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Abstract Efficient translation mediated by the 50 untranslated region (50 UTR) is essential for the
robust efficacy of mRNA vaccines. However, the N1-methyl-pseudouridine (m1J) modification of

mRNA can impact the translation efficiency of the 50 UTR. We discovered that the optimal 50 UTR
for m1J-modified mRNA (m1Je50 UTR) differs significantly from its unmodified counterpart, high-

lighting the need for a specialized tool for designing m1Je50 UTRs rather than directly utilizing

high-expression endogenous gene 50 UTRs. In response, we developed a novel machine learning-based

tool, Smart5UTR, which employs a deep generative model to identify superior m1Je50 UTRs in silico.

The tailored loss function and network architecture enable Smart5UTR to overcome limitations inherent

in existing models. As a result, Smart5UTR can successfully design superior 50 UTRs, greatly benefiting

mRNA vaccine development. Notably, Smart5UTR-designed superior 50 UTRs significantly enhanced

antibody titers induced by COVID-19 mRNA vaccines against the Delta and Omicron variants of

SARS-CoV-2, surpassing the performance of vaccines using high-expression endogenous gene 50 UTRs.
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1. Introduction

In recent decades, pandemics of infectious diseases have
constantly occurred, including severe acute respiratory syndrome
in 2002, influenza in 2009, Middle East respiratory syndrome in
2012, Ebola in 2014, Zika in 2015, and COVID-19 in 20191,2.
During the COVID-19 pandemic, mRNA technology has accel-
erated the development and production of vaccines at unprece-
dented speed, which protects billions of people in a timely and
safe manner (www.who.int). Although it is evident that mRNA
vaccines represent a unique and versatile platform for combating
infectious diseases, further research is needed to improve the
design of mRNA vaccine design3,4.

Sufficient protein expression is the prerequisite of mRNA
vaccines to induce strong immune responses4,5. The translation of
mRNAwas predominantly impacted by the 50 untranslated region
(50 UTR). The superior 50 UTR sequence can guarantee the
expression of mRNA and the efficacy of the mRNA vaccine6,7.
The mechanism by which 50 UTR sequences regulate mRNA
translation remains unclear, hindering de novo design8. Tradi-
tionally, researchers used 50 UTRs of endogenous genes with high
expression levels (endogenous superior 50 UTR) in mRNA
medicine9e11. However, the N1-methyl-pseudouridine (m1J)
modification influences mRNA translation12,13, suggesting that the
superior sequence of endogenous 50 UTRs may differ from that of
m1J-modified mRNA. Notably, m1J-modified mRNA plays a
crucial role in vaccine performance14 and is a cornerstone tech-
nology in mRNA medicine. Therefore, identifying the superior 50

UTR sequence for m1J-modified mRNA (m1Je50 UTR) is
essential. Inherently, the m1Je50 UTR design is to find optimal
nucleotide combinations in 4N possible combinations (where N is
the nucleotide sequence length), which is a combinational opti-
mization problem. With such a large number of potential base
combinations, deep learning offers a practical solution for
searching robust m1Je50 UTR15e17. Sample et al.18 reported a
generative model for 50 UTR, termed Optimus 5-Prime, which
used the convolutional neural network (CNN) and the genetic
algorithm (GA) to search for superior unmodified 50 UTR. How-
ever, Optimus 5-Prime is inefficient, in which data fitting and
generative modules are separated, and search results largely
depend on the random initial population.

In this study, we showed the difference between unmodified
and m1J-modified 50 UTRs by implementing a detailed analysis
of the library reported by Sample and colleagues18. Our findings
revealed that m1J-modified 50 UTRs exhibited distinct patterns,
necessitating the development of models tailored to m1J-modi-
fied 50 UTRs. We developed an all-in-one model, Smart5UTR, to
search for superior m1Je50 UTR sequences in silico. Smart5UTR
can efficiently generate the 50 UTR sequences based on the multi-
task autoencoder (MTAE) frame, which can fully exploit the
features learned from input 50 UTRs. To validate Smart5UTR
in vitro, we synthesized a series of m1JemRNAs containing 50

UTRs with different translational efficiency, and they showed
relative expression levels. Furthermore, we engineered COVID-19
mRNA vaccines that incorporate superior 50 UTRs designed by
Smart5UTR and the endogenous superior 50 UTR (S27a-440 50

UTR) screened out by Zeng and colleagues9. The Smart5UTR-
designed vaccines induced a stronger immune response against
the Delta and Omicron variants of SARS-CoV-2 compared to the
one with endogenous superior 50 UTR. In conclusion, we devel-
oped a novel tool for m1Je50 UTR design and performed proof-
of-concept experiments based on COVID-19 mRNA vaccines
(Fig. 1).
2. Materials and methods

2.1. Development of the MTAE architecture for 50 UTR
sequence reconstruction and MRL prediction

An MTAE model was built to interactively predict the MRL value
for a 50 nt 50 UTR sequence and a novel 50 UTR sequence de novo
design. Given an input 50 UTR sequence XUTR of length (LÞ, the
one-hot encoding method generates a two-dimensional L� 4
matrix Xonehot as in Eq. (1):

Xonehotði; jÞZ
�
1; if riboside Ri corresponds to the j�th riboside
0;otherwise

ð1Þ
Here, we encode A (adenine riboside) as (1 0 0 0), C (cytosine

riboside) as (0 1 0 0), G (guanine riboside) as (0 0 1 0), and U/m1J
(uracil riboside/N1-methyl-pseudouracil riboside) as (0 0 0 1).

The encoder contains four 1-D convolutional layers with 160,
160, 160, and 80 kernels of length eight, followed by batch
normalization layers. Next, two fully connected layers with
dropout are applied, and a linear activation function is used for the
final output. The resulting 80-dimensional latent vector Z as in Eq.
(2) represents the input UTR sequence:

ZZEncoderðXonehotÞ ð2Þ

A decoder is added to the regression model, which accepts the
concatenation of the latent vector Z and twenty repeated output
nodes yout from the regressor as input. Denote the concatenation
result as vector C as in Eq. (3):

CZConcatenateðZ; youtÞ ð3Þ

The decoder includes fully connected 1D convolutional layers,
ultimately reproducing a matrix Ypred with shape L� 4 as output.
The decoder function can be represented as in Eq. (4):

XpredZDecoderðCÞ ð4Þ

The model is trained on the EGFP1 MPRA dataset from
Sample et al18. The encoder aims to fit the MRL labels using an
adjusted weighted mean-squared error loss function LWMSE, while
the decoder minimizes the reconstruction error using a categorical
cross-entropy loss function LCE. The total loss function is a linear
combination of these two loss terms, formulated as in Eq. (5):

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.who.int


Figure 1 Overview of Smart5UTR for the design of mRNA vaccines. (A) The process of building and evaluating a multi-task autoencoder

model, Smart5UTR. Smart5UTR was built for mRNA design and validated in vitro using flow cytometry to detect the protein expression of

mRNAs with various 50 UTRs. Then, Smart5UTR engineered the mRNA encoding the spike protein for in vivo evaluation. Spike mRNAs were

synthesized and formulated into LNPs in microfluidic devices. Mice were intramuscularly vaccinated with mRNA vaccines, and serum was

collected to evaluate the humoral response. (B) The architecture of Smart5UTR. Each 50 nt 50 UTR sequence was encoded into a matrix by one-

hot encoding as the model’s input. 1D CNN layers followed by FC layers mapped the input matrix to a latent vector. A linear output node maps to

the corresponding MRL label and was trained with a loss of MSE. Then the latent vector concatenated with its linear output and was given as

input to 1D CNN layers and FC layers to generate a novel 50 UTR. CCE loss was used to ensure the similarity of the input and output sequences.
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LossZa$LWMSE

�
y;ypred

�þb$LCE

�
Xonehot;Xpred

� ð5Þ

Initially, the model was trained for 20 epochs with a learning
rate of 2e�4 and loss weights of 1:5. Training then continued for
80 epochs at a learning rate of 1e�5 and equal loss weights.

2.2. Loss functions in the MTAE model

We performed z-score normalization on the MRL values of the
whole training dataset. In this way, a raw MRL value x is con-
verted into the standard value z according to Eq. (6):

zZ
x� m

s
ð6Þ

where m is the mean of the MRL and s represents the standard
deviation of the MRL value.

We customized a weighted MSE loss function to train the
regressor. For a data set of size n, the loss function was defined as
in Eqs. (7) and (8):

LWMSEZ
1

n

Xn

iZ1

aðyi � byiÞ2 ð7Þ

aZ

�
1; z< 0
1þ z; z� 0

ð8Þ

where yi is the true MRL value for each data i and byi is the pre-
dicted value from the MTAE model. This weighted loss function
design allows the model to focus more on data points with larger
MRL values during training, thereby improving the model’s ac-
curacy in predicting larger MRL values.

We used the categorical cross-entropy loss function to mini-
mize the reconstruction error between the input and reconstructed
UTR sequences, which is computed as in Eq. (9):
LCEZ�
Xn

iZ1

TilogðSiÞ ð9Þ

where nZ 4, representing the total number of nucleotide classes,
Ti represents the true label of the i-th nucleotide class and Si is the
predictive probability of this class.

2.3. Reimplement the benchmark models

Two other machine learning algorithms were used to computa-
tionally capture the relationship between the m1Je50 UTR se-
quences and the MRL values, including the CNN frame and the
random forest models. Both models were trained on the same
MPRA dataset as Smart5UTR. We utilized the top 200,000 se-
quences with the highest total reads to train and evaluate models
(the UTRs with higher read counts reflect their MRL more
accurately). The CNN-frame predictor was reimplemented refer-
encing the work of Sample et al.18, named Optimus 5-Prime. The
random forest model (referring to Cao’s19) took the 3-mer fre-
quency, the RNA folding energy, and the number of upstream
Open reading frames (uORFs) extracted from 50 nt synthetic as
the features.

2.4. Optimization of 50 UTR based on MTAE frame

We sampled 50 nt prototypical 50 UTR sequences from the test
dataset and optimized them based on the Smart5UTR framework.
The one-hot encoded prototypes were fed into the Smart5UTR to
generate latent vectors first. Let xi denote the one-hot encoded
input sequence, and Encoder represents the encoder function of
the Smart5UTR, the latent vector for the i-th sequence, vi, can be
obtained as in Eq. (10):

viZEncoderðxiÞ ð10Þ
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Next, we introduce a coefficient, g, to control the degree of MRL
enhancement when optimizing the input sequence. To achieve
this, we adjust the original latent vector vi by multiplying each
element with a factor that includes a Gaussian noise term modu-
lated by parameters a and g. Furthermore, we concatenate a
vector containing g repeated n times to increase the influence of g
in the generation process. The modified latent vector v0i is given as
in Eq. (11):

v0iZ vi $
�
a$gþN

�
0;s2

��
4ðg;.;gÞ|fflfflfflfflffl{zfflfflfflfflffl}

repeat n

ð11Þ

where a is a parameter to control the degree of Gaussian noise and
N ð0; s2Þ represents the normal distribution with mean 0 and
variance s2.

These modified latent vectors v0i are then passed through the
decoder, denoted by Decoder, to generate novel candidate UTR
sequences by

bxiZDecoder
�
v0i
� ð12Þ

We select generated sequences with higher than those of their
corresponding prototypes, resulting in a new set of sequences.
This optimization step is repeated for a fixed number of iterations
or until there are only minuscule changes in the set of sequences.

2.5. Optimization of 50 UTR based on genetic algorithm

We applied a genetic algorithm (GA) adapted from Sample et al.18

to search for optimal 50 nt 50 UTR sequences. To ensure a fair
comparison, we made minor adjustments to the original GAwhile
retaining its core principles. Denote xi as the i-th input UTR
sequence with MRL yi, and Mðxi; pÞ represent the mutation
function that modifies xi with a mutation probability p. The GA
implementation mutates nucleotides in the input UTR to generate
a candidate sequence x0i as in Eq. (13):

x0iZMðxi;pÞ ð13Þ
where we have modified the original default mutation probability
of 50% to include two options, 50% and 70%. This change allows
for greater flexibility in exploring the search space of 50 UTR
sequences.

After mutation, if the predicted MRL (by0i) of x0i is more sig-
nificant than yi, the new sequence is considered for the next
iteration (evolution), as in Eq. (14):

xðtþ1Þ
i Z

(
x0i;

by0i > yi

xi; otherwise
ð14Þ

where let xðtþ1Þ
i represent the updated value of the i-th input at time

step t þ 1, by0i be the predicted value of the i-th input based on the
updated feature vector x0, and yi denote the actual value of the i-th
input feature.

The adapted GA starts with an initial set of sequences and
iteratively mutates and evaluates them using Optimus 5-Prime. If
the candidate sequence has a higher MRL value than the original
sequence, it is accepted and incorporated into the new set for
subsequent iterations. The GA iteratively optimizes 50 UTRs until
convergence is achieved or the maximum number of iterations is
reached. By making these adjustments, we aim to provide a more
balanced comparison between our proposed method and the one
described in the Optimus 5-Prime literature.
2.6. In vitro mRNA transcription

All mRNAs were synthesized using T7 RNA polymerase
(Vazyme, DD4101, Nanjing, China), linearizing plasmid DNA
templates, nucleoside triphosphates (N1-methyl-pseudouridine
replacing uridine, TriLink, N-1081, San Diego, CA, USA), and a
cap1 analog (TriLink, CleanCap� AG (30 OMe), San Diego, CA,
USA). After digesting DNA templates with DNase (Vazyme,
D4104, Nanjing, China), mRNAs were extracted using an RNA
extracting solution (Solarbio, P1011, Beijing, China) and precip-
itated in 2.5 mol/L ammonium acetate solution. The same 30 UTR
sequence was used in all mRNAs with different 50 UTRs (Sup-
porting Information Table S1). The mRNAs encoding EGFP
included a 50 nt poly(A) tail and the ones encoding the spike
protein from SARS-CoV-2 (B.1.617.2) had a 100 nt poly(A) tail.
The mRNA encoding spike protein was designed in reference to
the SARS-CoV-2 B.1.617.2 variant (GenBank OK091006).

2.7. In vitro expression of mRNA

For transfection of mRNA into HEK293T cells (ATCC, CRL-
3216™) or DC2.4 cells, 1 ✕ 105 cells per well were seeded in
24-well plates and cultured with 0.5 mL of DMEM (Gibco,
A4192101, Grand Island, NY, USA) with 10% (v/v) FBS (Gibco,
Grand Island, 10091148, NY, USA) and 1% (v/v) antibiotics
(Hyclone, SV30010, Logan, UT, USA) in overnight. One micro-
gram of EGFP-mRNAs with various 50 UTRs was mixed with
Lipofectamine2000 (Thermo Fisher Scientific, 11668027, Wal-
tham, MA, USA) and added to the corresponding well after
30-min incubation. After 24 h, we performed flow cytometry to
evaluate transfection efficacy. DC2.4 cells were provided by Prof.
Zhen Gu (Zhejiang University, Zhejiang, China).

2.8. LNP preparation and characterization

Lipid nanoparticles (LNPs) were prepared by mixing the mRNA
aqueous phase and lipid ethanol phase at a volume ratio of 3:1
with the microfluidic equipment (Precision NanoSystems, Van-
couver, Canada) at the flow rate of 9 mL/min. The N/P ratio was
17:1. The mRNA dissolved in 10 mmol/L citrate buffer
(pH Z 3.0). The control LNP was mRNA free using 10 mmol/L
citrate buffer (pH Z 3) as aqueous phase. The lipid ethanol phase
contains DMG-PEG2000 (AVT, O02005, Shanghai, China),
DOPE (AVT, S03005, Shanghai, China), cholesterol (AVT,
O01001, Shanghai, China) and ionizable lipid in the molecule
ratio of 2.5:16:46.5:35. The synthesis of ionizable lipid was
entrusted to HitGen Inc. (Chengdu, China) and 1H NMR of
ionizable lipid was showed in Supporting Information Fig. S8A
(WO2022218295). The LNPs were dialyzed using 10 mmol/L
citric acid buffer (pH Z 6) with 6% sucrose (w/w). The mea-
surement and calculation of the encapsulation efficiency for all
formulations followed the procedure previously described20.

2.9. Mice immunization

The male BALB/c mice (7e8 weeks old) were administrated with
mRNA LNPs or PBS on Days 0 and 14, and serum was collected
on Day 28 for analysis with enzyme-linked immunosorbent assay
(ELISA). The body weight of mice was measured. The animal
experiments have been approved by the Institutional Animal Care
and Use Committee of West China Hospital, Sichuan University
(Ethics Number: 20220330004).
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2.10. Enzyme-linked immunosorbent assays

ELISA plates were coated with 100 mL of RBD protein (1 mg/mL)
solution overnight at 4 �C and were blocked by 100 mL of 2%
BSA in washing buffer for 4 h at 25 �C. The mice serum was
performed with a 2-fold dilution beginning with a 1:100 ratio and
serum dilution was added for incubating overnight at 4 �C. The
anti-mice IgG antibody (Cell Signaling Technology, 7076S,
Danvers, USA) was diluted at 1:50,000 and 100 mL of IgG
antibody dilution was then added to ELISA plates for 2 h at 25 �C.
The ELISA plates were added with 100 mL of TMB solution
(Solarbio, PR1200, Beijing, China) for 0.5 h at 25 �C and 100 mL
of 2 mol/L H2SO4 solution was used to stop the reaction. ELISA
plates were read at 450 and 630 nm using a microplate reader
(Tecan Group Ltd., Männedorf, Switzerland).

2.11. Quantitative enzyme-linked immunosorbent assays

After 12, 24, 48 and 72 h of transfection of vaccines in HEK293T
cells and DC2.4 cells, the culture medium was collected and the S
protein level was measured following the previously described
procedure (Vazyme, DD3302, Nanjing, China)21.

2.12. Quantitative PCR

After 24 h of transfection of vaccines in HEK293T cells and
DC2.4 cells, the total RNA was extracted with the Total RNA
kit according to the manufacturer’s instructions. cDNA was
obtained through reverse transcription reaction and further
quantified using PowerUp SYBR Green Master Mix (Thermo
Fisher Scientific, A25741, Waltham, MA, USA) and real-time
quantitative PCR reaction (Bio-Rad Laboratories Ltd., Watford,
Hertfordshire, UK). Spike protein: CGACGAGGTGAGACAGAT
CG (forward primer), TTTCCGCCCACCTTACTGTC (reverse
primer); GAPH: AGGTCGGTGTGAACGGATTTG (forward
primer), GGGGTCGTTGATGGCAACA (reverse primer).

2.13. Safety evaluation

The mice’s hearts, liver, spleen, lungs, and kidneys were collected
two months after the second vaccination. These organs were fixed
in 10% formalin (SigmaeAldrich, PR1200, St. Louis, MO, USA).
Hematoxylin/eosin staining was performed after organs were
embedded in paraffin and sectioned. We collected mice serum
after two months of boost vaccination for blood biochemical
analysis. All biochemical indicators of blood, including creatine
kinase isoenzyme MB (CKMB), alanine aminotransferase (ALT),
aspartate aminotransferase (AST), alkaline phosphatase (ALP),
total protein (TP), albumin (ALB), serum creatinine (CRE), and
urea (URE) were assessed by an automatic hematological
biochemical analyzer (Hitachi High-Technologies Corp., Minato-
ku, Tokyo, Japan).

2.14. Statistical analyses

Statistical analysis of Figs. 2 and 4‒7 was performed and
presented using GraphPad Prism 8.0 software, and the data of
Figs. 5‒7, Supporting Information Figs. S6 and S8 are shown as
mean with standard deviation. Results in Fig. 6 and Supporting
Information Fig. S6 are analyzed by One Way ANOVA compared
with the positive control group. Statistically, significance is
indicated as non-significant (ns), *P < 0.05, **P < 0.01,
***P < 0.001 and ****P < 0.0001. Predictive performance was
evaluated using the following metrics: coefficient of determination
(R2), root mean square error (RMSE), mean absolute error (MAE)
and mean absolute percentage error (MAPE). We measured the
reconstructive accuracy of Smart5UTR by the similarity between
the reconstructed UTRs and the input ones.

2.15. Data availability

The scripts and models in this project are available at github. com/
deepomicslab/Smart5UTR. The data used to train Smart5UTR
was obtained from the public Gene Expression Omnibus database,
accessible by accession number GSE114002.

3. Results

3.1. m1J modification alters the 50 UTR sequence with high
translation efficiency

Multiple techniques contribute to the clinical translation of mRNA
vaccines, one of which is nucleotide modification, especially the
m1J modification used in approved mRNA vaccines. However,
chemical modification widely regulates mRNA function22, and
several recent studies found that m1J modification influenced
mRNA translation12,13. To assess the impact of m1J modification,
we compared the mean ribosome loading (MRL) of the same
mRNA sequence with and without m1J modification based on the
dataset developed by Sample and colleagues18 (Fig. 2A). The
translation efficiency of mRNA was represented by MRL, which
was measured through polysome profiling18. The m1J modifi-
cation had a significant effect on the translation efficacy of
mRNA, and the sequences of m1Je50 UTR with high translation
efficacy differed from those without the modification (Fig. 2B).

Furthermore, we analyze the influence of m1J modification on
the features of the 50UTR that regulated mRNA translation. The
upstream start codon (uAUG) in 50 UTR can impair translation
efficacy by competing with or sequestering the ribosome, espe-
cially when uAUG is out of frame23,24 (Fig. 2C). We observed that
the uAUG inhibited the translation efficiency of both the unmodi-
fied and m1J-modified mRNA, while the inhibition of the uAUG
was more significant for m1J-modified mRNA (Fig. 2D and E).
The decline of MRL caused by out-of-frame uAUG for m1J-
modified mRNA (mean MRL Z 4.4997) was larger than the un-
modified mRNAs (mean MRL Z 4.8864). And in-frame uAUG
also reduced the MRL of m1J-modified mRNA (mean
MRL Z 5.8186) more substantially than the unmodified mRNAs
(mean MRL Z 6.7121). Then, we analyzed the translation initia-
tion site (TIS) that plays an essential role in recognizing uAUG. The
strong TIS enables uAUG to significantly inhibit the translation of
endogenous mRNA25.We used 50 sequences with the lowestMRLs
and 50 sequences with the highest MRLs to calculate the nucleotide
frequencies of the strong and weak TIS (created by WebLogo 326,
Supporting Information Table S2). The strongest TIS of unmodified
mRNAwas the same as the Kozak sequence (the strongest TIS for
mammal genes), while the m1J modification moderately changed
the sequence of the strong TIS. The weak TIS of m1J-modified
mRNA also differed from the unmodified one (Fig. 2F and G).

The results showed that m1J modification altered the superior
mRNA sequence and the features in 50 UTRs that influence trans-
lation, in comparison to unmodified mRNA. Therefore, it is not
appropriate to designm1Je50 UTRs solely based on the information



Figure 2 The influence of m1J modification on 50 UTRs. (A) Illustration of evaluating the influence of m1J modification on mRNA

translation. We compared two datasets that included the same mRNA sequences with m1J modification and without modification. The change of

translation was indicated by increased and decreased MRLs, which are assessed by polysome profiling. (B) The top 100 50 UTRs with the most

largely changed MRLs after m1J modification. (C) Schematic illustration of how uAUG hinders mRNA translation. The uAUG competes with

the translation of ORF (green) by producing upstream ORF (orange). (D and E) The influence of in-frame and out-of-frame uAUGs on the mean

MRL of m1J-modified or non-modification mRNAs. (F and G) The strong and weak TIS of m1J-modified or non-modification mRNAs.

WebLogo3 was used to calculate the nucleotide frequencies of the relative TIS using 50 sequences with the lowest MRL and 50 sequences with

the highest MRL. ***P < 0.001, ****P < 0.0001; m1J, N1-methyl-pseudouridine; MRL, the mean ribosome loading; uAUG, upstream initiation

codon; TIS, translation initiation site.
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of endogenous genes without m1J modification. Additional
specialized tools are necessary for the m1JemRNA design.

3.2. Developing a deep learning model for m1Je50 UTR
design

The design of m1Je50 UTR sequences is a combinational opti-
mization problem where we need to find optimal solutions in a
sizeable discrete space (4N, optimize a 50 UTR sequence with
length N ). Generally, models for 50 UTR design consist of a
predictor and a generator which infer the prediction of translation
efficiency and the generation of new 50 UTRs, respectively18,19.
Nevertheless, the efficiency of existing models was limited,
partially because the generator could not share the features
captured by the predictor19,27. In comparison, Smart5UTR inte-
grated the predictor (encoder) and the generator (decoder) that can
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efficiently generate the 50 UTR sequences based on the latent
vector extracted by the predictor. Moreover, we constructed a
special MRL-based loss function and network architecture to
render Smart5UTR a lower prediction error in the high MRL
segment, which benefits the mRNA vaccine design requiring a
high superior 50 UTR sequence.

Given the importance of m1J modification, we used an open
dataset of m1JemRNA to develop Smart5UTR or reproduce the
existing methods of deep learning (the convolutional neural
network, CNN, and the random forest regression, RF).
Smart5UTR, CNN and RF were trained to map 50 UTR sequence
to translation efficiency on the same datasets. Smart5UTR
and CNN are CNN-based models that accept a one-hot encod-
ing matrix for each 50 nt 50 UTR sequence. The RF model took
the k-mer frequency, the uORFs frequency and the RNA folding
free energy (calculated by RNAfold28) as input features.
Smart5UTR and Optimus 5-Prime precisely captured the rela-
tionship between m1Je50 UTRs and target MRLs (Smart5UTR,
R2 Z 0.8092; Optimus 5-Prime, R2 Z 0.7875, Fig. 3A). How-
ever, RF model cannot accurately predict the MRL value
(R2 Z 0.4511, Fig. 3A). Of the three 50 UTR features entered
into the RF model, uORFs and RNA folding energy contributed
little to the MRL prediction task. uORFs are infrequent in such
synthetic sequences and the correlation between RNA folding
Figure 3 The performance of models in the prediction task. (A) Smart5

observed MRLs. The reimplemented Optimus 5-Prime model explained 78.

random forest model explained 45.11% of the variability of the 50 UTR in

prediction performance of three predictors, includingR2,MAE,RMSEandM

network; R2, coefficient of determination; MAE, mean absolute error; RMS
and MRL values is weak (the Pearson correlation coefficient was
0.1531 in the testing dataset, Supporting Information Fig. S1).
For the latent patterns on 50 UTR sequences, the RF model was
merely trained with k-mer and the corresponding frequency,
without learning the positions and interactions of the patterns,
resulting in poor predictive performance.

Smart5UTR not only had the best predictive performance
(Fig. 3B) and learned the relation of 50 UTR sequence and trans-
lation (Supporting Information Fig. S2), but also had a lower pre-
diction error in the high MRL segment, benefiting vaccine design
(Fig. 4A). We achieved this improvement by constructing a special
MRL-based loss function. The loss was calculated as the squared
error between the predicted and actual values for each data, and for
those above the average MRL value, it was multiplied by a factor
that increases with the MRL value. Our customized loss function
and network architecture made the regressor more sensitive to data
with higher MRL values when fitting it to the input sequences. In
addition to achieving the best prediction task performance,
Smart5UTR successfully learned the sequence reconstruction
features (50 UTR reconstruction accuracy was 0.975). The latent
vectors of Smart5UTR contained sufficient information about the
ribosome binding capacity of 50 UTRs (Fig. 4B), enabling the
enhancement of protein expression of the 50 UTR by optimizing the
latent vector.
UTR explained 80.92% of the variability of the 50 UTR sequences in

75% of the variability of the 50 UTR sequences in observed MRLs. The

the observed MRLs. (B) Four metrics were calculated to compare the

APE. Smart5UTRhad the best performance. CNN, convolutional neural

E, root-mean-square error; MAPE, mean absolute percentage error.



Figure 4 Evaluation of Smart5UTR and Optimus 5-Prime. (A) Sequences frequency distribution of the test dataset and MAE on each MRL

segment for Smart5UTR (red) and Optimus 5-prime (blue). On data segments with MRL values higher than 6.5, Smart5UTR has a minor

prediction error compared to Optimus 5-prime. (B) UMAP dimensionality reduction for visualizing the latent vectors of Smart5UTR. From the

held-out testing dataset, we randomly sampled 1000 50 UTR from each of three data intervals, high (7 � 0.5), medium (5 � 0.5), and low (3 � 0.5)

MRL, and showed their latent vectors. (C) The MRL of sequences after 50 iterations in Smart5UTR (red line), Optimus 5-Prime (blue line) and

optimized Optimus 5-Prime (green line). (D) The impact of the strengthening coefficient on Smart5UTR generation. The high-quality (HQ) ratio

indicates the proportion of sequences with a higher MRL value than the prototype. (E) The optimization effect of Optimus 5-Prime.
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In the generation task, Smart5UTR outperformed the GA used in
Optimus 5-Prime. We randomly sampled 50 UTR sequences with
MRL around 6 and fed them into models for 50 iterations.
Smart5UTR rendered higher MRL to the sequences in most cases,
even though we accelerated the optimization progress of the Opti-
mus 5-Prime by increasing the mutant probability from 0.5 to 0.7
(Fig. 4C and Supporting Information Fig. S3). Subsequently, we
used Smart5UTR and Optimus 5-Prime to optimize 1000 randomly
selected sequences under the same iterative conditions. Smart5UTR
enabled 98% of the sequences to achieve higher MRL values, while
Optimus 5-Prime improved 2% of them (Supporting Information
Table S3 and Fig. S4). Furthermore, we randomly sampled a
sequence with MRL around 6.5 from the test set and fed it into two
models for a single iteration of optimization, which was repeated
500 times. Compared to the sequences generated by the two models,
the ones from Smar5UTR achieved a higher averageMRL and were
more likely to have higher MRLs than the prototype (Fig. 4D and E,
Supporting Information Fig. S5). Smart5UTR generates sequences
by adding random noise to the latent vectors of the input sequences
and then multiplying the vectors by a strengthening coefficient. The
strengthening coefficient provided a directional perturbation, with
the high strengthening coefficient promoting 50 UTR optimization
(Fig. 4D).

3.3. Validating the efficacy of Smart5UTR in vitro

To validate the performance of Smart5UTR, we synthesized m1J-
modified mRNAs that contained Smart5UTR-designed 50 UTRs.
These mRNAs encoded enhanced green fluorescent protein
(EGFP) and were transfected into the HEK293T cells and
DC2.4 cells. The expression of EGFP-mRNA is represented by
their mean fluorescence intensity (MFI), which was measured
by flow cytometry. The MFI of EGFP-mRNAs were highly
correlated with the prediction of Smart5UTR in HEK293T cells
(R2 Z 0.8311, Fig. 5A). The correlation was slightly weak in
DC2.4 cells (R2 Z 0.7175, Fig. 5B). It was possibly because the
dataset used for Smart5UTR building was produced in HEK293T
cells. Nevertheless, the m1J-modified mRNAs with different 50

UTRs generated by Smart5UTR showed relative translation effi-
ciency and Smart5UTR is credible in vitro.



Figure 5 Validation of Smart5UTR in vitro. (A) The eGFP mRNAs with different Smart5UTR-predicted MRLs were transfected into the

HEK293T cells. (B) The eGFP mRNAs with different Smart5UTR-predicted MRLs transfected into DC2.4 cells. (C) Expression of the S protein

of mRNAvaccines in HEK293T cells and DC2.4 cells. The protein level of the spike was assessed by quantitative ELISA after 12, 24, 48 and 72 h

of transfection of the COVID-19 mRNA vaccines. All data are presented as mean � SD (n Z 3), non-significant (ns), *P < 0.05, **P < 0.01,
***P < 0.001 and ****P < 0.0001. EGFP, enhanced green fluorescent protein; MFI, mean fluorescence intensity; S protein, spike protein.
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Furthermore, we used Smart5UTR to de novo design superior
50 UTRs for COVID-19 vaccine, with predicted MRLs of 7.73,
7.69, 7.54 and 6.92 (7.73 50 UTR, 7.69 50 UTR, 7.54 50 UTR and
6.92 50 UTR). The S27a-440 50 UTR, an endogenous superior 50

UTR, was used as a positive control, with a predictive MRL value
of 5.459. To engineer the mRNAvaccine against SARS-CoV-2, we
chose spike glycoprotein as the target antigen based on its
outstanding antigenicity and critical function in mediating SARS-
CoV-2 entry into host cells29. Consequently, we transcribed m1J-
modified mRNAs that contained 50 UTRs mentioned above and
encoded Spike protein from the SARS-CoV-2 Delta variant
(B.1.617.2). The mRNAs were transfected to HEK293T cells and
DC2.4 cells, and the protein was measured by quantitative ELISA
after 12, 24, 48 and 72 h of transfection of the COVID-19 mRNA
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vaccines. We observed that the expression of all mRNAs peaked at
48 h and remained at 72 h. And Smart5UTR-designed superior 50

UTR rendered higher S protein expression than the endogenous
superior 50 UTR, S27a-440 UTR (Fig. 5C). In addition, mRNA
stability of all COVID-19 vaccines was assessed by fluorogenic
quantitative PCR. The stability of the mRNAs was irrelevant to the
expression level (Supporting Information Fig. S6). These results
indicated that Smart5UTR-designed m1Je50 UTR enhanced the
translation efficacy of mRNAs but not mRNA stability, leading to
an improvement in the expression level of COVID-19 vaccines.

3.4. Smart5UTR-designed superior m1Je50 UTR benefited
SARS-CoV-2 vaccines in mice

To further verify Smart5UTR in vivo, we prepared COVID-19
vaccines with mRNAs that encoded spiked protein and contained
7.73 50 UTR, 7.69 50 UTR, 7.54 50 UTR or 6.92 50 UTR. These
mRNAs were encapsulated in lipid nanoparticles (LNPs), respec-
tively, and were assessed in size and zeta potential (Fig. 6A and B).
Mice were administered 5 mg of mRNA by intramuscular injection
on Days 0 and 14, and serumwas collected on Day 28 for evaluation
Figure 6 Smart5UTR improved COVID-19 mRNA vaccines in mice.

(n Z 3) and the control LNP without loading mRNA. (C) The vaccination

5 mg of COVID-19 mRNA vaccines on Days 0 and 14. COVID-19 mRNA

UTR. Control mice were injected intramuscularly with PBS. The serum wa

titer against RBD of the SARS-CoV-2 Delta variant. (E) The endpoint of th

are presented as mean � SD, non-significant (ns), *P < 0.05, **P < 0.01
of antibody response by ELISA (Fig. 6C). The mRNAvaccines with
Smart5UTR-designed 50 UTR evoked stronger humoral immunity
than the one containing the S27a-440 50 UTR. The binding antibody
titer of the mRNA vaccine containing 7.73, 7.69, 7.54 and 6.92 50

UTR was 327,680, 204,800, 133,120, and 74,240, respectively,
when using the RBD of the SARS-CoV-2 Delta variant (B.1.617.2)
as the coating antigen. The titer of the onewith S27a-440 50 UTRwas
low, with merely 2720 (Fig. 6D). All vaccines had impaired titer
against the SARS-CoV-2 Omicron variant (B.1.1.529). Neverthe-
less, the titer of the vaccine with 7.73 50 UTR was 102,400, and the
titer of the vaccine with S27a-440 50 UTR was 2560 (Fig. 6E). The
Smart5UTR-designed 50 UTRs enabled the COVID-19 mRNA
vaccine to elicit significantly stronger antibody responses against
SARS-CoV-2 Delta and Omicron variants, compared with the one
using endogenous superior 50 UTR, S27a-440 50 UTR.

In response to the unprecedented scale of COVID-19 mRNA
vaccinations, the public and providers remain vigilant about vaccine
safety. Myocarditis is a rare complication of COVID-19 mRNA
vaccination30, and liver injury following COVID-19 mRNA vacci-
nation has been reported31,32. The Smart5UTR-optimized mRNA
vaccine showed outstanding safety in a series of evaluations. To
The size (A) and zeta potential (B) of COVID-19 mRNA vaccines

schedule. BALB/c mice (n Z 5) were intramuscularly injected with

vaccines contained 50 UTRs designed by Smart5UTR or S27a-440 50

s collected on Day 28 for antibody assay. (D) The endpoint of the IgG

e IgG titer against RBD of the SARS-CoV-2 Omicron variant. All data

, ***P < 0.001 and ****P < 0.0001.
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assess cardiac safety, we examined the serum creatine kinase MB
(CKMB) isoenzyme level and observed no significant elevation. The
heart section also indicated the good safety of Smart5UTR-
optimized mRNA vaccines (Fig. 7A and Supporting Information
Fig. S7). For evaluating hepatic safety, we tested alanine amino-
transferase (ALT), aspartate aminotransferase (AST), alkaline
phosphatase (ALP), total protein (TP) and albumin (ALB), and all
biochemical indices were normal (Fig. 7A). All liver sections did not
show vaccination-associated liver injury (Supporting Information
Fig. S7).We also tested the serum creatinine (CRE) and urea (URE),
which did not show renal injury. No toxicity of Smart5UTR-
designed mRNA vaccines was observed in the HE-stained sections
of the kidney, lung, and spleen. Moreover, the body weight changes
showed insignificant difference between the mice administrated
with mRNAvaccines or PBS (Fig. 7B). In conclusion, Smart5UTR-
designed mRNA vaccines have good safety.

4. Discussion

The mRNA technology has accelerated the development of
COVID-19 vaccines that have effectively and timely protected
vulnerable populations from severe and fatal COVID-19. Notably,
during recent decades, pandemics have occurred more frequently,
and there is an urgent need to improve the vaccine platform to
better protect against the new pandemics1,2. Therefore, it is
necessary to develop potent vaccine platforms and prepare for
future pandemics. The mRNA technique has outstanding potential
Figure 7 The safety evaluation of COVID-19 mRNA vaccines with S

analysis. After two months of booster vaccination, serum from BALB/c m

and URE. (B) The body weight changes of the mice with vaccination or P

kinase isoenzyme MB; ALT, alanine aminotransferase; AST, aspartate a

albumin; CRE, serum creatinine and urea.
for combating the emerging pandemic due to its rapid develop-
ment, easy manufacture and convenient scale-up, and thus, de-
serves further optimization33,34. However, no specialized tool
exists for directing the sequence design of m1JemRNA, which
plays a key role in mRNA vaccines. To address this issue, we
developed a deep generative model, Smart5UTR, to specifically
design m1JemRNA vaccines.

In this research, we proposed that nucleotide modification
could alter the superior sequence of mRNA, and observed the
difference in sequence preference between m1J-modified and
unmodified mRNA based on the analysis of an open dataset. This
finding highlighted the need for a dedicated tool for m1JemRNA
design. To develop a practical tool for m1JemRNA design, we
built a deep generation model, Smart5UTR, to search for superior
50 UTR sequences among numerous potential base combinations.
We customized a loss function and network structure, which made
Smart5UTR overcome the limitation of the existing model and
achieve directional optimization. Smart5UTR has high prediction
performance and reconstruction accuracy, particularly for high
translation efficacy mRNAs that are vital for vaccine design. The
function of Smart5UTR was validated in vitro, that Smart5UTR
can design 50 UTRs with target translation efficiency and supe-
rior 50 UTR sequences. To further evaluate Smart5UTR, we used
the Smart5UTR-designed 50 UTR to engineer m1JemRNA for
the COVID-19 vaccine, and these vaccines showed high efficacy
in mice. The Smart5UTR-designed superior 50 UTR helped
COVID-19 vaccine to induce strong immune response against the
mart5UTR-designed 50 UTR. (A) Results of the blood biochemical

ice was collected to analyze CKMB, ALT, AST, ALP, TP, ALB, CRE

BS. All data are presented as mean � SD (n Z 5). CKMB, creatine

minotransferase; ALP, alkaline phosphatase; TP, total protein; ALB,
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Delta and Omicron variants of SARS-CoV-2 compared to the one
with superior endogenous 50 UTR9.

We provided a useful tool for m1Je50 UTR design and
validated it in vitro and in vivo, while several issues need to be
addressed in further detail. Smart5UTR exhibited satisfactory
performance in the high-MRL segment in HEK293T cells, yet
instability in DC2.4 cells. This variance was possibly caused by
the model’s training data, which was produced in HEK293T cells,
while translation efficiency of the same mRNA has a certain de-
gree variation in different cell types35,36. The applicability range
of Smart5UTR is 2e8, where the prediction error of Smart5UTR
is accessible (Fig. 4A), while the fluctuation of translation in
different cell types should be notified. Moreover, the dataset used
for Smart5UTR has an unbalanced distribution of sequences
across different MRL value intervals, leading to suboptimal
prediction performance in under-sampled high MRL value re-
gions. This limitation also affects the efficiency of the generative
algorithm in designing novel 50 UTR sequences. However, the
training dataset used in the research represents the highest quality
one available for translation efficiency of m1JemRNA. Despite
the challenges, the MTAE structure can boost performance by
applying data augmentation to generate UTR sequences.
Smart5UTR designs novel high-expression 50 UTRs, allowing
dataset reconstruction. We recommend adding high-MRL 50 UTRs
from Smart5UTR, fixing flawed sequences, and down-sampling
low-MRL 50 UTRs. Training a new MTAE with this resampled
dataset may improve prediction and generation of high-MRL 50

UTRs. We propose an iterative process of data augmentation and
model evaluation to retain the best-performing MTAE. Validating
machine learning approaches for mRNA sequence design both
in vitro and in vivo represents another challenge. One issue lies in
the fluctuating correlation between Smart5UTR-designed 50 UTRs
and their target translational efficiency, which may impact the
deep learning model’s reliability. Although evaluating the model
using a large number of Smart5UTR-designed 50 UTRs for mRNA
drug development and experimental verification can enhance its
reliability, this approach is costly and time-consuming. Further-
more, the performance of deep learning models can vary across in
silico, in vitro, and in vivo environments, complicating their ap-
plications in the design of clinically effective mRNA drugs.
Considering these limitations, future research should focus on
refining the model along with the dataset and addressing these
challenges to improve the potential of machine learning-guided
mRNA vaccine design.

5. Conclusions

This study pioneered the de novo design of m1Je50 UTR based
on machine learning. Our newly developed deep-generative
model, Smart5UTR, displayed several advantages over the exist-
ing models and the conventional methods, as expected. In com-
parison to previous models, Smart5UTR more accurately predicts
and effectively optimizes 50 UTR sequences with high translation
efficiency. Thus, it can be used to design superior 50 UTRs of
m1J-modified mRNA for mRNA vaccines or other mRNA ther-
apeutics, especially for those requiring high protein expression,
such as protein replacement treatment.

Acknowledgments

This work was financially supported by the Postdoctoral Research
Foundation of National Key S&T Special Projects
(2018ZX09201018-024, China), Sichuan Province Science and
Technology Support Program (2022YFH0001 and 2021YFH0003,
China). The author would like to thank Prof. Zhen Gu (Zhejiang
University, Zhejiang, China) for kindly providing DC2.4 cells.
The author would like to thank Xiaojiao Wang (Core Facilities of
West China Hospital for technical assistance, Chengdu, China)
and Yi Zhang (Core Facilities of West China Hospital for technical
assistance, Chengdu, China). Some elements in graphical abstract,
Figs. 1 and 6 are from BioRender.com (2022), retrieved from
https://app.biorender.com/. We originally designed all the figures.

Author contributions

Xiaoshan Tang and Miaozhe Huo designed the research, carried
out the experiments, performed data analysis, wrote and revised
the manuscript. Yuting Chen carried out the experiments and
revised the manuscript. Shugang Qin, Na Fan, Zhongshan He and
Xi He revised the manuscript. Jiaqi Luo, Xin Jiang, Yongmei Liu,
Xing Duan, Ruohan Wang, Lingxi Chen and Hao Li participated
part of the experiments. Xiangrong Song, Shuai Cheng Li, Bair-
ong Shen and Hai Huang designed the research, acquired the
research funding, and revised the manuscript. All of the authors
have read and approved the final manuscript.

Conflicts of interest

The authors declare no conflict of interest.

Appendix A. Supporting information

Supporting data to this article can be found online at https://doi.
org/10.1016/j.apsb.2023.11.003.

References

1. Excler JL, Saville M, Berkley S, Kim JH. Vaccine development for

emerging infectious diseases. Nat Med 2021;27:591e600.
2. Graham BS, Sullivan NJ. Emerging viral diseases from a vaccinology

perspective: preparing for the next pandemic. Nat Immunol 2018;19:

20e8.

3. Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for in-

fectious diseases: principles, delivery and clinical translation. Nat Rev

Drug Discov 2021;20:817e38.

4. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccinesda new

era in vaccinology. Nat Rev Drug Discov 2018;17:261e79.

5. Barbier AJ, Jiang AY, Zhang P, Wooster R, Anderson DG. The clinical

progress of mRNA vaccines and immunotherapies. Nat Biotechnol

2022;40:840e54.
6. Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 50-

untranslated regions of eukaryotic mRNAs. Science 2016;352:

1413e6.

7. Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, et al. mRNA-based

therapeutics: powerful and versatile tools to combat diseases. Signal

Transduct Targeted Ther 2022;7:166.

8. Leppek K, Das R, Barna M. Functional 50 UTR mRNA structures in

eukaryotic translation regulation and how to find them. Nat Rev Mol

Cell Biol 2018;19:158e74.

9. Zeng C, Hou X, Yan J, Zhang C, Li W, Zhao W, et al. Leveraging

mRNA sequences and nanoparticles to deliver SARS-CoV-2 antigens

in vivo. Adv Mater 2020;32:e2004452.

10. Ferizi M, Aneja MK, Balmayor ER, Badieyan ZS, Mykhaylyk O,

Rudolph C, et al. Human cellular CYBA UTR sequences increase

mRNA translation without affecting the half-life of recombinant RNA

transcripts. Sci Rep 2016;6:39149.

http://BioRender.com
https://doi.org/10.1016/j.apsb.2023.11.003
https://doi.org/10.1016/j.apsb.2023.11.003
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref1
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref1
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref1
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref2
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref2
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref2
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref2
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref3
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref3
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref3
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref3
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref4
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref4
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref4
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref4
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref5
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref5
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref5
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref5
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref6
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref6
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref6
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref6
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref6
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref7
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref7
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref7
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref8
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref8
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref8
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref8
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref8
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref9
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref9
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref9
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref10
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref10
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref10
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref10


1826 Xiaoshan Tang et al.
11. Trepotec Z, Aneja MK, Geiger J, Hasenpusch G, Plank C, Rudolph C.

Maximizing the translational yield of mRNA therapeutics by mini-

mizing 50-UTRs. Tissue Eng 2019;25:69e79.

12. Svitkin YV, Cheng YM, Chakraborty T, Presnyak V, John M,

Sonenberg N. N1-Methyl-pseudouridine in mRNA enhances trans-

lation through eIF2alpha-dependent and independent mechanisms by

increasing ribosome density. Nucleic Acids Res 2017;45:6023e36.

13. Svitkin YV, Gingras AC, Sonenberg N. Membrane-dependent relief of

translation elongation arrest on pseudouridine- and N1-methyl-pseu-

douridine-modified mRNAs. Nucleic Acids Res 2022;50:7202e15.

14. Dolgin E. Trial settles debate over best design for mRNA in COVID

vaccines. Nature 2023;613:419e20.
15. Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine

learning for biologists. Nat Rev Mol Cell Biol 2022;23:40e55.

16. Amin N, McGrath A, Chen YPP. Evaluation of deep learning in non-

coding RNA classification. Nat Mach Intell 2019;1:246e56.
17. Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT,

Way GP, et al. Opportunities and obstacles for deep learning in

biology and medicine. J R Soc Interface 2018;15:20170387.

18. Sample PJ, Wang B, Reid DW, Presnyak V, McFadyen IJ,

Morris DR, et al. Human 50 UTR design and variant effect prediction

from a massively parallel translation assay. Nat Biotechnol 2019;37:

803e9.
19. Cao J, Novoa EM, Zhang Z, Chen WCW, Liu D, Choi GCG, et al.

High-throughput 50 UTR engineering for enhanced protein production

in non-viral gene therapies. Nat Commun 2021;12:4138.

20. Fan N, Chen K, Zhu R, Zhang Z, Huang H, Qin S, et al. Manganese-

coordinated mRNA vaccines with enhanced mRNA expression and

immunogenicity induce robust immune responses against SARS-CoV-

2 variants. Sci Adv 2022;8:eabq3500.

21. Chen K, Fan N, Huang H, Jiang X, Qin S, XiaoW, et al. mRNAvaccines

against SARS-CoV-2 variants delivered by lipid nanoparticles based on

novel ionizable lipids. Adv Funct Mater 2022;32:2204692.

22. Shi H, Chai P, Jia R, Fan X. Novel insight into the regulatory roles of

diverse RNA modifications: re-defining the bridge between tran-

scription and translation. Mol Cancer 2020;19:78.

23. Cuperus JT, Groves B, Kuchina A, Rosenberg AB, Jojic N, Fields S,

et al. Deep learning of the regulatory grammar of yeast 50 untranslated
regions from 500,000 random sequences. Genome Res 2017;27:

2015e24.

24. Zhang H, Wang Y, Wu X, Tang X, Wu C, Lu J. Determinants of

genome-wide distribution and evolution of uORFs in eukaryotes. Nat

Commun 2021;12:1076.

25. Hernandez G, Osnaya VG, Perez-Martinez X. Conservation and

variability of the AUG initiation codon context in eukaryotes. Trends

Biochem Sci 2019;44:1009e21.
26. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a

sequence logo generator. Genome Res 2004;14:1188e90.

27. Aoki G, Sakakibara Y. Convolutional neural networks for classifica-

tion of alignments of non-coding RNA sequences. Bioinformatics

2018;34:i237e44.

28. Gruber AR, Lorenz R, Bernhart SH, Neuboock R, Hofacker IL. The

Vienna RNA websuite. Nucleic Acids Res 2008;36:W70e4.

29. Bok K, Sitar S, Graham BS, Mascola JR. Accelerated COVID-19

vaccine development: milestones, lessons, and prospects. Immunity

2021;54:1636e51.

30. Bozkurt B, Kamat I, Hotez PJ. Myocarditis with COVID-19 mRNA

vaccines. Circulation 2021;144:471e84.

31. Shroff H, Satapathy SK, Crawford JM, Todd NJ, VanWagner LB.

Liver injury following SARS-CoV-2 vaccination: a multicenter case

series. J Hepatol 2022;76:211e4.

32. Efe C, Kulkarni AV, Terziroli Beretta-Piccoli B, Magro B,

Stättermayer A, Cengiz M, et al. Liver injury after SARS-CoV-2

vaccination: features of immune-mediated hepatitis, role of cortico-

steroid therapy and outcome. Hepatology 2022;76:1576e86.
33. Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-Barnum S,

Gillespie RA, et al. SARS-CoV-2 mRNA vaccine design enabled by

prototype pathogen preparedness. Nature 2020;586:567e71.
34. Vogel AB, Kanevsky I, Che Y, Swanson KA, Muik A, Vormehr M,

et al. BNT162b vaccines protect rhesus macaques from SARS-CoV-2.

Nature 2021;592:283e9.

35. Genuth NR, Barna M. Heterogeneity and specialized functions of

translation machinery: from genes to organisms. Nat Rev Genet 2018;

19:431e52.

36. Buszczak M, Signer RA, Morrison SJ. Cellular differences in protein

synthesis regulate tissue homeostasis. Cell 2014;159:242e51.

http://refhub.elsevier.com/S2211-3835(23)00426-4/sref11
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref11
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref11
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref11
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref11
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref12
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref12
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref12
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref12
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref12
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref13
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref13
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref13
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref13
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref14
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref14
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref14
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref15
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref15
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref15
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref16
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref16
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref16
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref17
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref17
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref17
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref18
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref18
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref18
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref18
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref18
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref18
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref19
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref19
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref19
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref19
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref20
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref20
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref20
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref20
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref21
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref21
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref21
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref22
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref22
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref22
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref23
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref23
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref23
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref23
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref23
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref23
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref24
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref24
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref24
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref25
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref25
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref25
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref25
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref26
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref26
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref26
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref27
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref27
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref27
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref27
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref28
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref28
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref28
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref29
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref29
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref29
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref29
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref30
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref30
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref30
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref31
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref31
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref31
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref31
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref32
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref32
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref32
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref32
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref32
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref33
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref33
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref33
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref33
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref34
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref34
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref34
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref34
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref35
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref35
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref35
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref35
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref36
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref36
http://refhub.elsevier.com/S2211-3835(23)00426-4/sref36

	A novel deep generative model for mRNA vaccine development: Designing 5′ UTRs with N1-methyl-pseudouridine modification
	1. Introduction
	2. Materials and methods
	2.1. Development of the MTAE architecture for 5′ UTR sequence reconstruction and MRL prediction
	2.2. Loss functions in the MTAE model
	2.3. Reimplement the benchmark models
	2.4. Optimization of 5′ UTR based on MTAE frame
	2.5. Optimization of 5′ UTR based on genetic algorithm
	2.6. In vitro mRNA transcription
	2.7. In vitro expression of mRNA
	2.8. LNP preparation and characterization
	2.9. Mice immunization
	2.10. Enzyme-linked immunosorbent assays
	2.11. Quantitative enzyme-linked immunosorbent assays
	2.12. Quantitative PCR
	2.13. Safety evaluation
	2.14. Statistical analyses
	2.15. Data availability

	3. Results
	3.1. m1Ψ modification alters the 5′ UTR sequence with high translation efficiency
	3.2. Developing a deep learning model for m1Ψ–5′ UTR design
	3.3. Validating the efficacy of Smart5UTR in vitro
	3.4. Smart5UTR-designed superior m1Ψ–5′ UTR benefited SARS-CoV-2 vaccines in mice

	4. Discussion
	5. Conclusions
	Author contributions
	Conflicts of interest
	Conflicts of interest
	Acknowledgments
	Appendix A. Supporting information
	References


