GigaScience, 8, 2019, 1-6
n
. (GlgA) g Review
SRCuED CIEN:. E

REVIEW

Bjorn A. Griining ©%2', Samuel Lampa @34, Marc Vaudel ©>¢ and
Daniel Blankenberg @7

1Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106,
D-79110 Freiburg, Germany; 2Center for Biological Systems Analysis (ZBSA), University of Freiburg,
Habsburgerstr. 49, D-79104 Freiburg, Germany; *Pharmaceutical Bioinformatics group, Department of
Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24, Uppsala, Sweden; *Department of
Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory,
Stockholm University, Svante Arrhenius vag 16C, 106 91, Solna, Sweden; °K.G. Jebsen Center for Diabetes
Research, Department of Clinical Science, University of Bergen, Postboks 7804, 5020, Bergen, Norway; *Center
for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Postboks 7804, 5020, Bergen,
Norway and ’Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue /
NES50, Cleveland, OH, USA

*Correspondence address. Daniel Blankenberg, E-mail: blanked2@ccf.org © http://orcid.org/0000-0002-6833-9049 Genomic Medicine Institute, Lerner
Research Institute, Cleveland Clinic, 9500 Euclid Avenue / NE50, Cleveland, OH, USA
fCo—first authors.

The increasing complexity of data and analysis methods has created an environment where scientists, who may not have
formal training, are finding themselves playing the impromptu role of software engineer. While several resources are
available for introducing scientists to the basics of programming, researchers have been left with little guidance on
approaches needed to advance to the next level for the development of robust, large-scale data analysis tools that are
amenable to integration into workflow management systems, tools, and frameworks. The integration into such workflow
systems necessitates additional requirements on computational tools, such as adherence to standard conventions for
robustness, data input, output, logging, and flow control. Here we provide a set of 10 guidelines to steer the creation of
command-line computational tools that are usable, reliable, extensible, and in line with standards of modern coding
practices.

Keywords: software development; big data; workflow; standards; data analysis; coding; software engineering; scientific
software; integration systems; computational tools

nity building [5, 6]. Previous resources [7-9] have provided use-
ful recommendations for beginning research software develop-
ment and are recommended reading. However, a single set of
guidelines for new (and veteran) scientists on software develop-
ment for big data is still lacking. One area that is particularly
underrepresented in the literature is the increasing need to in-
corporate scientific software tools into workflow management
systems, tools, or frameworks that coordinate the execution of

Big data has emerged as an era-defining characteristic for mod-
ern science. The design, implementation, and execution of
computational tools is critical to the understanding of large
datasets. Increasing attention is being paid to various facets
surrounding computational research, including reproducibility
[1, 2], reusability [3, 4], and open source efforts and commu-

Received: 16 August 2018; Revised: 20 January 2019; Accepted: 18 April 2019

© The Author(s) 2019. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

http://www.oxfordjournals.org
http://orcid.org/0000-0002-3079-6586
http://orcid.org/0000-0001-6740-9212
http://orcid.org/0000-0003-1179-9578
http://orcid.org/0000-0002-6833-9049
mailto:blanked2@ccf.org
http://orcid.org/0000-0002-6833-9049
http://orcid.org/0000-0002-6833-9049
http://creativecommons.org/licenses/by/4.0/

multiple such tools in complex dependency schemes. Integra-
tion into such workflow systems (e.g., [10-16]) adds its own layer
of requirements on computational tools, such as following stan-
dard conventions for data input, output, and logging, and allow-
ing workflow systems to override default behaviors in these ar-
eas when necessary.

As datasets become larger and more complex, and as com-
putational analysis becomes more mainstream, research scien-
tists may find themselves in the position of impromptu software
engineers. These researchers will, at a minimum, need to learn
about defining software requirements and designing, construct-
ing, testing, and maintaining software. Unfortunately, there are
few resources dedicated to helping a scientist transition from
writing one-off scripts to developing computational tools that
are usable by others and can easily be incorporated as compo-
nents in pipelines and workflows consisting of many interoper-
ating tools. As such, many of the computational tools released
can only be described, politely, as “research-grade.” These tools
can place an exorbitant burden on the end users who find them-
selves in the position of attempting to execute and chain them
into complex analysis pipelines.

Here we provide a set of 10 guidelines to steer the creation of
command-line computational tools that are usable, reliable, ex-
tensible, and in line with standards of modern coding practices.
But before diving into these guidelines, it is necessary to high-
light the difference between 2 different possible modes of devel-
opment that can be useful in research: (i) prototype and (ii) pro-
duction. Software prototypes can be highly beneficial in science
as a way to explore the ins and outs of an application domain of
interest, possibly before a software engineering effort starts and
a production tool is developed. However, it is important to keep a
clear distinction between prototype coding and the software en-
gineering required to create a robust, reliable tool that is widely
usable, and it is crucial to convey this distinction to users. Pro-
totype coding is typically more explorative in nature and might
lack normal reliability measures, such as tests, for maximizing
development speed. Conversely, to create reliable software that
is usable by others, the requirements for careful planning, spec-
ification, testing, and verification are vastly more stringent. The
guidelines below address the development of the latter category:
building well-engineered, reliable, robust, and reusable software
with a clearly defined purpose. They are by no mean exhaustive
but aim rather at highlighting factors that will be essential to the
successful development of scientific software for big data.

It is worth noting that practical realities of research software
development, such as limited funding and publication pressure,
often favor the prototype modality. Simply put, research funding
and scientific reward systems have historically discouraged the
creation of production-quality software as being non-essential;
if a set of code is able to perform the specific task necessary, un-
der the specific environmental context, then it is good enough
for inclusion within a publication and it is best to publish as
quickly as possible. Given these systematic conditions, it is un-
derstandable that software quality and usability are often not
pursued; however, it is a hindrance to scientific progress and,
while we should demand better, at least the code is available.
Furthermore, there is often the case that software begins as a
prototype but then becomes production-oriented through a pro-
cess of continuous improvement. These agile approaches can
be powerful and effective processes for creating robust software
that meets the evolving needs of a user base. This review is
intended to discourage neither the creation of prototypes nor
the use of agile software development practices, and the au-
thors continue to utilize these approaches when advantageous

to a project. However, these guidelines are helpful to keep in
mind during initial prototyping and should be converged upon in
cases when a prototype becomes production-quality distributed
software.

Spend adequate time designing the scope and expectations of
your project. A successful scientist does not simply run to the
laboratory bench with a vague idea of an outcome and start mix-
ing colorful liquids together with the hope of producing some-
thing useful. This same type of careful and mindful planning
must be engaged in while developing computational tools. Spec
out exactly what your tool needs to do. Define all use cases, input
datasets and data types, configurable parameters, set of actions,
and desired outputs and types. Anticipate what is beyond the
current scope of your software-what use cases, data types, and
configurations sound interesting but fall beyond the initial scope
of your software. Sketching out the components and dataflows
of the software on a whiteboard, or on paper, can be particu-
larly helpful at this stage. Clearly define the scope of your work,
and anticipate corner cases that you think you might need to
account for; e.g., are you interested in a circular genome that
is going to be represented as a linear sequence for input? Fi-
nally, speculate on the factors that will indicate that the soft-
ware needs to be refactored, replaced, or retired.

Once all of the specifications are set, it is time to search, and
search thoroughly, to see whether there is an open source tool
with clear measures of reliability, such as automated software
tests, that does what you want or something very similar. A good
place to start is simply to google your initial question or navigate
StackOverflow-it is likely that someone has already bumped into
the same or a similar problem. If a reliable tool exists that does
what you want, consider usingit, even if it requires using several
tools pipelined together. If there is a reliable tool that exists that
does something close to what you need, consider modifying it.
There is no need to design a brand-new blue bicycle if you can
paint an existing white one and achieve the same goal. When
assessing the quality of an existing tool, you should follow the
same guidelines that are laid out here for designing your own
software: (i) Can you understand what the code does, so that
you can verify its logic and assumptions, can fix bugs, and im-
prove the code if required? (ii) Does the software contain tests?
(iii) Does it have a high test coverage? (iv) Does it use continu-
ous integration? (v) What other dependencies does it rely on? (vi)
Are those dependencies deemed robust, reliable software? (vii)
Are the licensing and implementation compatible with integra-
tion in your workflow? For tools that lack the required reliabil-
ity measures such as software tests, consider contributing these
missing tests yourself, thereby helping both yourself and other
potential users of that software. When doing this mining work,
do not hesitate to contact the developers of other tools or users
facing the same need as you. Interacting with the community
will help to better define the project.

The reason for doing such careful and exhaustive research
of existing software is that the cost of maintaining yet an-
other piece of software is almost always vastly underestimated.
Therefore, generally only consider developing new software if
there are clear signs that you can lessen the maintenance bur-
den by creating a drastically improved or simplified implemen-
tation that makes it easier to understand, test, and refactor the
code, and that such improvements are not possible with the ex-

isting software itself. Making this determination is a difficult
task, one that can be challenging for even the most seasoned
software industry professionals, and in the end rests on what
is essentially a judgment call that should consider all aspects,
including not only the code, but also the existing developer and
user communities, of the software under consideration. Addi-
tionally, although outside the scope of this review, there are sev-
eral significant and valid alternative reasons for reimplement-
ing code, such as learning exercises, to explore and validate ex-
pected or presumed algorithmic behavior, and so forth. Finally,
should you decide to develop a new tool, there might be impor-
tant lessons to be learned from, or parts of the code that can
be reused from, existing open source tools. Once you have ex-
hausted all existing options, it is time to move on to the next
step.

Instead of coding and then testing, approach from the other way
around: before you can begin to convince others that your soft-
ware implementation is correct, you need to prove it to yourself.
Obtain or create a set of input files, and design a set of outputs
that are expected to be created across various parameter set-
tings. By relying on sets of known inputs and outputs designed
from the planned requirements, you can be confident that the
results generated by your software will match the intended re-
quirements. Additionally, test-driven development forces cod-
ing efforts to concentrate on features that are needed accord-
ing to the well-planned requirements, preventing feature creep.
Looking at the metaphorical answer at the back of the book helps
in steering development, thereby creating more precise code.

The “tests first” mantra should drive the development of ev-
ery aspect from coding to deployment. From the very beginning
to the very end, unit tests should be designed to test individ-
ual methods and classes while integration and functional test-
ing should be used to confirm the overall correctness of the final
application. Especially in the case of the development of new
algorithms and approaches that are only exercised when sub-
jected to real data, it may not be practical to design a full test
suite to verify the complete correctness of the approach until
after it has been mostly coded and executed. In these cases, it is
still important to test as much as possible, as early as possible,
with initial tests and then to be sure to establish a test-set that
encompasses the entire behavior. A best practice for test suites
is to start with a clean environment, install your software, exe-
cute your code, and then verify correctness. Testing may also in-
clude syntax checking, test coverage checking, checking against
coding conventions (often called “linting”), and automatic mem-
ory leak detection. It is also good practice to provide negative
tests, which will ensure that errors are properly handled. There
are many tools that can help testing for virtually every program-
ming language. Take advantage of existing test harnesses and
continuous integration suites, such as Jenkins [17], Travis [18],
and CircleCI [19].

Naming things is hard. When writing software, there are many
things that will need to be named, such as functions, variables,
classes, parameters, program arguments, and so on. Names
must be self-explanatory to those who will be interacting with
them. They should describe the intended purpose and not im-
plementation details. While computers do not care, a method

named “do_thing()” is not descriptive to an individual who may
need to read, maintain, or modify the code later.

Names should be chosen very carefully-check for typograph-
ical errors-so that they will not need to be changed in the future,
which could result in backwards incompatibility. You should
avoid renaming user-exposed items as much as possible and es-
pecially forgo reusing or repurposing existing or previously used
short or long argument names. For example, if an argument was
accessible using “-o/--orthogonalOption”, you should not decide
later to use “-0” to specify the output filename. If it is neces-
sary to break backwards compatibility, be sure to do so using
well-defined semantic versioning, and by providing conspicuous
and prominent notice to potential users, many of whom will not
think of reading release notes (or even realize that they exist). It
is also important to consider that changes to existing command-
line arguments can greatly increase the burden on users when
they desire to upgrade to a new version. For a simple case this
may just require a user to remember to enter a new set of argu-
ments, but, for workflows and other integration systems, where
the easiest upgrades could otherwise be performed by only mod-
ifying a version string, required changes could be significantly
more in depth, even when a pipeline is not modified to take ad-
vantage of new features.

While your code may seem perfectly clear at time of writ-
ing, things will be very different in 5-10 years-or simply a few
days before an important deadline when everything breaks. Give
space to your code; organize it so that itis compartmented, clear,
and pleasant to read. Making your code understandable to all
will help others to find bugs and implement features. It will
also facilitate collaborative development and take some main-
tenance work off your shoulders.

Stick to standards: standard file types, standard ontologies (e.g.,
EDAM [20]), standard command-line arguments and naming
schemes (--help/-h, --version/-v), and do not create your own di-
alect or derivative file format. By utilizing standard file formats, a
software tool is made inherently interoperable, allowing simpli-
fied use within existing analysis workflows. Adopting standard
ontologies allows tools to be easily discoverable. At a minimum,
you should provide --version and --help commands in every tool.
The help should provide enough details for a typical user to
be able to make use of the tool. Include a --version command
to enable reproducibility through capturing the version number
of your tool easily. Try to avoid defining the version number at
multiple locations within your code. Instead, design your code
in such a way that the version definition is declared once and
then referenced as needed. If possible, try to include the ver-
sion control system revision number into the output of the ver-
sion (sometool v1.2.3-5483e9f5bf4d725e3). Take advantage of se-
mantic versioning [21] similar to MAJOR.MINOR.PATCH, where
changes in PATCH indicate backwards compatible bug fixes, MI-
NOR indicates backwards compatible feature additions, and MA-
JOR can indicate large changes that may not be backwards com-
patible.

Of particular importance is to take advantage of language-
specific coding standards, as any deviation will make future
maintenance much more difficult. For example, in Python, this
can mean using indentation of 4 spaces, not 3, not 5, not tabs,
and certainly not mixed. In Perl, this can mean using parenthe-
ses for readability even when not strictly required. When using
scripting languages, the shebang (#!) is a powerful single line of
code, but you should use it correctly. Use "/usr/bin/env python”

or "/usr/bin/env perl” instead of "/usr/bin/perl.” It is not guaran-
teed that Perl is installed in "/usr/bin/,” especially when using
specific versions of a software program in virtual environments,
such as those created by Conda [22]. In all cases, make proper
use of exit codes to report the terminal status of your tool; a 0
means everything in the world is good, and anything other than
a 0is an error.

Make use of previously existing stable libraries and packages
(e.g., Biopython [23], pysam [24], BioPerl [25], SeqAn [26], BioJava
[27], BioJS [28]) whenever possible, including the specific ver-
sion of each required dependency in the installation method-
ology. Beware of licensing conflicts. For libraries and packages
that are not available in stable repositories or standard distribu-
tion channels such as those mentioned above, but, e.g., only in
a single developer’s git repository, it is recommended to ensure
the availability of the library or package in some way, such as
by submitting the package to a stable repository or distribution
channel, making a fork of the library into a repository that you
as developer have control over, or additional backup method. Be
sure to include an accepted standard open source license with
your code. Adopting a customized or oddball license can lead to
issues downstream and greatly hinder community acceptance.
The Open Source Initiative, a non-profit organization that pro-
motes and protects open source software, projects, and com-
munities, provides guidance on selecting from a list of approved
open source licenses [29].

Adopt well-established standard frameworks and ap-
proaches to handle common problems. For example, if you have
an easily parallelizable problem, e.g., if your tool consumes a
multiple FASTA file and operates on each unit independently,
then it is a good idea to split the FASTA file into small chunks to
speed up your tool by using multiple processing cores. However,
do not reinvent the wheel when adding these optimizations,
instead make use of existing reliable tools and frameworks; in
particular, become well-versed in common GNU/Linux utilities
such as awk, grep, split, parallel, etc., to handle large files.

When providing default values for parameters, choose settings
that make the most sense for the typical application of the tool.
In the help for your tool provide the default value used, and
the effects that changing it will have. Allow default values to
be overridden by environmental variables and by supplying a
command-line argument, in increasing order of preference.

For example, when creating temporary intermediate files,
use predefined libraries from your favorite programming lan-
guage (like tempfile in Python), which will place files in the loca-
tion defined using operating system-defined mechanisms. This
enables the cluster admin to have the option to assert the use
of fast local hard drives for temporary storage, which can drasti-
cally speed up input/output-heavy computational tasks. While
the temporary directory is often controllable by using an envi-
ronment variable ($TMPDIR), it can also be useful to allow this
to be changed using a tool-specific environment setting (e.g.,
$MY_TOOL_TEMP.DIR) and by passing an explicit argument to
the tool (e.g., --tmpdir). This gives the system administrator,
users, and workflow management systems multiple injection
points, resulting in the greatest flexibility to control data flow.
When there are multiple ways to specify a parameter value, log
the final value utilized to the standard application log when the
tool starts, so that it is easy to spot any values being overridden
by accident. At completion, log all values and assumptions used
for traceability and reproducibility of the results.

“Never assume, because when you assume, you...” Assump-
tions can resultin cryptic errors, or worse, erroneous results that
are reported without notification. Do not assume that the user
will have a home directory for storing files and configurations
(e.g., .programNameConfig). In many cluster environments, jobs
and tasks may not have access to a home directory. And they al-
most certainly do not have your home directory, so please do not
hardcode that. As a general rule, you will be surprised by how
creative your users will be at using your code and breaking it.
If something can go wrong, it will- programming with Murphy’s
Law in mind will save you countless hours of debugging.

Do notrely solely on file extensions to determine the file type.
As a default setting this is good, but offer alternative ways to in-
struct your program which file type is provided. File extensions
are often not standardized. Moreover, data management sys-
tems might store the file type and other metadata in a database
separate from the dataset contents, without a file extension or
human-readable filename. Often these datasets are identified by
a hashsum or a universally unique identifier. Enabling compat-
ibility with object-based storage is a worthwhile goal. Similarly,
if you define a novel file format, make an effort to give auto-
matic type detection systems the ability to identify files, such as
by making use of magic numbers or declarative headers. Data
management systems might also need to use a modified file-
name while a file is being created, to enable the separation of
finished and unfinished files, such as in the case of a crashed
workflow run, so that unfinished files are not erroneously reused
when the workflow is restarted.

Ideally, allow the ability to customize completely the file-
name of every input file and associated metadata file, and every
output file and associated metadata file generated by the tool.
For example, it is bad practice to only allow the tool to accept a
file named input.bam that is located in the current working di-
rectory. If, for any reason, the tool cannot reasonably take the
exact filename for every output file (e.g., when the number of
outputs is unknown or very large), allow the user to specify both
an output directory and a filename pattern.

You can see every tool as a filter: it turns an input into an output.
Whenever possible, make your tool streaming aware. Filesystem
input/output is increasingly becoming a bottleneck in modern
computing. Allow the primary input and output datasets to be
consumed and produced as streams, which are only temporar-
ily stored in random-access memory (RAM), so that they can be
used effectively with redirection, and, more importantly, pipes
(1), preventing the need to read and write from disk when the
tool is used as part of a multi-tool process. When working with
streams, be aware that for input and output, text is often king.
Furthermore, the use of standard stream-aware GNU/Linux util-
ities, which primarily operate in the text-based realm, can be
mightily powerful for processing and filtering.

Metadata is as important as the primary dataset. Try to stick to
existing standard file formats, but if it is necessary to create a
new or extend an existing file format, be sure to make provisions
for storing metadata. Include enough information to unambigu-
ously identify the file type, version, and meaning behind val-
ues (e.g., column names). It is a good practice to also include in-

formation about the generating program, including version and
complete set of parameters. Do what you can to keep data and
its associated metadata as closely attached as possible, and in
sync. If at all possible, avoid using metadata files (file.ext and
file.ext.ext2), but include metadata within a metadata section
or header of the dataset. This ensures that data and metadata
remain in sync and do not accidentally diverge, e.g., by acciden-
tally moving a subset of the files around on a file system. If sep-
arate metadata files need to be created, it can in some cases be
helpful to package data and metadata together in an archive file
or container format such as tar, zip, or HDF5.

Computational tools must be usable by the widest range of
users. The tool should be executable on user-provided data with-
out requiring them to jump through numerous steps that could
be easily automated. One common example of this is requiring
input datasets and metadata to use a particular filename or fol-
low a specific pattern. The user should be able to provide file-
names directly and be able to make use of standard command-
line interpreter features and shellisms such as wildcards and
tab-completion. The use of a file to specify input parameters,
instead of accepting command-line arguments, is also discour-
aged because it unnecessarily complicates the notion of input
files by creating 2 different classes of input files. Making it easy
to run your tools will be rewarded by increased adoption by the
community and decreased support and maintenance burden.

Installation of the computational tool is likewise important;
installation procedures for a tool and its dependencies can be-
come a challenge for users of different backgrounds [30]. Simply
put, if a tool cannot be installed, it cannot be used. Try to make
use of the default installation mechanism of the programming
language. There are many tools that do not obey these rules
and require patching and additional scripting in order to be in-
stalled. Do not include compiled binaries or external source code
within your version control system. Binaries should be either
generated from the code base or provided by a package man-
agement system. External source code should be resolved with
the installation mechanism (e.g., GNU Autotools [31], pip [32],
Pom/Maven [33]). The use of Conda, particularly conda-forge [34]
and Bioconda [35], has been shown to be very effective in provid-
ing versioned ready-to-go cross-platform tool environments. Fi-
nally, mind the system requirements of servers handling sensi-
tive data: they generally offer limited connection to the Internet
and do not allow running all kinds of containers.

Providing good end user documentation is essential to enable
users to effectively use any computation tool. Simplified, suc-
cinct documentation should be provided onscreen with a --help
argument to the tool. More in-depth documentation should be
provided via manual pages, web pages, and PDF documents. Pro-
viding tutorials, or vignettes, that walk through typical use cases
is particularly beneficial to users. A good approach is to embed
the documentation within a “doc” directory of the source code
in a human-readable language such as Markdown. These Mark-
down files can then be automatically converted into stylized
HTML or PDF documents. It is a good practice to provide clear
support avenues such as a mailing list, forum, and issue tracker
where users can request assistance and report bugs. These ser-
vices are greatly simplified by open source public code reposito-
ries, such as GitHub [36], GitLab [37], and Bitbucket [38]. Finally,

consider including a contributing document that informs other
community developers how they can commit code or otherwise
help with your project.

Take advantage of the version control system to transpar-
ently document every change in the code. The version control
system is as important when developing software as a lab book
during an experiment. Provide an accurate but concise change
log between versions. This change log should be easily under-
standable by the end user, and highlight changes of importance,
including changes in behavior and default settings, deprecated
and new parameters, etc. It should not include changes that,
while important, do not affect the end user, such as internal ar-
chitectural changes. In other words, this is not simply the unan-
notated output of "git log.”

Progressing from writing simple one-off scripts to developing
truly useful and reusable computational tools requires substan-
tially more planning and increased considerations. Do not rush
through the initial steps. Time spent designing the scope and
expectations of a project, including input datasets and formats,
configurable parameters, and desired outputs and output types
is time well spent. By starting with a set of tests, you can ensure
that your tool is functionally correct. Adopt and use existing,
well-established, tools, file formats, and other standards when-
ever they are available. Do not make changes that will break
backwards compatibility, except when absolutely necessary, and
increment software versions appropriately. Be sure to choose
sane default values for tool parameters, but allow users to eas-
ily change their values. Do not make any assumptions about
the local compute environment or infrastructure. Making your
software stream-aware goes a long way towards encouraging its
use on high-performance computing resources and incorpora-
tion into existing computational pipelines. Metadata is as im-
portant as the primary datasets; be sure to treat it with the same
care, and try to keep it as closely connected to the primary data
as possible. Always be aware of the various types of users that
your software will have, and tailor your tool, development ap-
proaches, and documentation to support them. As you continue
to advance from a simple script writer to a software developer,
do not unnecessarily fret about unknown bugs or deficiencies
in coding ability, knowledge, or style, because everyone starts
somewhere, but be sure to avoid developing a bad code-ego [39],
keep learning about open source best practices (e.g., [40, 41]), and
do not hesitate to reach out to the community.

The authors declare that they have no competing interests.

Supported with funds provided by the Cleveland Clinic, and the
European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 654241 for the PhenoMeNal
project.

All authors wrote the manuscript. All authors read and approved
the final manuscript.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

Piccolo SR, Frampton MB. Tools and techniques for compu-
tational reproducibility. Gigascience 2016;5:30.

Sandve GK, Nekrutenko A, Taylor], et al. Ten simple rules
for reproducible computational research. PLoS Comput Biol
2013;9:e1003285.

Nekrutenko A, Galaxy Team, Goecks J, Taylor J, et al. Biology
needs evolutionary software tools: Let’s build them right. Mol
Biol Evol 2018;35(6):1372-5.

Jin X, Khatwani C, Niu N, et al. Pragmatic software reuse in
bioinformatics: How can social network information help?
In: Kapitsaki G, Santana de Almeida E , eds. Software
Reuse: Bridging with Social-Awareness. ICSR 2016. Springer;
2016:247-64.

Perez-Riverol Y, Gatto L, Wang R, et al. Ten simple rules
for taking advantage of git and GitHub. PLoS Comput Biol
2016;12:e1004947.

Prli¢ A, Procter JB. Ten simple rules for the open development
of scientific software. PLoS Comput Biol 2012;8:1002802.
Wilson G, Aruliah DA, Brown CT, et al. Best practices for sci-
entific computing. PLoS Biol 2014;12:e1001745.

Taschuk M, Wilson G. Ten simple rules for making research
software more robust. PLoS Comput Biol 2017;13:e1005412.
Lawlor B, Walsh P. Engineering bioinformatics: building re-
liability, performance and productivity into bioinformatics
software. Bioengineered 2015;6:193-203.

Afgan E, Baker D, Batut B, et al. The Galaxy platform for ac-
cessible, reproducible and collaborative biomedical analyses:
2018 update. Nucleic Acids Res 2018;46(W1):W537-44.
Wolstencroft K, Haines R, Fellows D, et al. The Taverna work-
flow suite: designing and executing workflows of Web Ser-
vices on the desktop, web or in the cloud. Nucleic Acids Res
2013;41:W557-61.

Reich M, Liefeld T, Gould J, et al. GenePattern 2.0. Nat Genet
2006;38:500-1.

Di Tommaso P, Chatzou M, Floden EW, et al. Nextflow en-
ables reproducible computational workflows. Nat Biotechnol
2017;35:316-9.

Koster J, Rahmann S. Snakemake-a scalable bioinformatics
workflow engine. Bioinformatics 2012;28:2520-2.

Sadedin SP, Pope B, Oshlack A. Bpipe: a tool for run-
ning and managing bioinformatics pipelines. Bioinformatics
2012;28:1525-6.

Brandt J, Bux M, Leser U. Cuneiform: a functional language
for large scale scientific data analysis. In: Fischer PM, Alonso
G, Arenas M, et al.., eds. Proceedings of the Workshops of
the EDBT/ICDT 2015 Joint Conference (EDBT/ICDT), Brussels,
Belgium, 2015. 2015:7-16.

Jenkins. https://jenkins.io/. Accessed 20 June 2018.

Travis CI - Test and Deploy Your Code with Confidence. https:
//travis-ci.org/. Accessed 20 June 2018.

Continuous Integration and Delivery. CircleCI. https://circle

20.

21.
22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

ci.com/. Accessed 20 June 2018.

IsonJ, Kalas M, Jonassen I, et al. EDAM: an ontology of bioin-
formatics operations, types of data and identifiers, topics
and formats. Bioinformatics 2013;29:1325-32.
Preston-Werner T. Semantic versioning 2.0.0. https://semv
er.org/. Accessed 2019.

Conda. https://conda.io/. Accessed 20 June 2018.

Cock PJA, Antao T, Chang JT, et al. Biopython: freely avail-
able Python tools for computational molecular biology and
bioinformatics. Bioinformatics 2009;25:1422-3.

pysam. https://github.com/pysam-developers/pysam. Ac-
cessed 20 June 2018.

Stajich JE, Block D, Boulez K, et al. The Bioperl toolkit: Perl
modules for the life sciences. Genome Res 2002;12:1611-8.
Reinert K, Dadi TH, Ehrhardt M, et al. The SeqAn C++ tem-
plate library for efficient sequence analysis: A resource for
programmers.] Biotechnol 2017;261:157-68.

Holland RCG, Down TA, Pocock M, et al. BioJava: an
open-source framework for bioinformatics. Bioinformatics
2008;24:2096-7.

Yachdav G, Goldberg T, Wilzbach S, et al. Anatomy of BioJS,
an open source community for the life sciences. Elife 2015;4,
e070009.

Licenses & Standards. Open Source Initiative. https://openso
urce.org/licenses . Accessed 20 June 2018.

Gruening B, Sallou O, Moreno P, et al. Recommendations
for the packaging and containerizing of bioinformatics soft-
ware. F1000Res 2018, doi:10.12688/f1000research.15140.2.
Autotools FAQ. https://www.gnu.org/software/automake/fa
g/autotools-fag.html. Accessed 20 June 2018.

pip19.1. Python Package Index. https://pypi.org/project/pip/.
Accessed 20 June 2018.

Porter B, van Zyl], Lamy O. Maven — Welcome to Apache
Maven. https://maven.apache.org/. Accessed 20 June 2018.
conda-forge: community driven packaging for conda. https:
//conda-forge.org/. Accessed 20 June 2018.

Griining B, Dale R, Sjodin A, et al. Bioconda: sustainable and
comprehensive software distribution for the life sciences.
Nat Methods. 2018;15:475-6.

Github. https://github.com. Accessed 20 June 2018.

About GitLab. https://about.gitlab.com/. Accessed 20 June
2018.

Bitbucket. Atlassian. https://bitbucket.org/. Accessed 20 June
2018.

Weinberg GM. The Psychology of Computer Programming.
Van Nostrand Reinhold; 1971.

Open Source Guides. https://opensource.guide/ . Accessed 20
June 2018.

Fernandes PL, Vos RA. Open Science Open Data Open Source:
21st century research skills for the life sciences. https://pfer
n.github.io/OSODOS/gitbook/. Accessed 20 June 2018.

https://jenkins.io/
https://travis-ci.org/
https://circleci.com/
https://semver.org/
https://conda.io/
https://github.com/pysam-developers/pysam
https://opensource.org/licenses
https://www.gnu.org/software/automake/faq/autotools-faq.html
https://pypi.org/project/pip/
https://maven.apache.org/
https://conda-forge.org/
https://github.com
https://about.gitlab.com/
https://bitbucket.org/
https://opensource.guide/
https://pfern.github.io/OSODOS/gitbook/

