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A B S T R A C T   

Antimicrobial resistance (AMR) represents a major threat to human and animal health. Part of the AMR 
dimension is the circulation of extended-spectrum β-lactamases producing-Escherichia coli (ESBL-E. coli), which is 
now commonly reported among companion animals. However, the global perspective of the prevalence and 
population structure of ESBL-E. coli circulating in dogs and cats has not been estimated limiting our under-
standing of their role in the dissemination of ESBL-E. coli. The aim of this study was to compare the prevalence of 
ESBL-E. coli between dogs and cats and across countries through meta-analysis. We also performed a scoping 
review to summarize the current knowledge on ESBL genes and E. coli clones circulating among companion 
animals. A total of 128 studies published in PubMed, Web of Science, and Scopus up to April 2020 were selected 
and contained information on prevalence and/or molecular characterization of ESBL genes and ESBL-E. coli 
clones. Our review shows an increase in the number of publications between 2000 and 2019, concentrated 
mainly in Europe. Prevalence varied across continents, ranging from 0.63% (Oceania) to 16.56% (Africa) in dogs 
and from 0% (Oceania) to 16.82% (Asia) in cats. Although there were twice as many studies reporting prevalence 
on dogs (n = 61) than on cats (n = 32), and only 9 studies focused exclusively on cats, our meta-analysis showed 
no difference in the global prevalence of ESBL-E. coli between dogs (6.87% [95% CI: 4.46–10.45%]) and cats 
(5.04% [95% CI: 2.42–10.22%]). A considerable diversity of ESBL genes (n = 60) and sequence types (ST) (n =
171) were recovered from companion animals. ESBL-E. coli encoded by CTX-M-15 (67.5%, 77/114) and SHV-12 
(21.9%, 25/114), along with resistant strains of ST38 (22.7%, 15/66) and ST131 (50%, 33/66) were widespread 
and detected in all continents. While presence of ESBL-E. coli is widespread, the drivers influencing the observed 
ESBL-E. coli prevalence and the clinical relevance in veterinary medicine and public health along with economic 
impact of ESBL-E. coli infections among companion animals need to be further investigated.   

1. Background 

Antibiotics are considered one of the most beneficial drugs in vet-
erinary and human medicine. However, the increase of antimicrobial 

resistance (AMR) in hospitals and in the community has become a major 
public health concern [1,2]. Almost 700,000 human deaths every year 
due to failure of antibiotic treatments of bacterial infections are esti-
mated [2]. In addition, the AMR burden can provoke economic losses 
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reducing countries’ Growth Domestic Product (GDP) [3]. AMR repre-
sents a threat to animal health as well, with more than 70% of antimi-
crobial sales intended for use in livestock [4]. However, very few studies 
have quantified the antibiotic use and AMR among dogs and cats in 
comparison with research conducted in livestock or humans although 
the widespread use of antibiotics on companion animals and a very close 
daily contact with humans [5]. 

Extended-spectrum β-lactamases (ESBL)-producing Enterobacterales 
are a widely distributed source of AMR, for animals and humans [6]. 
ESBL confers resistance to 3rd and 4th generation cephalosporins and 
aztreonam, which are among the last available antibiotics to threat in-
fections against enterobacteria, such as Escherichia coli and Klebsiella 
pneumonia [7]. Thus, the use of broad-spectrum cephalosporins in small 
animal practice is commonly associated with an increase in ESBL pro-
ducing-Escherichia coli (ESBL-E. coli) in companion animals [8]. Several 
studies have demonstrated the presence of ESBL-E. coli in clinical sam-
ples from dogs and cats. For example, ESBL producing uropathogenic 
E. coli (UPEC) have been identified causing urinary tract infections in 
dogs and cats [9,10]. Likewise, virulence factors associated with extra-
intestinal pathogenic (ExPEC), enteropathogenic (EPEC), and enter-
ohemorrhagic (EHEC) in ESBL-E. coli strains have been detected in dogs 
and cats, including the pandemic strain ESBL-E. coli B2-O25b-ST131- 
H30R, which is frequently associated to human infections [11–14]. 
ESBL-E. coli are also commonly detected in subclinical companion ani-
mals, often associated with faecal carriage [15–17,18]. The main ESBL 
genes associated with E. coli obtained from humans and animals are of 
the groups CTX-M, TEM, and SHV [7], whose have been reported in a 
large number of E. coli from different phylogroups [9,19–21]. 

Dissemination of ESBL-E. coli among companion animals will not 
only reduce our ability to treat companion animals but could also spread 
ESBL-E. coli to humans. Previous studies have found the same clones of 
ESBL-E. coli in humans and their dogs [22,23]. Although there is initial 
evidence to support that humans and companion animals are sharing 
resistant bacterial clones, few studies have conducted simultaneous 
samplings and molecular characterizations of ESBL-E. coli in both spe-
cies [22–25]. 

The extension of the problem of ESBL-E. coli among companion an-
imals has not received considerable attention, with only few national 
programs in high-income countries that address the use of antibiotics 
among companion animals and survey for ESBL-E. coli in dogs or cats 
[26–30]. Furthermore, while some studies are available, many of them 
do not report prevalence (referred here as the number of animals 
harboring antimicrobial-resistant bacteria over the total sampled ani-
mals) or provide a molecular description of ESBL-E. coli [31–37]. 
However, understanding the prevalence of ESBL-E. coli and describing 
the genetic background responsible for the resistance are crucial to 
understand the extend of the problem and to develop efficient strategies 
to reduce the burden of ESBL-E. coli. 

The purpose of this meta-analysis and scoping review was to sum-
marize and compare the prevalence of ESBL-E. coli in clinical and 
commensal samples between dogs and cats across continents and to 
identify ESBL-E. coli clones circulating among companion animals. To 
this end, we defined the following research question: “What are the 
prevalence and the population structure of ESBL-E. coli strains reported 
from clinical and commensal samples of dogs and cats worldwide?”. We 
evaluated the number and geographical location of publications in the 
2000–2020 period, compared the prevalence of ESBL-E. coli in dogs and 
cats across continents, characterized the population structure of ESBL- 
E. coli isolated from companion animals, and discussed existing knowl-
edge gaps and future research needs in this field. 

2. Methodology 

This scoping review followed both the checklists of the Joanna Briggs 
Institute Reviewer’s Manual (JBI Scoping reviews) [38] and the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

extension for Scoping Reviews (PRISMA-ScR) [39] (Tables S1 and S2). 
The scoping review protocol was adapted from a previously published 
[40]. Research question, objectives, inclusion, and exclusion criteria 
were prior discussed and defined by all authors. 

2.1. Eligibility criteria 

The aim of this scoping review was to identify all peer-reviewed 
publications of studies performed on ESBL-E. coli obtained from dogs 
and/or cats. Data from publications were used to estimate the preva-
lence and the population structure (sequence type [ST], phylogroup, or 
virulence genes) of E. coli across continents. For inclusion in this scoping 
review, the studies should provide i) the prevalence (or sufficient in-
formation for estimation), defined here as number of dogs or cats that 
ESBL-E. coli were isolated and confirmed by phenotypic or molecular 
tests over the total number of sampled animals, ii) molecular charac-
terization of ESBL genes detected in E. coli isolates, or iii) molecular 
typing of ESBL-E. coli from companion animals (ST, phylogroup, or 
virulence genes). The search was limited to descriptive (case reports and 
case series), or observational (cross-sectional and cohort) studies pub-
lished in English, Spanish, or Portuguese. There were no date or 
geographical limitations and were included publications up to April 
2020. 

2.2. Search strategy for identification of relevant studies 

The data search was performed on May 6, 2020 from the electronic 
databases PubMed, Web of Science, and Scopus (gray literature was not 
included in this scoping review). MeSH and keyword terms in the title, 
abstract, and keywords included “antimicrobial resistance”, “ESBL”, 
“extended spectrum beta lactamase”, “dog”, “cat”, “pet”, “companion 
animals”, “canine”, “feline”, “small animals”, “E. coli”, “Escherichia coli”. 
All queries are available as additional file (Table S3). The Microsoft 
Excel software (Power Query editor) was used for visualization, dupli-
cate removal, and stored of data collected. 

2.3. Screening phase and exclusion criteria 

We identified a total of 2757 non-duplicate scientific papers (i.e., 
original articles, letters for editor, and short communications) published 
between 2000 and April 2020 (Fig. 1). These publications were screened 
following a specific criterion. Briefly, papers should explicitly include at 
least one of the words: “ESBL”, “lactamase”, “CTX-M”, “SHV”, “TEM”, in 
combination with at least one of these: “dog”, “cat”, “pet”, “canine”, 
“feline”, and should also include the term “coli” (Fig. S1). Articles that 
did not met this criteria, full text were not available, or that were not in 
English, Spanish, or Portuguese were excluded. Then, the selection 
process of papers was based on a carefully full-text examination to select 
only studies presenting ESBL-E. coli isolates from clinical or commensal 
samples of companion animals and in accordance with the inclusion 
criteria (Fig. S2). Studies including previously published data, reviews, 
studies of basic or experimental science (e.g., mutations detection, 
sequencing of specific proteins, in vitro analysis, experimental infections, 
clinical trials), books, and book chapter were excluded. 

2.4. Data extraction and information summarizing methods 

Data extracted from the manuscript and supplementary material of 
records were entered into a Microsoft Excel template designed exclu-
sively for this study. Data extraction were performed by one author (MS- 
C) and verified independently by two authors (AM-S and JAB). Dis-
agreements were resolved through discussion. This form contained 
predetermined variables: characteristics of publications (search tool, 
query, doi, title, first author, and year), type of the study, type of sam-
ples, animal species included in the study, methodology conducted, 
number of dogs or cats that ESBL-E. coli were isolated along with the 
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total number of animals sampled, genotypes of ESBL genes in E. coli, and 
molecular typing of these isolates (ST, phylogroup, virulence genes) 
(Table S4). 

Here, we presented an overview of four major topics: i) temporal 
trend in the number of publications, ii) geographic location of reported 
prevalence, iii) molecular characterization of ESBL genes detected in 
clinical and commensal E. coli, and iv) the population structure of E. coli 
isolates harboring these resistance genes. 

2.5. Meta-analysis 

Of papers included for qualitative synthesis, we selected those con-
taining the number of positive and total dogs and/or cats to estimate the 
global prevalence of ESBL-E. coli and compared between dogs and cats 
and across countries. A critical appraisal of these papers was conducted 
to be included in our meta-analysis. Papers were scored between 0 and 4 
according to four questions (1. Was the number of positive dogs/cats 
provide? / 2. Was the number of total sampled dogs/cats provide? / 3. 
Was data from dogs or cats provided separately? / 4. Was ESBL-E. coli 
isolates confirmed by phenotypic/molecular tests?) and those that 
scored 4 were included in the meta-analysis. The meta-analysis was 
performed using the meta and metafor libraries in R [41,42]. The overall 

prevalence and confidence interval of 95% were determined according 
with the total number of dogs or cats sampled using a random effect 
model [43]. The effects and impact of variation of species, continent, or 
year were tested using a meta-regression with the metareg function in R 
[42]. Forest plots were shown using the forest function. The hetero-
genicity in the meta-analysis, referred as the variation in study outcomes 
between studies that is not due to chance, was measured using the I2 

statistic [44]. 

3. Results 

3.1. Qualitative synthesis and meta-analysis 

A total of 190 articles were first selected. Based on the eligibility 
criteria, 128 studies containing data on ESBL-E. coli prevalence, mo-
lecular characterization of ESBL genes, or molecular typing of ESBL- 
E. coli isolates from dogs and/or cats were retained (Table 1). The 
eligibility process and reasons for exclusion in each step were summa-
rized in the flow chart (Fig. 1). Data on each article are given on 
Table S4. 

Fig. 1. Flow diagram of Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR).  
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3.2. Spatio-temporal characteristics in the number of publications 

The number of peer-reviewed articles increased from one per year in 
2001 to 19 per year in 2019, with an increase in the last ten years 
(Fig. 2). Most studies were conducted in Europe (46.9%, 60/128) fol-
lowed by Asia (25.8%, 33/128) (Fig. 3A). China (n = 11) and Japan (n =
10) contained the largest number of publications (Table S5). 

Overall, 67.2% (86/128) of studies were conducted exclusively in 
companion animals and the remaining 32.8% (42/128) analyzed sam-
ples from different animal species besides dogs and cats including live-
stock (n = 25), humans (n = 15), and wildlife (n = 12). Most studies 
included only dogs (41.4%) or both dogs and cats (51.6%), and 7% were 
conducted exclusively in cats (Fig. 3B). 

Almost all studies (97.7%, 125/128) confirmed the production of 
ESBL by using molecular methods to detect the most common ESBL 
genes (CTX-M, SHV, and TEM) and 47.7% (61/128) used selective 
media to screen ESBL-E. coli before confirmation. 

Studies included clinical samples (i.e., from hospitalized or sick an-
imals) (43%, 55/128), samples from healthy animals (i.e., non-clinical 
samples) (41.4%, 53/128), or both clinical and non-clinical samples 
specimens (13.3%, 17/128). The remaining studies did not specify the 
type of samples (2.3%, 3/128). Clinical samples included majority urine 
specimens (18%, 42/239 from 72 studies) whereas faecal specimens 
represented 91% of non-clinical specimens (67/74 from 70 studies) 
(Fig. 4). 

3.3. Meta-analysis of global prevalence of ESBL-E. coli in companion 
animals 

Based on the quality assessment performed, meta-analysis was con-
ducted using data from 67 studies, which yielded a total of 8005 dogs 
and 2263 cats sampled. Remaining studies assigned to a lower score 
than 4 were still eligible enough for our scoping review based on our 
inclusion criterion. The prevalence was more reported on dogs (91%, 
61/67) compared to cats (47.8%, 32/67). The global prevalence of 
ESBL-E. coli was estimated to be 6.87% [95% CI: 4.46–10.45%] in dogs 
and 5.04% [95% CI: 2.42–10.22%] in cats (Fig. 5). There was no sta-
tistical difference in the prevalence between dogs and cats (meta- 
regression, p = 0.5). In addition, our meta-analysis did not show trends 
in the prevalence of ESBL-E. coli either dogs or cats over 2000–2020 
period (meta-regression, p > 0.1). 

The prevalence of ESBL-E. coli varied across continent, ranging from 
0.63% [95% CI: 0.02–15.34%] (Oceania) to 16.56% [95% CI: 
7.45–32.84%] (Africa) in dogs (Fig. 6). Similarly, it ranged from 0% 
[95% CI: 0–100%] (Oceania) to 16.82% [95% CI: 5.26–42.45%] (Asia) 
in cats (Fig. 7). Variation required in estimations and sample size to 
estimate prevalence varied significantly across studies (I2 > 79%) and 
countries, with the highest prevalence reported reaching up to 84% in 
dogs (The Netherlands) and 74% in cats (Pakistan) (Tables S6, S7, and 
S8). 

3.4. Molecular characterization of ESBL genes detected in E. coli isolates 
from clinical and non-clinical samples of companion animals 

Molecular characterization of ESBL-E. coli isolates was performed on 
118 studies. Bacterial molecular typing of ESBL-E. coli was performed by 
identification of E. coli phylogroup in 52 studies and multi-locus 
sequence typing (MLST) in 66 studies. Phylogroup was identified 
mainly in ESBL-E. coli from clinical samples (51.9%, 27/52) compared to 
non-clinical (34.4%, 18/52) and in 13.5% of studies (n = 7) the isolates 
were from both clinical and non-clinical or were not specified. Likewise, 
MLST was conducted in isolates from 53% of studies containing clinical 
samples (35/66), 34.9% of studies containing non-clinical samples (23/ 
66), and 12.1% of studies (n = 8) isolated ESBL-E. coli from both clinical 
and non-clinical or did not specify the type of sample. 

Molecular characterization of the main ESBL genes (blaCTX-M, blaSHV, 
blaTEM) was performed in 114 studies. ESBL-E. coli genes were recovered 
from 43.8% of studies containing clinical samples (50/114) and from 
39.5% of studies containing non-clinical samples (45/114). In 16.7% of 
studies (n = 19), the isolates were obtained from both clinical and non- 
clinical or the type of specimen was not provided. 

Table 1 
Summary of features of studies included in the scoping review (n = 128).  

Origin of 
samples 

Total of 
publications 

Species 
sampled 

Number of 
publications 
estimating 
prevalence a 

Number of 
publications 
characterizing 
ESBL genes b 

Number of 
publications 
performing 
phylo-typing 

Number of 
publications 
determining 
MLST typing 

Number of 
publications 
screening for 
virulence 
genes 

References 

America 20c dogs and 
cats 

10/ 
20 

(50%) 16/ 
20 

(80%) 11/ 
20 

(55%) 9/ 
20 

(45%) 5/ 
20 

(25%) [10,21,22,35,37,45–59] 

Europe 60d dogs and 
cats 

32/ 
60 

(53%) 55/ 
60 

(92%) 23/ 
60 

(38%) 36/ 
60 

(60%) 13/ 
60 

(22%) [9,12,14,16,17,23,24,32,34,60–110] 

Africa 9 dogs and 
cats 

8/9 (89%) 8/9 (89%) 7/9 (78%) 3/9 (33%) 0/9 (0%) [20,111–118] 

Asia 33 dogs and 
cats 

15/ 
33 

(45%) 30/ 
33 

(91%) 11/ 
33 

(33%) 14/ 
33 

(42%) 7/ 
33 

(21%) [8,11,13,15,31,36,119–145] 

Oceania 6 dogs and 
cats 

3/6 (50%) 5/6 (83%) 0/6 (0%) 4/6 (67%) 0/6 (0%) [146–151]  

a Reported in the study or estimated based on the information provide by study. 
b Molecular characterization of the genes blaCTX-M, blaSHV, and blaTEM 
c One study analyzed samples originated from United States and Canada. 
d Six studies analyzed samples originated from two or more countries within Europe. 

Fig. 2. Number of publications per continent over 2000–2020 period.  
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Only 25 studies tested the presence of virulence factors among ESBL- 
E. coli and in 23 of them, virulence genes were detected. Most of studies 
identified isolates containing virulence genes from clinical samples 
(73.9%, 17/23) and the remaining from non-clinical (26.1%, 6/23). 

3.4.1. Genetic diversity of ESBL genes 
Studies detected 60 different ESBL genotypes including 39 of blaCTX- 

M, seven of blaSHV, and 14 of blaTEM. blaCTX-M-type was reported in 95% of 
studies (110/118) and these were relatively evenly distributed among 
dogs and cats across all continents (Table 2). Fourteen genotypes of 
blaCTX-M, two genotypes of blaSHV, and three genotypes of blaTEM were 
present in two or more continents and blaCTX-M-15 and blaSHV-12 were 
described in all. Unique genotypes of ESBL were found in all continents, 
except for Africa, with 13 genotypes exclusively described in Europe, 13 
in Asia, seven in America, and one in Oceania. 

3.4.2. Population structure of ESBL-E. coli among companion animals 
One-hundred seventy-one different STs were identified (Table 3). 

ST38 and ST131 were found in all continents followed by ST68, ST405, 
ST617, and ST648 detected in at least four. 

All phylogroups (A, B1, B2, C, D, E, and F) were found in ESBL-E. coli 
isolates from America and Europe (Table 3). Studies from Oceania did 
not perform the identification of phylogroup of ESBL-E. coli isolates. 

Ninety-three virulence genes were detected in isolates from America, 
Asia, and Europe (Table 2). Most virulent genes were associated with 
E. coli pathotypes such as extraintestinal pathogenic (EPEC, including 
uropathogenic [UPEC]), enterohemorrhagic (EHEC), enterotoxigenic 
(ETEC), diffusely adherent (DAEC), and shiga-toxin producing (STEC). 

4. Discussion 

ESBL-E. coli circulating among dogs and cats have been reported 
worldwide, but the extend of the circulation of this bacteria among 

Fig. 3. A: Number of publications of ESBL-E. coli in dogs and cats per country in gradient. B: Studies performed exclusively in dogs, or cats, or both per country.  
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Fig. 4. Type of samples and proportion of specimens that were collected by included studies. Body fluids specimens includes effusions; Faecal specimens includes 
diarrhea and non-diarrhea; Gastrointestinal tract specimens includes digestive tract, enteritis, vomitus; Ocular specimens includes conjuntive, córnea, and eye; Others 
specimens referred as type of sample not specified; Respiratory tract [clinical] specimens includes bronchoalveolar lavage, sneeze, pharynx, pleural effusion, throat, 
and trachea lavage fluids; Respiratory tract [non-clinical] specimens includes nasal, and pharyngeal; Soft tissue/biopsy specimens includes colon, gut, liver, lung, and 
lymphonodes; Urogenital tract specimens includes uterus, vaginal secretion, intrauterine liquid, preputial secretion, prostate, pyometra, and scrotal fluid; Wounds/ 
surgical sites specimens includes fistula. 

Fig. 5. Forest plot of the global prevalence of ESBL-E. coli in dogs and cats.  
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companion animals remains unclear. In this review, we showed an 
increasing number of publications focusing on this topic and estimated a 
similar global prevalence of ESBL-E. coli of 6.87% in dogs and 5.04% in 
cats. We identified that the number of publications and prevalence 
varied extensively across continents, countries, and studies. A high di-
versity of both ESBL genes and E. coli clones were found worldwide, with 
ESBL genes blaCTX-M-15 and blaSHV-12 and sequence types ST38 and ST131 
found in all continents. 

The estimated prevalence of 6.29% [95% IC: 4.34–9.02%] of ESBL- 
E. coli in companion animals can be considered lower compared to es-
timations in livestock (50%–70%) [152–155], and in humans (2%–46%) 
[156–159]. No statistical differences of prevalence were observed be-
tween dogs (6.87%) and cats (5.04%) and we did not observe variation 
on the prevalence rates of ESBL-E. coli either in dogs or cats over years 
(meta-regression, p > 0.1). There were fewer studies conducted exclu-
sively on cats, although we have estimated a similar prevalence in cats 
and dogs. The smaller number of studies conducted in cats could 
possibly be related to greater logistical challenges in obtaining samples. 

For instance, feline handling is difficult during medical examinations, as 
restraint techniques increase fear and fear aggression in many cats 
compared to dogs [160], and cats usually bury their feces after defeca-
tion [160,161]. Despite a relative low prevalence compared to livestock 
or humans and no reported increase over the 20-year period, the pres-
ence of ESBL-E. coli in dogs and cats can have important impacts for the 
treatment of companion animals. Resistant bacterial infections increase 
length of hospital stay, mortality, and healthcare costs in humans [162], 
which would be also expected for companion animals. However, to our 
knowledge, no study has estimated the cost and burden of ESBL-E. coli 
infections on companion animals. 

Significant variation in prevalence estimations were observed across 
continents and studies. Part of these differences could be associated with 
differences in study methodologies since the use of selective culture 
medium might overestimate the prevalence [163]. Alternatively, dif-
ferences in prevalence across continents and countries could reflect 
differences in the circulation of ESBL-E. coli related, for example, to 
different levels of antibiotic use among veterinarians and owners and 

Fig. 6. Forest plot of the prevalence of ESBL-E. coli in dogs across continent.  

Fig. 7. Forest plot of the prevalence of ESBL-E. coli in cats across continents.  
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other factors influencing bacterial transmission. For example, socio-
economic and behavioral components may reflect the differences of 
AMR ratios observed in low- and middle-income countries [164]. In fact, 
prevalence was higher in Africa or Asia, and lower in Oceania and 
Europe, which could be associated with a socio-economic gradient, this 
requiring further investigation. 

A high diversity of ESBL genes and E. coli clones were associated with 
ESBL resistance in dogs and cats. Identification of similar ESBL and STs 
across continents confirmed the widespread of ESBL-E. coli in compan-
ion animals also observed in humans [165]. Europe showed the highest 
molecular diversity, which could be associate both to a higher number of 

studies and to a more available molecular typing techniques, when 
compared to low-income countries. Overall, our review shows that 
ESBL-E. coli circulation among companion animals is not necessarily 
clonal and could result from multiple introductions from other sources 
(e.g., livestock and humans) or a selective pressure generated by anti-
biotics usage by veterinarians and owners. For example, owners tend to 
exert substantial influence on veterinary decisions on the prescription of 
antibiotics [166]. The inability of companion animals to communicate 
the severity of their symptoms often leads owners to prioritize preven-
tive measures including the use of antibiotics. 

Most studies reporting ESBL-E. coli concluded that dogs and cats are 

Table 2 
ESBL and virulence genes identified from E. coli isolates among dogs and cats.  

Continent ESBL genotypes Ref. Virulence genes Ref. 

Africa CTX-M-1, CTX-M- 
15, SHV-12, TEM- 
135 

[20,111–114,116–118] No data  

America CTX-M-1, CTX-M- 
2, CTX-M-3, CTX- 
M-8, CTX-M-9, 
CTX-M-14, CTX-M- 
15, CTX-M-24, 
CTX-M-27, CTX-M- 
55, CTX-M-65, 
CTX-M-106, CTX- 
M-115, CTX-M- 
123, CTX-M-169, 
CTX-M-202, SHV- 
2, SHV-3, SHV-12, 
TEM-5, TEM-30, 
TEM-33, TEM-181 

[10,35,37,46–58] afa/draBC, air, cba, 
cma, cnf1, cvaC, 
eilA, fimH, focA, 
fyuA, gad, hlyA, 
hlyD, ibeA, ipfA, 
ireA. iroN, iutA, iss, 
kpsMTII, kpsMTK5, 
malX, mchF, PAI, 
papA, papC, papE, 
papGIII, rfc, sfa/ 
focDE, tsh, traT 

[10,21,51,55,56] 

Asia CTX-M-1, CTX-M- 
2, CTX-M-3, CTX- 
M-8, CTX-M-9, 
CTX-M-13, CTX-M- 
14, CTX-M-15, 
CTX-M-24, CTX-M- 
27, CTX-M-28, 
CTX-M-55, CTX-M- 
57, CTX-M-64, 
CTX-M-65, CTX-M- 
90, CTX-M-104, 
CTX-M-116, CTX- 
M-123, CTX-M- 
127, CTX-M-174, 
SHV-12, SHV-190, 
TEM-30 

[8,11,13,15,31,36,119–131,133,134,136,137,139–145] aec, cah, clpV, csgA, 
csgB, csgC, csgD, 
csgE, csgF, csgG, 
eaeA, eaeH, ETTT, 
ehaB, espl, espR, 
espX, f17a-A, fimH, 
fyuA, hlyE, iha, 
iutA, iucD, kpsmMT, 
malX, papC, papE, 
papG, PAI, sat, stx2, 
traT 

[15,131,133,138,144] 

Europe CTX-M-1, CTX-M- 
2, CTX-M-3, CTX- 
M-8, CTX-M-9, 
CTX-M-14, CTX-M- 
15, CTX-M-18, 
CTX-M-20, CTX-M- 
24, CTX-M-27, 
CTX-M-28, CTX-M- 
32, CTX-M-44, 
CTX-M-55, CTX-M- 
57, CTX-M-61, 
CTX-M-65, CTX-M- 
79, CTX-M-82, 
CTX-M-138, SHV- 
2, SHV-2A, SHV-5, 
SHV-12, SHV-28, 
TEM-21, TEM-32, 
TEM-35, TEM-52, 
TEM-52B, TEM- 
52C, TEM- 
52StPaul, TEM-80, 
TEM-135, TEM- 
158 

[9,12,14,16,17,23,24,32,34,60–66,68,70–92,94–97,99–107,109,110] afa/dra, argW, 
astA, cba, celb, 
chuA, cif, cma, cnf1, 
crl, csgA, eae, ecpA, 
eilA, espA, espB, 
espF, espJ, fimA, 
fimC, fimH, fyuA, 
gad, HPI, hlyA, iha, 
ireA, iroN, irp2, iss, 
iucD, iutA, iutD, 
kpsMTII, lpfA, 
malX, mat(A), 
mchF, mcmA, nleA, 
nleB, prfB, ompA, 
PAI, papAH, papC, 
papGII, papEF, sat, 
senB, sfaDE, sfa/ 
foc, sitA, tir, toxB, 
traT, tsh, yfcv 

[9,12,34,64,66,73,77,81,93,101,102,107,110] 

Oceania CTX-M-11, CTX-M- 
14, CTX-M-15, 
CTX-M-27, SHV- 
12, TEM-33 

[147–151] No data   
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Table 3 
Phylogroup and sequence types of ESBL-E. coli isolated from dogs and cats.  

Continent Phylogroup Ref. Sequence Types Ref. 

Africa A, B1, B2, 
D, E, F 

[20,112–114,116–118] ST38, ST44, ST46, 
ST58, ST131, ST617, 
ST2852, ST3687, 
ST3694, ST3726 

[20,111,113] 

America A, B1, B2, 
C, D, E, F 

[35,37,49–52,54,55,58] ST10, ST12, ST23, 
ST38, ST44, ST58, 
ST68, ST69, ST73, 
ST90, ST104, ST117, 
ST127, ST131, ST155, 
ST162, ST167, ST224, 
ST354, ST371, ST372, 
ST393, ST405, ST410, 
ST443, ST457, ST617, 
ST648, ST770, ST961, 
ST1011, ST1088, 
ST1193, ST1585, 
ST1722, ST1730, 
ST1976, ST2175, 
ST2541, ST2936, 
ST3267, ST3395, 
ST3944, ST4110, 
ST4891, ST5033, 
ST5063, ST5174, 
ST5206, ST5219, 
ST5220, ST5231, 
ST5232, ST5612, 
ST6478 

[10,21,37,50,51,54–57] 

Asia A, B1, B2, 
C, D, F 

[13,124,126,127,130,131,133,134,137,141,144] ST10, ST38, ST44, 
ST46, ST64, ST68, 
ST69, ST70, ST73, 
ST75, ST90, ST93, 
ST95, ST104, ST101, 
ST117, ST127, ST131, 
ST155, ST162, ST165, 
ST167, ST181, ST224, 
ST302, ST327, ST345, 
ST349, ST350, ST351, 
ST354, ST359, ST372, 
ST375, ST405, ST410, 
ST448, ST453, ST457, 
ST533, ST602, ST617, 
ST642, ST648, ST746, 
ST827, ST1125, 
ST1177, ST1193, 
ST1262, ST1421, 
ST1431, ST1642, 
ST1700, ST1722, 
ST1820, ST1960, 
ST2042, ST2178, 
ST2179, ST2375, 
ST2509, ST2541, 
ST2599, ST3058, 
ST3210, ST3630, 
ST5176, ST6316 

[8,13,15,124–126,131,133,134,137,140,141,143,144] 

(continued on next page) 
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Table 3 (continued ) 

Continent Phylogroup Ref. Sequence Types Ref. 

Europe A, B1, B2, 
C, D, E, F 

[9,32,34,64,66,72–74,77,79,80,82,87,88,91,93,94,96,99,102,104,106,107] ST3, ST10, ST23, ST38, 
ST43, ST46, ST57, 
ST58, ST59, ST68, 
ST69, ST73, ST88, 
ST90, ST92, ST93, 
ST101, ST117, ST127, 
ST131, ST141, ST155, 
ST156, ST160, ST162, 
ST167, ST186, ST209, 
ST219, ST224, ST227, 
ST297, ST315, ST349, 
ST354, ST359, ST361, 
ST362, ST398, ST405, 
ST410, ST453, ST457, 
ST448, ST461, ST493, 
ST533, ST539, ST555, 
ST602, ST609, ST617, 
ST648, ST670, ST744, 
ST746, ST949, ST963, 
ST973, ST1126, 
ST1177, ST1196, 
ST1249, ST1284, 
ST1303, ST1340, 
ST1421, ST1431, 
ST1485, ST1576, 
ST1594, ST1665, 
ST1670, ST1684, 
ST1730, ST1832, 
ST1850, ST2067, 
ST2348, ST2449, 
ST2607, ST3018, 
ST3163, ST3381, 
ST3509, ST3847, 
ST3848, ST3889, 
ST4181, ST4184, 
ST4304, ST4305, 
ST4340, ST4496, 
ST4792, ST6998 

[9,12,14,16,17,24,32,34,64,66,70–74,76,77,79,81–84,87,88,94,96,97,99–102,104,105,107,109,110] 

Oceania No data  ST12, ST38, ST68, 
ST106, ST131, ST405, 
ST648, ST744, ST1408, 
ST1569, ST2144, 
ST3268, ST3520, 
ST4200 

[148–151]  
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‘reservoirs’ of ESBL. However, no study to our knowledge has fully 
proven that companion animals are ‘reservoirs’ of ESBL-E. coli, defined 
as a population that can maintain and subsequently transmit the bac-
teria to a target population (e.g., humans) without the introduction from 
another source [167]. Therefore, it remains unclear whether reducing 
the transmission of ESBL-E. coli among companion animals will result in 
less transmission to humans. 

5. Conclusions and future directions 

Research on ESBL-E. coli in companion animals has increased in the 
last 20 years, showing that these bacteria is present in dogs from all 
continents and cats in all continents, except for Oceania. Despite 
increasing interest, the prevalence of ESBL-E. coli is still not reported in 
many countries, mainly in low-income countries and in cats. A high 
diversity of ESBL genes and ESBL-E. coli clones were detected. Although 
some studies detected the presence of virulent genes, the pathogenic 
relevance of these bacteria as well as their impact on animal morbidity, 
mortality, length of hospitalization, and treatment cost remain poorly 
understood. Future research should focus on identifying the drivers 
responsible for the acquisition and dissemination of ESBL-E. coli in 
companion animals including cross-species transmission with humans 
and livestock, the clinical relevance of these bacteria and their economic 
impact. 

This scoping review identified the prevalence and population struc-
ture of ESBL-E. coli isolates circulating in dogs and cats. Many studies 
were excluded due to incomplete or inadequate reporting of data. Also, 
the comparison between studies with different designs is challenging 
and can introduced several biases regarding the comparison of preva-
lence across studies, countries, and continents. Part of this is probably 
reflected on the high heterogeneity on study results. Therefore, we 
recommend standardization among methodologies of studies, which 
could follow consensus of international experts. 

Our review also calls for the establishment of national surveillance 
programs in low- and middle-income countries that will allow moni-
toring the extension of the ESBL problem in companion animals and 
evaluate the implementation of different strategies to limit the spread of 
ESBL including more responsible use of antibiotics by both veterinarians 
and owners. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.onehlt.2021.100236. 
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