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Abstract: Early detection of arrhythmia and effective treatment can prevent deaths caused by cardio-
vascular disease (CVD). In clinical practice, the diagnosis is made by checking the electrocardiogram
(ECG) beat-by-beat, but this is usually time-consuming and laborious. In the paper, we propose
an automatic ECG classification method based on Continuous Wavelet Transform (CWT) and Con-
volutional Neural Network (CNN). CWT is used to decompose ECG signals to obtain different
time-frequency components, and CNN is used to extract features from the 2D-scalogram composed
of the above time-frequency components. Considering the surrounding R peak interval (also called
RR interval) is also useful for the diagnosis of arrhythmia, four RR interval features are extracted
and combined with the CNN features to input into a fully connected layer for ECG classification.
By testing in the MIT-BIH arrhythmia database, our method achieves an overall performance of
70.75%, 67.47%, 68.76%, and 98.74% for positive predictive value, sensitivity, F1-score, and accuracy,
respectively. Compared with existing methods, the overall F1-score of our method is increased by
4.75~16.85%. Because our method is simple and highly accurate, it can potentially be used as a
clinical auxiliary diagnostic tool.

Keywords: arrhythmia; continuous wavelet transform; convolutional neural network; deep learning;
ECG classification; heartbeat classification

1. Introduction

Arrhythmia refers to irregular heart rhythm and is one of the main causes of cardio-
vascular disease (CVD) death. Most arrhythmias are not serious, but some are harmful or
even life-threatening [1]. For example, atrial fibrillation can lead to strokes and cardiac
arrest. It is very dangerous and needs to be treated immediately. According to the World
Health Organization (WHO) report, CVD caused approximately 17.5 million deaths in 2012,
accounting for 30% of global deaths [2]. By 2030, the number of CVD deaths is expected
to increase to 23 million. Furthermore, the cost of CVD-related treatments, including
medication, is very expensive. It is estimated that the cost in low- and middle-income
countries is approximately US $3.8 trillion from 2011 to 2025 [2].

Early detection and effective treatments such as vagal maneuvers and medications can
prevent the occurrence of CVD. In the clinical setting, the arrhythmia is usually diagnosed
by analyzing the heartbeat of an electrocardiogram (ECG) signal. An ECG signal consists
of a series of heartbeats (or called waves) that repeat periodically in time and represents the
electrical activity of the heart over time [3]. The doctor checks these heartbeats to diagnose
the presence of arrhythmia, while the process is time-consuming and labor-intensive.

To this end, researchers have developed a method to automatically classify heartbeats
in ECG signals (also known as heartbeat classification in some papers) [1,2,4,5]. Most
methods consist of feature extraction and classification. The heartbeat morphological and
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RR interval features are usually used. For classification, different algorithms have been
used, including artificial neural networks (ANNs), support vector machines (SVMs), multi-
view-based learning, and linear discriminants (LDs) [6]. Despite the good performance
achieved by these methods, the ECG waves and their morphological characteristics of
different patients have significant variations, and for the same patient, the ECG waves
at different times are also different. The fixed features used in these methods are not
enough to accurately distinguish arrhythmia of different patients. Recently, with the rapid
development of deep neural networks, deep learning-based methods have attracted more
and more attention. Deep learning, as a representation learning method, can automatically
extract discriminant features from the training data. Several studies [6–8] show that deep
learning-based methods can extract more abstract features and resolve variations between
patients in ECG classification.

However, there is another problem in the ECG classification. The ECG signal is
usually composed of different frequency components and even noises, which increases
the difficulty of deep learning-based method to extract discriminant features. A naturally
conceivable way is to transform the ECG signal to time-frequency domain to avoid the
effects of aliasing of different frequencies components. There are two widely used time-
frequency techniques: Wavelet Transform (WT) [9] and Short-Time Fourier Transform
(STFT) [10]. WT inherits and develops the idea of STFT, but unlike STFT, WT can not only
provide high-frequency resolution and low time resolution at low frequencies, but also
have high time resolution and low-frequency resolution at high frequencies [11]. Generally,
WT can obtain better time-frequency domain analysis results than STFT.

Motivated by these challenges, we develop an automatic ECG classification method
based on Continuous Wavelet Transform (CWT) and Convolutional Neural Network (CNN)
for ECG classification, where CWT refers to WT using continuous wavelet function. CNN is
a deep learning method that imitates the human visual system, which has been successfully
used for image classification and video recognition [12,13]. The CWT is used to transform
the ECG heartbeat signal to the time-frequency domain and CNN is used to extract features
from the 2D scalogram composed by the above-decomposed time-frequency components.
The method has combined the capabilities of CWT in multi-dimensional signal processing
and CNN in image feature extraction. Arrhythmia usually not only affects the shape of
the heartbeat, but also changes the surrounding RR intervals. To makes full use of all
information for ECG classification, the RR interval features are also extracted and fused
into our CNN. By testing in the MIT-BIH arrhythmia database [14], our method achieves
an overall performance of 70.75%, 67.47%, 68.76%, and 98.74% for positive predictive value,
sensitivity, F1-score, and accuracy, respectively. Compared with existing methods [5,15–18],
the overall F1-score of our method is increased by 4.75~16.85%.

The paper is organized as follows. Section 2 introduces the current classification
paradigms and existing methods. The proposed ECG classification method based on
CWT and CNN is presented in Section 3. The results and discussion are described in
Sections 4 and 5. Section 6 concludes the paper.

2. Literature Review
2.1. Classification Paradigms

Over the past two decades, many automatic ECG classification methods have been
proposed. These works can be grouped into three classification paradigms: intra-patient
paradigm, inter-patient paradigm, and patient-specific paradigm [1]. The intra-patient
paradigm divides the dataset into training and test subsets based on heartbeat labels [1], so
an ECG recording will appear in two subsets. According to research by de Chazal et al. [4],
the intra-patient paradigm would cause the model to learn the patient’s characteristics
during the training phase and shows almost 100% classification accuracy during the test
phase. However, a well-trained model must deal with the heartbeat of unseen patients [7].

In order to be consistent with the practical situation, de Chazal et al. [4] present an
inter-patient paradigm. In the inter-patient paradigm, the training and test subsets consist
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of different ECG recordings [1], so the inter-variation of patients must be considered when
building the model. Although the performance of the inter-patient paradigm model is
worse than that of the intra-patient paradigm model, it has a better generalization ability
and is consistent with clinical practice. The patient-specific paradigm is a hybrid of the inter-
patient paradigm and the intra-patient paradigm [1], also proposed by de Chazal et al. [19].
In this paradigm, first use the inter-patient paradigm to train the global model, and then
use part of the new patient data to fine-tune the model to form a patient-specific model.
Compared with the inter-patient paradigm, the patient-specific paradigm can achieve
better performance. However, this method requires a doctor to label part of the data for
each new patient and an engineer to fine-tune the model, which leads to the limitation
of clinical application. In the paper, we focus on the performance of our method in the
inter-patient paradigm.

2.2. Existing Methods

Due to the overfitting of the intra-patient paradigm, we only introduce the inter-
patient paradigm and patient-specific paradigm methods. For the inter-patient paradigm,
de Chazal et al. [4] develop a linear discriminant method for ECG classification. In the
method, they adopt morphological and dynamic features to represent the heartbeat, and
use maximum likelihood estimation to determine its parameters. Their model obtains a
sensitivity of 75.9% and a positive predictive value of 38.5% for SVEB. Ye et al. [5] apply
independent component analysis (ICA) and wavelet transform to extract morphological
features, and combine the heartbeat interval to represent the heartbeat. An SVM classifier,
then, is used to classify the heartbeat. The overall sensitivity and positive predictive value
of the model are 53.46% and 62.79%, respectively. Chen et al. [16] use a random projection
matrix to derive projected features, and propose a new ECG heartbeat classification method
based on the projected and dynamic features. A sensitivity of 49.69% and a positive
predictive value of 54.77% is achieved.

For the patient-specific paradigm, Hu et al. [20] present a mixture-of-experts (MOE)
method for ECG classification. In the method, each heartbeat contains 14 sample points
around its R peak. First, train the global classifier based on the ECG recordings of different
patients. Then, use the five-minute doctor-annotated ECG signal of the new patient to
train the local classifier. Finally, combined the global classifier and local classifier to form
a patient-specific classifier. Their method achieves a sensitivity of 82.6% and a positive
predictive value of 77.7%. Ince et al. [21] develop a patient-specific neural network (NN)
using representative beats randomly selected from training records and the first 5 min
of the heartbeat of the new patients. The average accuracy-sensitivity performances of
the model for VEB and SVEB are 98.3–84.6% and 97.4–63.5%, respectively. Ye et al. [22]
proposed a patient-specific model based on their early work [5]. In the work, they used
partial heartbeat data from new patients to fine-tune the model in [5], getting an average
classification accuracy of 99.4% for VEB and 98.3% for SVEB.

3. Methods

The method consists of preprocessing, feature extraction, and classification, as shown
in Figure 1. The preprocessing contains ECG signal denoising, heartbeat segmentation and
RR Interval extraction. Below we introduce each part.

Figure 1. Flowchart of our proposed method.
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3.1. Dataset

The well-known MIT-BIH arrhythmia database [14] is used as the benchmark dataset
to evaluate the proposed method in the paper. The database contains 48 half-h recordings
obtained from 47 subjects. Twenty-three recordings are randomly selected from the 4000
24-h ambulatory ECG recordings and intended as a representative sample of routine clinical.
The remaining 25 recordings are also obtained from the above ambulatory ECG recordings,
but contain rare but clinically significant arrhythmias. Each recording consists of two leads
(i.e., lead A and B), 360 samples per second with an 11-bit resolution over the 10-mV range
ECG signals. The lead A is the modified-lead II (ML II) and the lead B is lead VI, VII, V2,
V4, or V5, depending on the recording. As ML II is ubiquitous in the above records, we
use ML II for ECG classification in the paper. These recordings are individually labeled
by two or more cardiologists and divided into 15 arrhythmia types. By following the
recommendations of the Association for the Advancement of Medical Instrumentation
(AAMI), we further group these arrhythmias into five classes, as shown in Table 1, and
four records (i.e., 102, 104, 107, and 217) that have paced beats are removed. Furthermore,
since the Q class is practically nonexistent, we ignore it like others [23,24].

As we mentioned above, in the paper we focus on the performance of our method in
the inter-patient paradigm. To facilitate direct comparison with existing works, a widely
used data division method proposed by de Chazal et al. [4] is employed to split the
database. The MIT-BIH arrhythmia database is split into DS1 and DS2 datasets [4], each
of which is composed of 22 records that have a similar proportion of beat types. The first
dataset is used for training, and the second is used to test the performance of the method.
None of the patients exists in two datasets.

Table 1. Mapping of MIT-BIH arrhythmia types and Advancement of Medical Instrumentation (AAMI) classes.

AAMI Classes Normal (N)
Supraventricular
Ectopic Beat
(SVEB)

Ventricular
Ectopic Beat
(VEB)

Fusion Beat (F) Unknown Beat
(Q)

MIT-BIH
arrhythmia types

Normal beat
(NOR)—N

Atrial premature
beat (AP)—A

Ventricular escape
beat (VE)—E

Fusion of
ventricular and
normal beat
(fVN)—F

Unclassifiable beat
(U)—Q

Right bundle
branch block beat
(RBBB)—R

Premature or
ectopic
supraventricular
beat (SP)—S

Premature
ventricular
contraction
(PVC)—V

Fusion of paced
and normal beat
(fPN)—f

Left bundle branch
block beat
(LBBB)—L

Nodal (junctional)
premature beat
(NP)—J

Paced beat (P)—/

Atrial escape beat
(AE)—e

Aberrated arial
premature beat
(aAP)—a

Nodal (junctional)
escape beat
(NE)—j

3.2. ECG Preprocessing and Heartbeat Segmentation

The clinically collected ECG signal is normally corrupted by various noises such as
baseline wandering, electromyography disturbance, and power line interference, which
makes it difficult to extract useful information from the raw ECG signal. Therefore, a
filtering step is required before further processing. As excessive filtering would lead to
the loss of useful information, we only remove the noise—baseline wandering, which
has an important impact on ECG classification [24]. The baseline wandering is caused
by respiration or patient movement [1]. Following previous works [25], two median
filters (i.e., a 200 ms width median filter and a 600 ms width median filter) are adopted
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to achieve the baseline wandering, and then subtract it from the raw signals to yield the
baseline-corrected ECG signal. Figure 2a,b shows the effect of baseline wandering removal.
Compared with other filter techniques such as regular infinite impulse response (IIR)
and finite impulse response (FIR), the median filter can eliminate outliers neatly without
increasing phase distortion.

Figure 2. Baseline wandering removal and heartbeat segmentation. Subfigures (a,b) represent before and after removing
the baseline wandering, respectively. Subfigure (c) is an illustration of heartbeat segmentation.

Before the ECG classification, we need to segment the individual heartbeats from the
ECG signal. This usually requires accurate detection of QRS waves and fiducial points
of heartbeats. However, this is not the goal of the paper, and at present, there are many
high-precision (>99%) QRS waves and fiducial points positioning methods been developed
in the literature. In the paper, we take the annotated R-peak location as the fiducial point
and segment the ECG signal into a series of heartbeats. This can allow us to directly
compare the performance with other works. For each heartbeat, we obtain a fixed-size of
200 samples ECG signal by taking 90 samples before and 110 samples after the R-peak.
These sample points have captured the most important waves of heartbeats. An illustration
of the segmentation is shown in Figure 2c.

3.3. Time-Frequency Scalogram via CWT

As the ECG signal is composed of different frequency components, in this study we
transform the ECG signal to the time-frequency domain to facilitate feature extraction. CWT
is the most commonly used time-frequency analysis tool, which uses a family of wavelet
functions to decompose a signal in the time-frequency domain. It inherits and develops the
localization idea of STFT, but unlike STFT, CWT can provide high time resolution and low-
frequency resolution in the high frequencies, and high-frequency resolution and low time
resolution in the low frequencies by adjusting the scale and translation parameters [11].
Formally, given a signal x(t), the CWT is defined as

Ca(b) =
1√
a

∫ ∞

−∞
x(t) · ϕ

(
t− b

a

)
dt (1)

where a is a scale parameter, b is a translation parameter, and ϕ(t) is the wavelet function
(also known as mother wavelet). The scale can be converted to frequency by

F =
Fc ∗ fs

a
(2)
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where Fc is the center frequency of the mother wavelet, fs is the sampling frequency of
signal x(t) [26].

Among them, the choice of mother wavelet is often critical to the effect of time-
frequency analysis. In the paper, the Mexican hat wavelet (mexh) is taken as the mother
wavelet as it is close to the shape of the QRS waves and widely used in ECG signal analysis,
which is defined as

ϕ(t) =
2√

3 4
√

π
exp

(
− t2

2

)(
1− t2

)
(3)

By using different scale factors of CWT, the wavelet coefficients of the signal at different
scales are obtained. These wavelet coefficients can be regarded as a 2D scalogram of ECG
signal in the time-frequency domain.

Figure 3 shows the time-domain ECG heartbeat signal and scalogram of normal
heartbeat and premature ventricular contraction (PVC) heartbeat. Both signals have
200 sampling points and are sampled at a frequency of 360 Hz, decomposed by the Mex-
ican hat wavelet. It can be seen from the scalogram that the PVC heartbeat is obviously
different from the normal heartbeat. This indicates that it is possible to carry out heartbeat
classification using the scalogram. However, it is difficult to explicitly build the relationship
between scalogram and abnormal conditions. To solve the problem, CNN is developed to
automatically extract the potential relationship between different arrhythmias and normal
heartbeats in the paper.

Figure 3. Raw ECG heartbeat signal and CWT scalogram. Subfigures (a,b) represent the ECG heart-
beat signal and CWT scalogram of normal heartbeat, respectively. Subfigures (c,d) represent the
ECG heartbeat signal and CWT scalogram of abnormal heartbeat (premature ventricular contraction
(PVC)), respectively.

3.4. ECG Classification Based on CNN

CNN is a deep learning that uses convolution operations to replace general multipli-
cation in deep neural networks. It can automatically extract discriminant features through
the training process and has been widely used in classification tasks in recent years, espe-
cially in image recognition [27]. CNN’s outstanding achievements are attributed to two
important concepts: sparse interaction and parameter sharing [28]. Sparse interaction is
achieved by making the size of the convolution kernel much smaller than the input. It
reduces the computational complexity of the model and improves its statistical efficiency.
Parameter sharing refers to using the same parameters in the multiplication operation,
that is, the parameters of each convolution kernel are the same when processing different
positions of the input.
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A typical CNN has multiple layers, the most important of which is the convolution
layer. The convolution layer applies a set of weights called filters or kernels to extract
features. Basically, the relevant high-level features can be extracted by increasing the
number of convolution layers. The backpropagation (BP) error algorithm is used to train
the weights of the convolution kernel. Other layers that are commonly used in CNN are
rectified learning units (ReLU) layer, batch normalization layer, and pooling layer. ReLU
layer is used as an activation function to achieve nonlinear capabilities. Batch normalization
layer is usually placed between the convolution layer and the ReLU layer. This layer
normalizes the feature map of each channel, reducing training time and sensitivity of
network initialization. The pooling layer, also known as the subsampling layer, is used to
reduce the feature dimension and speed up the training process. The action of this layer is
to calculate the average or maximum convolution features within adjacent neurons placed
in the previous convolution layer [26]. The last layer of CNN is normally connected to one
or more fully connected neurons that use to compute the class scores. In this study, we
use the CNN shown in Figure 4. To achieve a clear representation, the convolution layer,
batch normalization layer, and ReLU layer are visually combined into a convolution unit.
Three consecutive convolution and pooling operations are used to extract features from
the scalogram. After the last operation, a 64-dimensional feature is obtained. Noted that
the size of the original scalogram is 100 × 200, we resampled it to 100 × 100 to reduce the
computational cost. It should be pointed out that the main information of the ECG signal
is concentrated in 0~50 Hz, so the resampling will not cause performance degradation.

Figure 4. Our CNN architecture. Our Convolutional Neural Network (CNN) not only uses the CWT scalogram of heartbeat,
but also adopts the RR interval features.

Arrhythmia usually not only affects the shape of the heartbeat, but also changes the
surrounding RR intervals (also known as R peak intervals). Therefore, we also combine the
RR interval information into our CNN for ECG classification. Four widely used RR intervals
features (e.g., previous-RR, post-RR, ratio-RR, and local-RR) are extracted. The previous-RR
is the RR interval between the current heartbeat and the previous heartbeat [17]. The post-RR
is the RR-interval between the current heartbeat and the following heartbeat [17]. The ratio-
RR is the ratio of previous-RR and post-RR. The local-RR is determined by the average of
ten previous RR-intervals of the current heartbeat. The previous-RR, post-RR, and local-RR
have subtracted the average RR-interval to eliminate the inter-patient variation. The fusion
features are input into two fully connected layers for classification. The details of our CNN
are listed in Table 2.
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Table 2. The parameters of our CNN architecture.

No. Layer Name Kernel Size Filter Padding Stride Output Shape Parameters

1 Input1 * - - - - 100 × 100 × 1 -
2 Conv2D 7 × 7 16 0 1 94 × 94 × 16 784
3 Batch Normalization - - - - 94 × 94 × 16 64
4 ReLu - - - - 94 × 94 × 16 -
5 Max pooling 5 × 5 - 0 5 18 × 18 × 16 -
6 Conv2D 3 × 3 32 0 1 16 × 16 × 32 4608
7 Batch Normalization - - - - 16 × 16 × 32 128
8 ReLu - - - - 16 × 16 × 32 -
9 Max pooling 3 × 3 - 0 3 5 × 5 × 32 -
10 Conv2D 3 × 3 64 0 1 3 × 3 × 64 18,432
11 Batch Normalization - - - - 3 × 3 × 64 256
12 ReLu - - - - 3 × 3 × 64 -
13 Global Max pooling 3 × 3 - - - 1 × 1 × 64 -
14 Flatten - - - - 64 -
15 Input2 ** - - - - 4 -
16 Concatenate - - - - 68 -
17 Dense - - - - 32 2208
18 Dense - - - - 4 132

* is the scalogram of the heartbeat; ** refers to the RR interval features of the heartbeat.

3.5. Training Setting

The cross-entropy is taken as the loss function, and Adam is used as the optimizer.
Compared with other optimizers, Adam can usually speed up network training. The
weights of the convolution layers and fully connected layers are initialized using He initial-
ization [29]. The learning rate is 0.001, which is reduced by 0.1 times every 5 epochs. The
batch size of the model is 1024 and the maximum epoch is set to 30. CNN is implemented
using PyTorch [30] and trained on the NVIDIA GeForce RTX 2080Ti graphical processing
unit. The code is located at https://github.com/JackAndCole/ECG-Classification-Using-
CNN-and-CWT.

4. Results

To evaluate the performance of the method, three widely used metrics, positive predictive
value (PPV), sensitivity (SE), and accuracy (ACC), are adopted, which are defined as

PPVi =
TPi

TPi + FPi
(4)

SEi =
TPi

TPi + FNi
(5)

ACCi =
TPi + TNi

TPi + TNi + FPi + FNi
(6)

where TPi (true positive) and FNi (false negative) refer to the number of the i-th class
correctly predicted and the number of the i-th class classified into other classes, respec-
tively. TNi (true negative) and FPi (false positive) are the number of other classes that
is not classified as the i-th class and the number of other classes is predicted as the i-th
class, respectively.

As the heartbeat types are imbalanced, the F1-score is also used as the performance
metric in the paper, it is defined as

F1i =
2 · PPVi · SEi
PPVi + SEi

(7)

It takes into account both the positive predictive value and the sensitivity, and is often used
as an overall performance metric for comparing multiple methods. In the imbalanced data,
it is usually more useful than accuracy [31].

https://github.com/JackAndCole/ECG-Classification-Using-CNN-and-CWT
https://github.com/JackAndCole/ECG-Classification-Using-CNN-and-CWT
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According to the recommendations of AAMI, we group the heartbeats of the MIT-BIH
arrhythmia database and use the method of de Chazal et al. [4] to divide the database into
DS1 and DS2 datasets. DS1 is used for training and DS2 is used to test the method. In order
to make a fair comparison, in this study we only compare it with the method that using the
same strategy. As the SVEB and VEB classes are more important than other classes in the
ECG classification, we analyze these two classes in detail, as shown in Table 3. Apart from
the sensitivity of SVEB, our method achieves the best performance among all metrics in
SVEB and VEB. For example, compared to Ye et al., the second best F1-score in SVEB, the
positive predictive value, sensitivity, F1-score, and accuracy of our method in SVEB has
improved by 37.20%, 13.55%, 25.02%, and 2.47%, respectively.

The performance of other classes is listed in Table 4. Except for F class, our method
has achieved better or comparable performance in other classes. Especially, the overall
F1-score of our method is improved by 4.57–16.85%. For the F class, it is mainly composed
of the fusion of ventricular and normal beat, which is very close to the normal heartbeat,
making it difficult for the algorithm to classify them. Existing methods usually predict a
large number of N as F class or F as N class. In our method, CNN can automatically extract
the discriminant features, but the number of F class is limited, which makes our method
presents the same situation (see the confusion matrix of our method, Table 5) as described
above. Zhang et al., although, achieve the best performance in F class, a large number of N
class is misclassified as F class.

Table 3. The classification performance of existing works and our method in SVEB and VEB classes.

Methods

SVEB VEB

Positive
Predictive
Value

Sensitivity F1-score Accuracy
Positive
Predictive
Value

Sensitivity F1-score Accuracy

Liu et al. [15] 39.87% 33.12% 36.18% 95.49% 76.51% 90.2% 82.79% 97.45%
Chen et al. [16] 38.40% 29.50% 33.36% 95.34% 85.25% 70.85% 77.38% 97.32%
Zhang et al. [17] 35.98% 79.06% 49.46% 93.33% 92.75% 85.48% 88.96% 98.63%
Ye et al. [5] 52.34% 61.02% 56.34% 96.27% 61.45% 81.82% 70.19% 95.52%
Garcia et al. [18] 53.00% 62.00% 57.15% - 59.40% 87.30% 70.70% -
Our method 89.54% 74.56% 81.37% 98.74% 93.25% 95.65% 94.43% 99.27%

Table 4. The classification performance of existing works and our method in all classes.

Classes Metrics
Methods

Liu et al. Chen et al. Zhang et al. Ye et al. Garcia et al. Our Method

N Positive predictive value 96.66% 95.42% 98.98% 97.55% 98.00% 98.17%
Sensitivity 94.06% 98.42% 88.94% 88.61% 94.00% 99.42%
F1-score 95.34% 96.90% 93.69% 92.87% 95.96% 98.79%

SVEB Positive predictive value 39.87% 38.40% 35.98% 52.34% 53.00% 89.54%
Sensitivity 33.12% 29.50% 79.06% 61.02% 62.00% 74.56%
F1-score 36.18% 33.36% 49.46% 56.34% 57.15% 81.37%

VEB Positive predictive value 76.51% 85.25% 92.75% 61.45% 59.40% 93.25%
Sensitivity 90.20% 70.85% 85.48% 81.82% 87.30% 95.65%
F1-score 82.79% 77.38% 88.96% 70.19% 70.70% 94.43%

F Positive predictive value 12.99% 0.00% 13.73% 2.50% - 2.04%
Sensitivity 40.72% 0.00% 93.81% 19.69% - 0.26%
F1-score 19.70% 0.00% 23.96% 4.43% - 0.46%

Average Positive predictive value 56.51% 54.77% 60.36% 53.46% 52.60% 70.75%
Sensitivity 63.53% 49.69% 86.82% 62.79% 60.83% 67.47%
F1-score 58.50% 51.91% 64.02% 55.96% 55.95% 68.76%
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Table 5. The confusion matrix of our proposed CNN.

Predicted Label

N SVEB VEB F Total

True label

N 43,962 147 79 30 44,218
SVEB 329 1369 123 15 1836
VEB 124 13 3079 3 3219
F 366 0 21 1 388
Total 44,781 1529 3302 49 49,661

5. Discussion

A CWT-based CNN is proposed for ECG classification in this study. The method
makes use of the feature representation capabilities of CNN. In order to verify this capability,
we analyze it in this part. In addition, the wavelet function is very important for CWT. We
also discuss the impact of different wavelet types on performance here.

CNN feature visualization: As a representation learning method, our CNN-based
methods can automatically extract discriminant features from the data. To verify the
capability, we use t-distributed stochastic neighbor embedding (t-SNE) to visualize the
extracted CNN features [32]. t-SNE is a nonlinear dimensionality reduction method that is
widely used in deep learning to visualize high-dimensional data in two-dimensional or
three-dimensional space. Figure 5 shows the t-SNEs of the raw scalogram and representa-
tion features obtained from three convolution units. To achieve a good visualization, the
number of samples in the figures has been reduced. From Figure 5, we can see that there
are some outliers in the raw scalogram, and different types of heartbeats are mixed together.
While in the convolution units, as the layer deepens, the outliers gradually decrease and
the heartbeat gathers. Especially in the last convolution unit, there is an obvious clustering
of different heartbeats. This means that our CNN can effectively extract features, and as
the network deepens, the extracted features become more and more discriminative.

Figure 5. t-SNEs of raw scalogram and representation features obtained from three convolution units.

Impact of wavelet types: CWT is the most commonly used signal analysis tool in
the time-frequency domain, but there is no uniform standard for the selection of wavelet
functions. In the paper, besides mexh, we also analyze three wavelet functions that widely
used for ECG signals, namely morl, gaus8, gaus4. The overall performance of four wavelet
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functions is listed in Table 6. Mexh achieves the best performance in terms of positive
predictive value, F1-score, and accuracy, except that slightly lower than gaus4 in sensitivity.
To explore the reasons behind it, we plot these wavelet functions, as shown in Figure 6.
Among these wavelet functions, mexh is the closest to the waveform of the ECG signal,
followed by gaus4. Gaus8 and morl are different from the waveform of the ECG signal. It
is interesting to find that the higher the similarity between the waveform of the ECG signal
and the wavelet function, the better the performance. Therefore, it is recommended to use
a wavelet function close to the signal when performing signal analysis like ECG signals.

Table 6. The overall classification performance of the four wavelet functions.

Mother Wavelet Positive Predictive Value Sensitivity F1-Score Accuracy

Mexican hat wavelet (mexh) 70.75% 67.47% 68.76% 98.74%
Morlet wavelet (morl) 61.68% 67.13% 63.54% 97.65%
Gaussian wavelet (gaus8) 67.23% 66.97% 65.63% 98.14%
Gaussian wavelet (gaus4) 65.33% 68.18% 66.56% 98.30%

Figure 6. Wavelet functions. Mexh, morl, gaus8, and gaus4 are Mexican hat wavelet, Morlet wavelet,
Gaussian wavelet with 8 derivatives, and Gaussian wavelet with 4 derivatives, respectively.

6. Conclusions

We developed a novel ECG classification method based on CWT and CNN in the
paper. To avoid the effects of aliasing of different frequency components, CWT is first
used to transform the ECG heartbeat signal into the time-frequency domain. Then, CNN
is used to extract features from a scalogram composed by decomposed time-frequency
components. The method can make full use of the advantages of CWT in multi-dimensional
signal processing and CNN in image recognition. By testing it on the MIT-BIH arrhythmia
database using the inter-patient paradigm, an overall performance of 70.75%, 67.47%,
68.76%, and 98.74% for the positive predictive value, sensitivity, F1-score, and accuracy
is achieved. Due to the highly accurate ECG classification, our method can potentially
be used as a clinical auxiliary diagnostic tool. In general, arrhythmia, as one of the main
causes of cardiovascular disease, is necessary to diagnose it at an early stage. Upon a
proper early diagnosis, effective treatment like vagal maneuvers or medications can reduce
arrhythmia and avoid cardiovascular disease.

Although good overall performance achieved by our method, the performance of
the F class still needs to be improved. As we discussed above, this is because the F class
is mainly composed of the fusion of ventricular and normal beat, and the number of F
class is significantly less than other classes. In general, this can be improved by adding
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more annotated ECG data. However, labeling ECG heartbeats are very expensive and time-
consuming. Nowadays, there are many publicly available unlabeled ECG databases, and
the use of unsupervised learning such as autoencoder may further improve the performance
of the F class in an inexpensive way. In the future, we will try to carry out related work.
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