. The bioactivities of fruit extracts are due to the interaction of different
bioactive compounds. Fruit at different maturities or different fruit tissues have different bioactive
compounds compositions, which may have resulted in different overall bioactivities.

There was no significant difference in food intake between mice in the PF and PJ groups and
the HFD group treated with water (Table 3), indicating that anti-obesity effects of PF and PJ extracts
were not caused by suppressing appetite. In addition, none of the animals fed PF and PJ extracts
showed abnormal clinical signs during the whole experiment, suggesting that consumption of PF and
PJ was safe.

Nowadays, flavanones are attracting more and more attention in relation to NCDs. Taking
naringin for example, it attenuated obesity, dyslipidemia and insulin resistance in HFD C57BL/6
mice [13]. In other research, naringin was found to attenuate insulin resistance, β-cell dysfunction,
hepatic steatosis and kidney damage in a type 2 diabetes rat model [14]. Administration of naringin at
approximately 100 mg/kg/day in Wistar rats resulted in 1.5% reduction in body weight after 16-week
experiment compared to rat fed only with high-fat diet [15]. In addition, in a clinical study, naringin
supplementation lowered plasma lipids in hypercholesterolemic subjects [16]. Narirutin from citrus
peels was reported to attenuate alcoholic liver disease, and it significantly suppressed the TG and TCH
in the ethanol-treated ICR mice [17]. Poncirin from P. trifoliata prevented adipocyte differentiation in
mesenchymal stem cells [18]. In the present study, PJ extract showed a greater effect than PF extract on
parameters such as body weight, organ weight, serum TG, TCH, epididymal adipocyte size, leptin and
adiponectin. This difference was correlated with the higher total flavanone content in PJ extract
(184.91 mg/g), compared with PF (99.21 mg/g). Therefore, although there are other bioactive
compounds in the extracts such as terpenoids etc., it seems reasonable to propose that flavanones
play an important role in the anti-obesity and hypoglycemic effects of P. trifoliata extracts. In addition,
naringin and poncirin were major flavonoids in two fruit extracts. Doses of naringin given to the
mice from PF and PJ extracts were 3.1 mg/kg body weight and 2.0 mg/kg body weight, respectively.
Doses of poncirin given to the mice from PF and PJ extracts were 0.2 mg/kg body weight and
4.3 mg/kg body weight, respectively. Our results showed that PF and PJ extracts reduced body weight
by 9.21% and 20.27%, respectively. Therefore, suppression of obesity by small dose of flavanones was
found in the present study. Further investigation into the action or interaction of different flavanones
responsible for the anti-obesity effect is required.

Insulin, a hormone related to lipid metabolism, contributes to the development of obesity [19].
In the present study, an increase in serum insulin and HOMA-IR levels suggested there was insulin
resistance in the HFD C7BL/6 mice (Figure 5A,B). Consumption of PF and PJ ameliorated insulin
resistance (Figure 5A,B), suggesting that improved insulin sensitivity might partially explain the
anti-obesity effects of the two fruit extracts.

Both leptin and adiponectin are closely related to obesity [20]. Leptin is mainly produced in
adipocytes and its levels may reflect lipid content in the body [21]. In our study, the HFD mice
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treated with water exhibited hyperleptinemic symptoms, which was consistent with the diet-induced
resistance to leptin action as reported previously [21–23]. Treatments with P. trifoliata extracts lowered
the leptin levels (Figure 5C), which coincided with the change in the size of white adipose tissue
(Figure 3B,C). Leptin secretion could be regulated by the accumulation of fat in adipocytes, which
resulted in insulin resistance as observed in the obese animal model [22]. Similar observation was
shown by Maeda et al. [23], where dietary fucoxanthin and fish oil down-regulated adipocytokines
including leptin and attenuated weight gain of white adipose tissue in mice.

Adiponectin is also closely related to insulin sensitivity and it stimulates glucose uptake in
muscle and inhibits hepatic glucose production [24]. Administration of adiponectin has been shown
to ameliorate hyperglycemia and hyperinsulinemia in an insulin-resistant mouse model [25]. Grape
seed extract increased plasma adiponectin level and lowered HOMA-IR in HFD hamsters, which
resulted in lowered glycemia and inhibited obesity development [26]. Our study also showed increased
adiponectin levels in mice treated with each fruit extracts (Figure 5D), which might contribute to
the decreased HOMA-IR. Thus, promoting the secretion of adiponectin, reducing insulin resistance
and leptin level may be an important mechanism for the anti-obesity and hypoglycemic effects of
P. trifoliata extracts.

Type 2 diabetes, is related to either insulin resistance or impaired insulin secretion [27]. In
the present study, the insulin-resistant HFD mice had impaired glucose tolerance, as shown in
OGTT (Figure 4B). P. trifoliata extracts reduced insulin resistance as indicated by reduced insulin
and HOMA-IR levels (Figure 5A,B), and the fruit-extract-treated HFD mice showed lower blood
glucose levels than those of water-treated HFD mice at 60, 90 and 120 min during the OGTT (Figure 4B).
Gene expression results also showed that IRS2 gene was induced by the fruit extracts (Figure 6F),
which further favored increased insulin sensitivity in the HFD mice treated with the fruit extracts.

Among the various fatty acid metabolism target genes, FAS, SCD1, and ACCα are involved in the
biosynthesis of fatty acids while ACOX and CPT1α are related to fatty acid oxidation [28]. SCD1 is
a δ-9 fatty acid desaturase required for the biosynthesis of monounsaturated fatty acids, which are
key substrates for the formation of complex lipids such as TG, cholesterol esters, and phospholipids.
SCD1 has emerged as one of the key regulators in lipid and sugar metabolism, where it can affect
diabetes, insulin resistance, hyperlipidemia, etc. [29]. Results of the present study showed that the
transcript level of SCD1 was significantly inhibited by treatments of the HFD mice with either of
the fruit extracts. FAS is an important multifunctional enzyme related to lipid metabolism [30]. PF
and PJ treatment resulted in a significant reduction in FAS gene expression in the liver of C57BL/6
mice. Meanwhile, transcripts of ACCα were reduced while those of ACOX and CPT1α were increased
by both fruit extracts, which might be closely related to the lipid-lowering phenotype in the liver of
C57BL/6 mice. Therefore, consumption of PF and PJ extracts might modulate lipid metabolism by
affecting hepatic fatty acid synthesis and oxidation.

4. Materials and Methods

4.1. Chemicals

Acetonitrile and naringin were purchased from Sigma-Aldrich (St. Louis, MO, USA). Narirutin,
didymin and poncirin were the products of J & K Scientific Ltd. (Shanghai, China). Double-distilled
water (ddH2O) was used in all experiments. All the other reagents were of analytical grade bought
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

4.2. Fruit Materials and Preparation of P. trifoliata Extracts

Mature P. trifoliata fruits were collected in October 2013 from Taizhou, Zhejiang Province, China.
The fruit samples were botanically authenticated by Dr. Changjie Xu from Zhejiang University
(Zhejiang, China). The fruits were separated into two parts: PF and PJ. Each part of the fruit tissue
was lyophilized and ground in a laboratory mill. The methods of preparing extracts were based on
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Zhang et al. with some modifications [31]. The ground powder of the two fruit parts was extracted with
20 mL of 80% methanol for 30 min with ultrasound, frequency 60 kHz and power 30 W, respectively.
The samples were extracted twice and centrifuged at 10,000 rpm for 10 min. The supernatant solution
was evaporated with a rotary evaporator under reduced pressure and dissolved in ddH2O. The
aqueous solution was then purified on a C18 Sep-Pak® cartridge (12 cc/2 g, Waters, Milford, MA,
USA) to remove the sugar, acid and other polar substances. The cartridge was activated with 20 mL
methanol, conditioned with 20 mL water, and aqueous solution was loaded onto the cartridge, which
was then washed with 40–80 mL water and thoroughly dried. Compounds adsorbed to the cartridge
were eluted with methanol and vacuum-dried (Concentrator Plus, Eppendorf, Germany) to obtain the
PF and PJ extracts for further chemical analysis and animal experiments.

4.3. LC-MS and HPLC Analysis

Identification of the main flavanones in different fruit tissues was performed using an Agilent
1290-6460 Triple Quadrupole LC-MS system (Agilent Technologies Inc., Santa Clara, CA, USA).
Analytical identification was performed using multiple reaction monitoring (MRM) and electrospray
ionization in negative mode for the flavanones. Chromatographic separations were done on an ODS
C18 analytical column (4.6 mm ˆ 250 mm) using an Agilent 1290 Infinity HPLC system (Agilent
Technologies, Santa Clara, CA, USA). The eluent was split and approximately 0.3 mL/min was
introduced into the mass detector. The operation conditions were as follows: capillary 3500 v (negative),
nebulizer 45 psi, dry gas flow rate 5 L/min at 325 ˝C. An Agilent MassHunter Workstation (Santa
Clara, CA, USA) was used for data acquisition and processing.

Flavanones in different fruit tissues were analyzed by HPLC according to Sun et al. with some
modifications [32]. Briefly, an HPLC system (2695 pump, 2996 diode array detector, Waters, Milford,
MA, USA) coupled with an ODS C18 analytical column (Sunfire, 4.6 mm ˆ 250 mm, i.d., 5 µm,
Waters) was used with the detection wavelength of 280 nm. The mobile HPLC phase consisting of
ddH2O (A) and acetonitrile (B) was performed as follows: 0–15 min, 20% B, 15–35 min, 20%–60% B,
35–40 min, 60%–100% B, 40–42 min, 100% B, 42–45 min, 100%–20% B, 45–50 min, 20% B. The separation
temperature was set at 25 ˝C and the flow rate was 1 mL/min. Flavanones were analyzed according to
the retention time and UV pattern compared with their standards.

4.4. Animals and Diets

All the experimental procedures were conducted following the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health. This study was approved by the Committee
on the Ethics of Animal Experiments of Zhejiang University (Permit Number: SYXK 2012-0178).

Forty male C57BL/6 mice were purchased from Shanghai Slac Laboratory Animal Co., Ltd.
(Shanghai, China). They were at 6 weeks of age and kept in a specific pathogen free facility. Three or
four mice were kept in each individual cage under 12 h light/dark cycle and fed food and water ad
libitum during the entire experiment. After 7 days of adaptation, mice were then randomly split into
four groups and fed specific diets for a period of 13 weeks. The groups included: (1) ten C57BL/6
mice fed with LFD (10% fat) provided by Jiangsu Medicience Biomedicine Co., Ltd. (Yangzhou, China)
and water by gavage; (2) ten C57BL/6 mice fed with HFD (45% fat) provided by Jiangsu Medicience
Biomedicine Co., Ltd. (Yangzhou, China) and water by gavage; (3–4) 20 C57BL/6 mice fed with HFD
diet (each group contained 10 mice), and PF and PJ extracts (40 mg/kg body weight, respectively) by
gavage. Before feeding to the animal, these extracts were dissolved in water at the concentration of
2 mg/mL. The dose was chosen according to a preliminary experiment. The human-equivalent dose
based on body surface area is about 3.2 mg/kg body weight, respectively [33]. The extracts were given
to mice once a day and six days each week. Body weight measurement started from the first week of
the study and continued weekly for the entire experiment of each mouse. After 13 weeks, the mice
were sacrificed by decapitation after overnight fasting. Blood samples, liver, epididymal, and perirenal
adipose were collected, weighed and then stored at ´80 ˝C.
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4.5. Serum and Histological Analysis

Serum TG, TCH, HDL-c, and LDL-c were determined by Roche Cobas 8000 modular analyzer
series (Roche Diagnostics, Basel, Switzerland). Serum insulin, leptin and adiponectin levels were
analyzed by immunoassay using ELISA kits (Shanghai Lengton Biological Technology Co., Ltd.,
Shanghai, China) according to the manufacturer’s protocols. HOMA-IR was assessed according to a
previously described method and as follows: HOMA-IR = serum glucose level (mmol/L) ˆ serum
insulin level (mU/L)/22.5 [34].

Liver and epididymal white adipose tissue samples were fixed with 4% formalin, stained with
hematoxylin and eosin (H&E) and then examined under an Olympus microscope equipped with a
CCD camera (DP20, Tokyo, Japan) using the DP2-BSW image analysis software system (Olympus,
Tokyo, Japan). For measurement of the relative adipocyte size, adipocytes were randomly chosen and
used for measurements and calculations.

4.6. Fasting Glucose and OGTT

Fasting blood glucose was measured every 2 weeks from week 8 of the experiment using
One-Touch Ultra ZSJ 843ETT Glucometer (Johnson & Johnson, New Brunswick, NJ, USA). OGTT
was conducted in week 12. All the mice fasted overnight before the test and then fed with water or
P. trifoliata extracts by gavage. The mice were given 4 g/kg glucose orally for OGTT. Blood samples
were collected from the tail vein for measurement of basal blood glucose levels (0 min) before the
intake of glucose. Additional blood glucose levels were measured at 30, 60, 90 and 120 min.

4.7. Quantitative Real-Time PCR

Total RNA from liver was extracted with Trizol (Invitrogen Life Technologies, Carlsbad, CA, USA)
according to the manufacturer’s protocol. For each treatment group, four biological replicates were
used for RNA extraction. The trace contaminating genomic DNA in total RNA was removed with
TURBO DNase (Ambion, Austin, TX, USA). cDNA synthesis was initiated from 1.0 µg DNA-free
RNA, using iScriptTM cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA). Real-time PCR was carried
out using a CFX96 instrument (Bio-Rad). The PCR protocols used SsoFast EvaGreen Supermix kit
(Bio-Rad). β-Actin, a housekeeping gene, was used as the internal control. The 20 µL reaction mixture
was prepared as follows: 10 µL SYBR Green Quantitative PCR Mix (Bio-Rad), 1 µL of forward primer
(10 µmol/L), 1 µL of reverse primer (10 µmol/L), and 2 µL of cDNA. The real-time PCR conditions
were as follows: 95 ˝C for 30 s followed by 45 cycles at 95 ˝C for 10 s, 60 ˝C for 30 s. The primers used
in the experiments were shown in supplemental Table 4.

Table 4. Primers used in quantitative real-time PCR.

Gene Forward Primer (5’ to 3’) Reverse Primer (5’ to 3’)

FAS CTGCGGAAACTTCAGGAAATG GGTTCGGAATGCTATCCAGG
SCD1 TCTTCCTTATCATTGCCAACACCA GCGTTGAGCACCAGAGTGTATCG
ACCα GGCCAGTGCTATGCTGAGAT AGGGTCAAGTGCTGCTCCA
ACOX CGGAAGATACATAAAGGAGACC AAGTAGGACACCATACCACCC
CPT1α AGGACCCTGAGGCATCTATT ATGACCTCCTGGCATTCTCC
IRS2 GCTCCCTGTTCCTGCAGCGG CAAAGGTGCCAGCCCCTGGG

β-Actin ATGTGGATCAGCAAGCAGGA AAGGGTGTAAAACGCAGCTCA

4.8. Statistical Analysis

All the data were analyzed using SPSS 17.0 statistical software (SPSS Inc., Chicago, IL, USA). In
addition, the mean ˘ SEM for each group was calculated. Differences indicated in the figures were
based on Student’s t-test between the LFD group or treatment groups and the HFD group treated with
water, where differences were considered significant at p < 0.05 level.
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5. Conclusions

In conclusion, the present study showed that extracts from two parts of P. trifoliata fruit had
anti-obesity and hypoglycemic effects in the HFD C57BL/6 mice. Consumption of PF and PJ extracts
at 40 mg/kg body weight reduced body weight by 9.21% and 20.27%, respectively. The two fruit
extracts could reduce serum and liver lipid profiles and serum insulin and leptin levels, and enhance
serum adiponectin level in the HFD C57BL/6 mice. In addition, fasting glucose was decreased and
oral glucose tolerance levels were increased by both fruit extracts. Considering the fact that natural
products are safer and contain many structurally diverse bioactive compounds capable of regulating
different metabolic pathways in NCDs, the P. trifoliata fruit extracts may have great potential for
developing functional foods or drugs to prevent obesity, type 2 diabetes, and related disorders in
the future.
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