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Abstract

The identification of elite individuals is a critical component of most breeding programs.

However, the achievement of this goal is limited by the high cost of phenotyping and experi-

mental research. A significant benefit of genomic selection (GS) to plant breeding is the

identification of elite individuals without the need for phenotyping. This study aimed to pro-

pose different calibration strategies using combinations between generations from different

genetic backgrounds to improve the reliability of GS and to investigate the effects of LD in

different types of mating systems: outcrossing (An) self-pollination (Sn) and hybridization

(Hn). For this purpose, we simulated a genome with 10 linkage groups. In each group, two

QTL were simulated. Subsequently, an F2 population was created, followed by four genera-

tions of inbreeding (S1 to S4, H1 to H 4, A1, to A4,). Quantitative traits were simulated in three

scenarios considering three degrees of dominance (d/a = 0, 0.5 and 1) and two broad sense

heritabilities (h2 = 0.30 and 0.70), totaling six genetic architectures. To evaluate prediction

reliability, a model (RR-BLUP) was trained in one generation and used to predict the follow-

ing generations of mating systems. For example, the marker effects estimated in the F2 pop-

ulation were used to estimate the expected genomic breeding value (GEBV) in populations

S1 through A4. The squared correlation between the GEBV and the true genetic value were

used to measure the reliability of the predictions. Independently of the population used to

estimate the marker effect, reliability showed the lowest values in the scenario where d = 1.

For any scenario, the use of the multigenerational prediction methodology improved the reli-

ability of GS.

Introduction

Genomic selection (GS) was proposed by [1] as a means to increase selective efficiency, reduce

frequency and costs of phenotyping, and also increase annual gains by reducing selection cycle

time [2]. This approach, mainly based on the existence of linkage disequilibrium between

markers and genes that control traits, employs simultaneous estimation of genetic marker
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effects that are distributed over the genome in order to explain much of the genetic variation

and predict the genetic value of individuals [3].

According to [4] the success of the GS approach depends on the heritability and the genetic

architecture of the traits (number and effect of Quantitative trait loci—QTL), as well as on the

availability of linkage disequilibrium (LD) between markers and QTL in the training and vali-

dation populations [4, 5]. The response to GS relies on linkage disequilibrium (LD), thereby

the stronger the LD, the higher the reliability of genomic predictions [6,7,8], and higher the

long-term gains[9,10,11,12].

According to [13], the LD between QTL and Single Nucleotide polymorphism (SNP) will

decrease over generations and the reliability of genomic prediction is expected to decrease

without reestimating the SNP effects in more recent generations. Therefore, estimates obtained

to different mating systems, such as outcrossing (allogamous plants), self-pollination (autoga-

mous plants) and hybridization may be affected differently.

In this context, we aimed to (1) propose different calibration strategies using combinations

between one or more generations from different genetic backgrounds, here called multigener-

ational sets, to improve the reliability of GS predictions; (2) to investigate the effects of LD in

different types of mating systems (outcrossing, self-pollination and hybridization) on the reli-

ability of GS predictions.

Material and methods

Origin of populations

In order to assess the reliability of GS predictions, data were simulated by considering a diploid

species with 2n = 2x = 20 chromosomes as the reference, and the total length of the genome was

stipulated in 1,000 cM. Genomes were generated with a saturation level of 101 molecular mark-

ers spaced by 1cM per linkage group, totaling 1010 markers. Divergent parental line genomes

were simulated, as well as genomes from the base population (F2), which was used as the refer-

ence for obtaining four generations advanced by random mating An (n = 1,2, 3, 4), self-pollina-

tion Sn (n = 1,2, 3, 4) and hybridization, represented here by backcrossing involving the F2

parent as Bcn (n = 1,2, 3, 4). The effective size of the base population is the size of F2 itself, since

the base population (F2) was derived from two contrasting homozygous parents. This population

is in Hardy-Weinberg equilibrium and therefore all disequilibrium is caused by factorial linkage.

Simulation of quantitative traits

The genotypic value for the monogenic model is defined by u + a, u + d, u–a for the genotypes

AA, Aa e aa, respectively. In a polygenic model, the total genotypic value expressed by a given

individual belonging to the population was the sum of each additive effects of individual locus

estimated by the following expression

Gi ¼ mþ ai þ di ð1Þ

where the additive effect (a) of each locus is one half the difference in mean phenotype between

the two homozygous genotypes (for each individual i). The dominance effect (d) is the differ-

ence between the mean phenotype of the heterozygous genotype and the average phenotype of

the two homozygous genotypes. In our simulation we defined 20 loci to control the trait.

Therefore, the additive effect is given by:

ai ¼
P20

j¼1
pjaj ð2Þ
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With αj being the effect of the favorable allele in locus j, considered equal to 1, 0 or -1 for

the genotypic classes AA, Aa and aa, respectively, and pj being the contribution of locus j to

the manifestation of the trait under consideration. In this study, it was established as being

equivalent to the probability of the set generated by the binomial distribution (a+b)s, where

a = b = 0.5 and s = 19. The value of di was defined according to the average degree of domi-

nance expressed in each trait. The quantitative traits were simulated in three scenarios consid-

ering three degrees of dominance (d/a = 0, 0.5 and 1) and two broad sense heritability (h2 =

0.30 and 0.70), totaling six genetic architectures.

The phenotypic values of the ith individuals were obtained according to the model: Pi = Gi

+ Ei, where Gi is the genetic effect given by the sum of the genetic effects in each locus, and Ei
is the environmental effect, generated according to a normal distribution with means equal to

zero and variance given by the equation bellow:

s2

e ¼
s2
gð1 � h2Þ

h2
ð3Þ

where s2
e is the variance given by the environmental values, s2

g is the variance of the genetic val-

ues, and h2 is the heritability defined for the trait. The genetic variance is defined for each pop-

ulation from the information of the genetic control and the importance of each locus in the

polygenic model.

s2

g ¼
1

2
�a2 þ

1

4
�d2; ð4Þ

where �a2; �d2 were defined by the mean values of the effects associated with the homozygote

and heterozygous genotypes for each one of the 20 loci, respectively.

Efficiency of different calibration strategies for GS studies considering

different kinds of mating

In order to assess GS reliability over generations, three calibration strategies were performed.

In the first one, we used genotypic and phenotypic information from generation F2 for training

the model, and validation was performed in each advanced population defined according to

the different mating systems. In the second one, the contemporary or outdated genotypic and

phenotypic values from each population itself (Sn, An and Bcn; n = 1,2,3,4) were used, and vali-

dation was performed in the same population (Sn, An and Bcn) and in each advanced popula-

tion (Sn+1, An+1 and Bcn+1). The last strategy used three different kinds of calibration data sets

(D1t, D2t, D3t), considering multigenerational sets for prediction. In the first training data set

(D1t), the total of 1000 individuals, 500 from the first generation of allogamous or autogamous

and 500 individuals from the F2 population (D1t = A1/S1+ F2), were used to estimate the

marker effect. Validation was performed in 500 individuals (D1v) from each outdated popula-

tion (D1v = A1/S1, A2/S2, A3/S3 and A4/S4). In the second and third kinds of calibration data

sets (D2t and D3t), the sets were added using generations two (D2t = A1/S1+ A2/S2 + F2) and

three (D3t = A1/S1+ A2/S2 + A3/S3 + F2). These models were, respectively, validated using the

true breeding values (TBV) of the population itself (Sn, An) and in each advanced population

(Sn+1 and An+1) (Fig 1).

The additive dominance model for the REML/G-BLUP method is given by [1]:

y ¼ Xb þ Zua þ Zud þ e; ð5Þ

where y is the vector of phenotypic observations, b is the vector of fixed effects, ua is the vector

of random of additive marker effects, ud is the vector of random of dominance marker effects
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and e refers to the vector of random errors; The variance structure is given by ua~N(0, Gas
2
ua
);

ud~N(0, Gds
2
ud
); by e~N(0, Is2

e ).
An equivalent model at the marker level is given by

y ¼ Xbþ ZWma þ ZSmd þ e; ð6Þ

where: ua = Wma;Var(Wma) = WIs2
ma

W 0 ¼WW 0s2
ma
; ud = Smd; VarðSmdÞ ¼ SIs2

md
S0 ¼ SS0s2

ma
;

X and Z are matrices of incidence for the vectors additive (ma) and dominance (md) marker
genetic effects. The variance components associated to these effects are s2

ma
and s2

md
, respec-

tively. Ga and Gd are the genomic relationship matrices for the additive and dominance effects.

The quantity ma in one locus is the allele substitution effect and is given by ma = αi = ai + (qi −
pi)di, where pi and qi are allelic frequencies and ai and di are the genotypic values for one

homozygote and heterozygote, respectively, at locus i. In turn, the quantity md can be directly

defined as mdi = di. The matrices W and S are defined based on the values 0, 1 and 2 for the

Fig 1. Illustrative scheme of three strategies used in calibration sets of genomic selection training analyses. Letters F2, A, S and BC represent the base

population of allogamous, self-pollinated and backcrossing species. The index from 1 to 4 represents breeding cycles. In the right square, strategy 2 is the

training set composed of species that used the contemporary or outdated genotypic and phenotypic values from the population itself (Si, Ai and Bci; i = 1,2,3,4),

and validation was performed in the same population (Sn, An and Bcn) and in each advanced population (Sn+1, An+1 and Bcn+1). The last strategy used three

different kinds of calibration data sets (D1t, D2t, D3t), which considered multigenerational sets for prediction. In the first training data set (D1t), the total of 1000

individuals, 500 from the first generation of allogamous or autogamous species and 500 individuals from the F2 population (D1t = A1/S1+ F2) were used to

estimate the marker effect. Validation was performed on 500 individuals (D1v) from each outdated population (D1v = A1/S1, A2/S2, A3/S3 and A4/S4). In the

second and third kinds of calibration data sets (D2t and D3t), data sets were added using generations two (D2t = A1/S1+ A2/S2 + F2) and three (D3t = A1/S1+ A2/

S2 + A3/S3 + F2).

https://doi.org/10.1371/journal.pone.0210531.g001
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number of one of the alleles at the i marker locus in a diploid individual. The correct parame-

terization of W and S is as follows, according to the marker genotypes at a locus m.

W ¼

MM : 2 � 2p! 2q

Mm : 1 � 2p! q � p

mm : 2 � 2p! 2q

8
><

>:

S ¼

MM : 0! � 2q2

Mm : 1! 2pq

mm : 0! � 2p2

8
><

>:

The covariance matrix for the additive effects is given by Gas
2
a ¼ VarðWmaÞ ¼WW 0s2

ma
= ) = ,

which leads to: Ga ¼WW 0=ðs2
ma
=s2

aÞ ¼WW 0=
Pn

i¼1
½2pið1 � piÞ�, as s2

a ¼
Pn

i¼1
½2pið1 � piÞ�s

2
ma

.

The covariance matrix for the dominance effects is given by Gds
2
d ¼ VarðSmdÞ SS0s2

md
. Thus ,

Gd ¼ SS0=ðs2
md
=s2

dÞ ¼ SS0=
Pn

i¼1
½2pið1 � piÞ�

2
as s2

d ¼
Pn

i¼1
½2pið1 � piÞ�

2
s2
md

The additive-dominance G-BLUP method was fitted using Genomic Land software [18] via

REML through mixed model equations.

After obtaining the GEBVs, reliability, which is defined by the square correlation between

the genomic estimated breeding values and the true breeding values (TBV), was estimated [9].

Finally, linkage disequilibrium was estimated using the maximum likelihood method

[14,15]. It was chosen to represent the disequilibrium squared correlation coefficient between

two loci r2 [16] for pairs of loci. The LD measure, r2, corresponds to the ratio of genetic vari-

ance controlled by the QTL whose associated marker is able to explain.

Computational applications for data analysis

The simulations were implemented with software GENES [17]) and the statistical analyses

were performed with software Genomic Land [18].

Results

Studying LD in all populations

Linkage disequilibrium (r2) was calculated for all pairwise physical distances among all the

SNPs (in each linkage group separately. The average genome-wide LD for pairs of SNPs

within a 1 centimorgan distance from each population group was 0.006 for allogamous spe-

cies, 0.051 for autogamous species, 0.037 for hybridization, and 0.189 for F2. These results

are represented in scatter plots of r2 values versus the genetic or physical distance between all

pair of alleles (Fig 2). The linkage disequilibrium was almost entirely dissipated in alloga-

mous population since the first generation but continues in autogamous and backcrossing

sets.

Calibration using the F2 population

We contrasted the reliability of the linear models (G-BLUP) considering scenarios with and

without dominance in different levels of heritability over generations. Overall, the reliability

values decreased over generations for all the scenarios considered. Specifically, for the scenar-

ios without dominance (d = 0) and low heritability (h2 = 0.30), the averages of reliability values

were 0.55, 0.20 and 0.50 for, respectively, outcrossing (allogamous species), selfing-pollination

(autogamous species) and hybridization mating systems (Table 1). In the scenarios with

Multigenerational prediction of genetic values
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dominance (d = 0.5 and d = 1) and low heritability, the averages of reliability values changed

from 0.49, 0.15, 0.44 to 0.48, 0.17 and 0.43, respectively, for outcrossing (allogamous species),

self-pollination (autogamous species) and hybridization mating systems. The GS reliability

considering the F2 population as training and test population was equal to 0.81, 0.72 and 0.70

for the scenarios with low heritability and, respectively, no dominance, partial (d = 0.5) and

complete (d = 1) dominance. The results observed for the high heritability scenarios (h2 =

0.70) were similar when compared with those obtained for the low heritability scenarios

(Table 1).

Fig 2. From left to right, estimation of Linkage Disequilibrium measured by r2 statistic in F2, allogamous set (top), autogamous set (center), and backcrossing

set (bottom). X and Y axes represent the (1010) markers distributed in 10 linkage groups with 101markers each. The intensite of correlation inside each linkage

block decreased the as we observe advanced generations. These results are represented in scatter plots of r2 values versus the genetic or physical distance

between all pair of alleles (Fig 2).

https://doi.org/10.1371/journal.pone.0210531.g002

Table 1. Reliability values of selection of generations advanced by self-pollination (Sn), outcrossing (An) and hybridization (Bcn) (obtained from phenotyping and

genotyping of the F2 population for six traits (heritability equal to 0.30 and 0.70 repeated in scenarios with an average degree of dominance(d) level equal to 0, 0.5

and 1). The scale of colors changes from 0 (red) to 0.5 (yellow) to 1(green).

Low Heritability

d F2 S1 S2 S3 S4 Mean A1 A2 A3 A4 Mean Bc1 Bc2 Bc3 Bc4 Mean

0 0.81± 0.03 0.63 ± 0.07 0.56 ± 0.05 0.53 ± 0.06 0.51 ± 0.04 0.55 0.31 ± 0.06 0.22 ± 0.03 0.16 ± 0.02 0.11 ± 0.01 0.20 0.45 ± 0.01 0.50 ± 0.05 0.53 ± 0.05 0.52 ± 0.04 0.50

0.5 0.72 ± 0.03 0.55 ± 0.01 0.49 ± 0.00 0.47 ± 0.00 0.46 ± 0.01 0.49 0.23 ± 0.03 0.18 ± 0.01 0.12 ± 0.00 0.08 ± 0.01 0.15 0.40 ± 0.01 0.42 ± 0.02 0.47 ± 0.01 0.46 ± 0.01 0.44

1 0.70 ± 0.10 0.51 ± 0.08 0.48 ± 0.06 0.47 ± 0.07 0.47 ± 0.04 0.48 0.20 ± 0.03 0.20 ± 0.04 0.15 ± 0.03 0.12 ± 0.04 0.17 0.36 ± 0.07 0.41 ± 0.05 0.49 ± 0.07 0.47 ± 0.09 0.43

High Heritability

0 0.94 ± 0.01 0.73 ± 0.01 0.65 ± 0.01 0.62 ± 0.01 0.60 ± 0.00 0.65 0.39 ± 0.01 0.28 ± 0.02 0.19 ± 0.02 0.14 ± 0.02 0.25 0.52 ± 0.00 0.57 ± 0.01 0.62 ± 0.01 0.62 ± 0.00 0.58

0.5 0.89 ± 0.05 0.69 ± 0.04 0.62 ± 0.04 0.60 ± 0.04 0.59 ± 0.04 0.68 0.35 ± 0.05 0.28 ± 0.07 0.21 ± 0.05 0.15 ± 0.08 0.25 0.48 ± 0.03 0.51 ± 0.04 0.59 ± 0.04 0.57 ± 0.05 0.54

1 0.89 ± 0.01 0.65 ± 0.02 0.58 ± 0.00 0.58 ± 0.01 0.57 ± 0.00 0.65 0.23 ± 0.02 0.22 ± 0.01 0.16 ± 0.03 0.11 ± 0.00 0.18 0.46 ± 0.01 0.51 ± 0.01 0.58 ± 0.01 0.57 ± 0.00 0.52

https://doi.org/10.1371/journal.pone.0210531.t001
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Calibration using contemporary or outdated populations

Overall, the second calibration strategy outperforms the results obtained with the first calibra-

tion strategy, which used only the F2 population for calibration. For example, population A4

had the worst reliability prediction value, 0.08 (Table 1), using training strategy 1, and

improved to 0.49 (Table 2) using training strategy 2. The reliability values for the different mat-

ing systems (outcrossing—allogamous, self-pollination-autogamous and hybridization-back-

crossing) obtained using contemporary or outdated populations are displayed in Table 2.

Table 2. Reliability values of selection of generations advanced by self-pollination(Sn), random mating (An) and hybridization (Bcn) obtained from phenotyping

and genotyping of the same generation (diagonally contemporary) or only from previous genotyping and phenotyping (outdated off-diagonally, horizontal reading)

for the heritability trait equal to 0.30 in the scenario with an average degree of dominance equal to 0, 0.5 and 1.

Validation set

Traits Training set S1 S2 S3 S4 A1 A2 A3 A4 Bc1 Bc2 Bc3 Bc4

d0 S1 0.61 ± 0.06 0.55± 0.10 0.53 ± 0.10 0.52 ± 0.10

S2 0.54 ± 0.09 0.53 ± 0.10 0.54 ± 0.10

S3 0.54 ± 0.10 0.60 ± 0.10

S4 0.59 ± 0.02

A1 0.42 ± 0.02 0.37 ± 0.03 0.32 ± 0.01 0.33 ± 0.03

A2 0.44 ± 0.12 0.40 ± 0.10 0.40 ± 0.12

A3 0.50 ± 0.12 0.53 ± 0.09

A4 0.46 ± 0.11

Bc1 0.30 ± 0.09 0.34 ± 0.01 0.36 ± 0.02 0.36 ± 0.02

Bc2 0.55 ± 0.05 0.55 ± 0.06 0.54 ± 0.08

Bc3 0.55 ± 0.05 0.51 ± 0.04

Bc4 0.52 ± 0.07

Average set 0.54 ± 0.07 0.42 ± 0.08 0.46 ± 0.05

Validation set

Traits Training set S1 S2 S3 S4 A1 A2 A3 A4 Bc1 Bc2 Bc3 Bc4

d0.5

S1 0.61 ± 0.11 0.52 ± 0.03 0.48 ± 0.00 0.46 ± 0.00

S2 0.55 ± 0.13 0.54 ± 0.08 0.53 ± 0.08

S3 0.60 ± 0.10 0.54± 0.07

S4 0.55± 0.07

A1 0.48± 0.10 0.36 ± 0.03 0.34 ± 0.07 0.33± 0.11

A2 0.44 ± 0.10 0.35 ± 0.11 0.34 ± 0.11

A3 0.48 ± 0.10 0.40 ± 0.01

A4 0.49 ± 0.12

Bc1 0.53 ± 0.14 0.47 ± 0.15 0.49 ± 0.15 0.47 ± 0.11

Bc2 0.50 ± 0.14 0.51 ± 0.09 0.48 ± 0.11

Bc3 0.55 ± 0.10 0.48 ± 0.06

Bc4 0.55 ± 0.10

Average set 0.53 ± 0.06 0.40± 0.10 0.50 ± 0.10

Validation set

Traits Training set S1 S2 S3 S4 A1 A2 A3 A4 Bc1 Bc2 Bc3 Bc4

d1 S1 0.51 ± 0.08 0.49± 0.09 0.49 ± 0.10 0.49± 0.08

S2 0.53 ± 0.10 0.53 ± 0.09 0.52 ± 0.08

S3 0.56 ± 0.07 0.56± 0.11

S4 0.55± 0.08

A1 0.41 ± 0.11 0.27 ± 0.10 0.27 ± 0.10 0.26 ± 0.11

A2 0.39 ± 0.11 0.29± 0.10 0.24 ± 0.10

A3 0.48 ± 0.11 0.36 ± 0.07

A4 0.47 ± 0.09

Bc1 0.49 ± 0.11 0.39 ± 0.03 0.44 ± 0.05 0.40 ± 0.05

Bc2 0.54 ± 0.10 0.46± 0.07 0.45 ± 0.08

Bc3 0.45± 0.11 0.38± 0.08

Bc4 0.53 ± 0.06

Average set 0.52 ± 0.11 0.34 ± 0.07 0.45 ± 0.09

https://doi.org/10.1371/journal.pone.0210531.t002
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Overall, for the scenarios with lower heritability, the inclusion of outdated calibration sets

allowed to increase the average of reliability values in allogamous population and maintain in

the others mating systems. Specifically, the averages for the allogamous populations (A1 to A4),

in the scenario with low heritability, increased from 0.20, 0.15, 0.17 to 0.42, 0.40, 0.34, for,

respectively, the scenarios without dominance (d = 0), and those with dominance equal to 0.5

and 1.

For the autogamous population (S1 to S4), the averages of reliability values previously

obtained with strategy 1 were 0.55 (d = 0), 0.49 (d = 0.5) and 0.48 (d = 1) and increased to 0.54

(d = 0), 0.53 (d = 0.5) and 0.52(d = 1) using strategy 2. For the hybridization set (Bc1 to Bc4),

GS reliability was 0.50(d = 0), 0.41 (d = 0.5) and 0.43 (d = 1) with strategy 1, staying around

0.46 (d = 0), 0.50 (d = 0.5) and 0.45(d = 1) with strategy 2. The results for the scenarios with

higher heritability show same pattern that those observed for scenarios with low heritability

(h2 = 0.30). For higher heritability scenarios (h2 = 0.70), the calibration strategy 2 outperform

the results obtained from strategy 1 for all mating systems (S1 Table).

Calibration using multigenerational populations

The reliability values considering the utilization of combined generations in the calibration

set, here called multigenerational sets, for all different scenarios, are presented in Table 3. This

strategy increased the reliability values in all populations assessed for the scenarios with low

heritability in the three degrees of dominance. For the scenarios with no dominance, the aver-

age of reliability values increased from 0.20 (strategy 1) to 0.42 (strategy 2) and 0.63 (strategy

3) in outcrossing (allogamous) populations. In self-pollination (autogamous) and hybridiza-

tion (backcrossing) populations, the averages of values increased from 0.54 (strategies 1 and 2)

to 0.64 (strategy 3), and the reliability values increased from 0.50 (strategy 1) to 0.71 (strategy

3), although decreased to 0.46 (strategy 2).

In the scenarios with dominance (d = 0.5), the average of reliability values increased from

0.15(strategy 1) to 0.40 (strategy 2) and 0.48(strategy 3) in allogamous populations. In autoga-

mous and hybridization populations, the average of values increased from 0.49(strategies 1),

and 2) to 0.53 (strategy 2) to 0.64 (strategy 3), and the reliability values increased from 0.41

(strategy 1) to 0.50 (strategy 2) to 0.62 (strategy 3).

Table 3. Reliability values of selection of generations advanced by self-pollination (Sn) random mating (An) and hibridization (Bcn) obtained from phenotyping

and genotyping of combined previous generations (multigenerational) or only from previous genotyping and phenotyping for heritability traits equal to 0.30,

repeated in scenarios with an average degree of dominance level equal to 0, 0.5 and 1.

dominance 0 0.5 1

Multigerational Training S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

F2S1 0.64 ± 0.10 0.62 ± 0.10 0.60 ± 0.10 0.59 ± 0.08 0.65 ± 0.06 0.58 ± 0.06 0.57 ± 0.06 0.55 ± 0.06 0.61 ± 0.07 0.57 ± 0.06 0.56 ± 0.07 0.56 ± 0.04

F2S1S2 0.66 ± 0.11 0.65 ± 0.10 0.64 ± 0.09 0.65 ± 0.07 0.63 ± 0.06 0.63 ± 0.05 0.64 ± 0.08 0.63 ± 0.07 0.62 ± 0.05

F2S1S2S3 0.71 ± 0.08 0.69 ± 0.08 0.71 ± 0.08 0.70 ± 0.07 0.69 ± 0.11 0.68 ± 0.09

Average Set 0.64 ± 0.07 0.64 ± 0.06 0.63 ± 0.07

Multigerational Training A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

F2A1 0.61 ± 0.10 0.64 ± 0.10 0.57 ± 0.10 0.62 ± 0.10 0.53 ± 0.09 0.39 ± 0.03 0.38 ± 0.08 0.36 ± 0.11 0.48 ± 0.10 0.37± 0.06 0.36± 0.06 0.36 ± 0.10

F2A1A2 0.62 ± 0.10 0.63 ± 0.10 0.64 ± 0.10 0.55 ± 0.10 0.50 ± 0.10 0.47± 0.10 0.51 ± 0.10 0.44 ± 0.10 0.43 ± 0.10

F2A1A2A3 0.68 ± 0.08 0.68 ± 0.10 0.63 ± 0.10 0.58 ± 0.08 0.60 ± 0.09 0.53± 0.11

Average Set 0.63 ± 0.10 0.48 ± 0.11 0.45 ± 0.10

Multigerational Training Bc1 Bc2 Bc3 Bc4 Bc1 Bc2 Bc3 Bc4 Bc1 Bc2 Bc3 Bc4

F2Bc1 0.71 ± 0.04 0.67 ± 0.01 0.68 ± 0.01 0.67 ± 0.00 0.61 ± 0.05 0.55 ± 0.02 0.58 ± 0.03 0.57 ± 0.00 0.54 ± 0.10 0.47 ± 0.10 0.54 ± 0.09 0.51 ± 0.10

F2Bc1Bc2 0.75 ± 0.02 0.73 ± 0.01 0.70 ± 0.01 0.66 ± 0.07 0.65 ± 0.03 0.62 ± 0.01 0.60 ± 0.10 0.59 ± 0.06 0.55± 0.08

F2Bc1Bc2Bc3 0.79 ± 0.02 0.73 ± 0.01 0.71 ± 0.06 0.66 ± 0.02 0.65 ± 0.07 0.58 ± 0.07

Average Set 0.71 ± 0.02 0.62 ± 0.02 0.55 ± 0.02

https://doi.org/10.1371/journal.pone.0210531.t003
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In the scenarios with dominance (d = 1), the averages of reliability values increased from

0.17 (strategy 1) to 0.34 (strategy 2) and 0.45 (strategy 3) in allogamous populations. In autoga-

mous and hybridization populations, the averages of values were 0.48(strategy 1), 0.52 (strategy

2) and 0.63 (strategy 3), and the reliability values increased from 0.43 (strategy 1) to 0.45 (strat-

egy 2) 0.55 (strategy 3). The results for the higher heritability scenarios (0.7) follow the same

pattern of reliability values. It can be seen in supplementary material (S2 Table).

For the group of allogamous populations, the inclusion of only the first random-mating

generation enabled the averages of reliability values to around 0.50 within d = 0.5 or without

dominance. The inclusion of phenotypic data with advanced generations as 2 or 3 previous

generations (F2, A1, A2, for example) improved even more the reliability values in the advanced

generations A3 and A4. In the autogamous populations, the inclusion of two or more previous

generations in the training allowed obtaining reliability above 0.61 in all three scenarios, as

showed in Table 3. For the hybridization strategy 3 increased the reliability values to above

0.45 within or without dominance. Overall, the inclusion of only one more generation with

the F2 population sufficed to increase the prediction process over all scenarios.

Discussion

Our study was designed to maximize GS reliability in terms of the available genetic material.

In contrast to previous studies on GS, we do not compare different prediction methodologies,

such as G-BLUP, and different Bayesian approaches. In this study, we investigate different cali-

bration strategies using combinations between one or more generations from different genetic

backgrounds to improve the reliability of GS predictions. Furthermore, we investigated the

effects of LD in different types of mating systems on the reliability of GS predictions. We used

the G-BLUP on simulated data sets to access the reliability values for all evaluated scenarios.

Studying LD in all populations

In the F2 population, the linkage disequilibrium was, solely, provided by the factorial linkage

with the formation of 10 blocks of disequilibrium corresponding to the 10 linkage groups sim-

ulated for the genome (Fig 2). These factorial linkage effects on disequilibrium occur in differ-

ent ways in successive generations of outcrossing or self-pollination. For example, in

allogamous populations and with the progression of generations, it was possible to notice that

disequilibrium was almost entirely dissipated, probably leading to low efficiency of procedures,

such as GS, whose principle was the existence of disequilibrium between the marker and genes

of interest.

According to the study of linkage disequilibrium carried out by Sorkheh and Malysheva-

Otto (2008), random mating is an impactful factor in the decrease of linkage disequilibrium

over time. Thus, conservation of linkage disequilibrium values in autogamous and backcross-

ing populations is justified by the fact that, for an effective recombination, double heterozy-

gotes are required, and these are much more common in allogamous than in autogamous

species. In addition, for autogamous species, linkage disequilibrium extends over large physical

distances in comparison to outcrossing species, as verified by [19,20,21,22,23,24] which justi-

fies the fact that the means of LD among all pairs of loci is 0.006 for allogamous and 0.051 for

autogamous species. We believed that the impact of random mating on linkage disequilibrium

can justify the importance of outdated calibration sets in allogamous populations.

Calibration using the F2 population

We analyzed the reliability values for all the populations trained using F2 in scenarios in which

heritability were equal to 0.3 and 0.7 with and without dominance. In this analysis, we sought
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to emphasize some important issues. The first one refers to the extent to which disturbing fac-

tors, such as dominance and environmental noise (influencing character heritability), can

affect the reliability of the selection process via GS within the F2 generation itself. However, the

most important issue is the extent to which the GS efficacy is compromised when one goes

from one generation to another where the loss of disequilibrium will be manifested, as such a

loss is more intense in random-mating generations than in those from hybridization and self-

pollination. These results suggest that the type of crossing shows a major contribution to the

low reliability values.

Overall the presence of dominance also contributes to decrease in the prediction process,

which is aggravated in the outcrossing populations in all three strategies. Almeida Filho [25],

who simulated a genetically similar population of loblolly pine to assess the predicting ability

of polygenic and oligogenic traits controlled by different degrees of dominance, also observed

a drop in the prediction process reliability across generations. Their study showed that predic-

tion in subsequent progeny population improved only in dominance superior to 0.2 and for

oligogenic traits. In our study, genomic prediction reliability the assessment encompassed

traits measured in the 12 populations that were previously genotyped and phenotyped for each

trait. As displayed in Table 1, the reliability of the predictions increased when we changed heri-

tability from 0.3 to 0.7. However, when we increased dominance from 0 to 1, the values

decreased in the majority of scenarios. For example, in particular cases with allogamous spe-

cies, the scenario with heritability 0.7 and dominance equal to 1 the prediction values were

three times lower than those obtained for self-pollination and hybridization (0.65 and 0.52).

This is expected because we know that dominance is a disturbing factor, since even when dom-

inance is including in the model the reliability depends on considering heterosis and future

combinations between parents. In general, the results showed a decrease in the reliability of

total genomic predictions when the dominance increased. Although dominance was contem-

plated in the linear model used, according to some authors [4, 25, 26, 27], its incorporation

does not lead to an improvement in the prediction process reliability of complex traits. In

addition, according to Toro and Varona [28] when working with polygenic traits in simulated

populations, the additive-dominant models exceeded the additive models only in the first pre-

dictive generation. Therefore, all these authors concluded that dominance increases in terms

of complexity of the models, but it does not increase in terms of reliability.

Efficiency of different calibration strategies for GS studies considering

different kinds of mating

The drop in reliability observed for the predictions of successive generations of random mat-

ing, hybridization or self-pollination is expected not only because of the drop in the disequilib-

rium of subsequent generations, but also because of the lack of re-estimation of markers, i.e., a

new genotyping. According to [29], if genomic selection is practiced for many generations the

effect of the markers does not change but the proportion of the genetic variance explained by

them declines. This will cause the rate of response to selection to decline, as found by[13]

using simulation. Thus, the inclusion of the latest genotyping, i.e., of genotyped and pheno-

typed individuals in their own generation, leads to an increase in the reliability estimates and

can even be used in the prediction of subsequent generations with the same population struc-

ture, as displayed in Table 3. According to [30], this occurs because, despite the useful feature

of genomic selection that long term response is predictable as the marker allele frequencies are

known, it ignores non-additive effects of the QTL which may cause a change in the gene sub-

stitution effect of the QTL and, therefore, in the apparent effect of the marker, as selection

changes gene frequencies. Several authors change the index weights as selection proceeds
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[29,30,31]. Naturally, it would be possible to continually re-estimate the marker effect and

include additional markers–those that had been excluded in the initial index. In our case, we

demonstrated, by using a heritability of 0.3, that investment in genotyping of a new generation

is important to ensure the efficiency of the prediction process, especially in populations whose

linkage disequilibrium had already disappeared, as observed in our study, as well as for the

fourth generation of population structures used here. For instance [11]predicted the breeding

value of descendants 10 generations after the generation in which the phenotypes were

recorded. Consequently, the reliability of GEBVs, calculated using the relationship matrix

derived from the pedigree, was close to zero, so the reliability of the GEBVs using marker data

was independent of the pedigree relationships.

The best strategy for prediction in allogamous populations. The importance of popula-

tion structures (allogamous, autogamous, and hybridization systems) was also investigated to

allow inferring whether training and validation could be performed with different genetic

backgrounds. Thus, considering a random-mating population, we observed that reliability is

reduced with the progress of generations by loss of disequilibrium. However, this reduction

may be reverted if information from other generations of populations with the same structure

is added to the training process, thus increasing reliability we used here in strategy 3. There-

fore, especially for allogamous species, population structure is more impactful than linkage dis-

equilibrium [32].

These results were also observed by [33] who conducted their study using one set of 73,147

marker in rice to predict five traits in the 2012 dry and wet seasons. Their study showed that

the level of family relationship between selection candidates and the reference population had

a higher effect on the reliability of genomic values than on linkage disequilibrium per se. Simi-

lar results were also found by [11], who, by using a simulation with genes in equilibrium,

found that the prediction effects of selection were not zero because the family relationships

were important, even in the absence of linkage disequilibrium.

Depending on the family structure of the data, there may also be information on the

within-family marker effect, as obtained from a linkage analysis, and this may also add to the

reliability of the GEBVs. Hence, in practical terms, one can assume that, in allogamous species,

the prediction of advanced generations from early training may not be advantageous due to

the loss of disequilibrium, which according to [5], for any pair of linked polymorphic loci, LD

decreases over generations because of accumulation of recombination. Consequently, the

most interesting solution is a new, more contemporary genotyping combined with the infor-

mation from a previous genotyping (Strategy 3). A more evident example is that in scenarios

with a high dominance degree (d/a = 1), the inclusion of F2 and the three generations can bet-

ter predict A4 than only F2 and A1. Thus, it seems that the population structure becomes even

more important in scenarios of high dominance.

Conclusion

As a result, we improved the reliability values of all the scenarios tested with high complexity.

We highlight the importance of calibrating the training model used in GS in order to improve

prediction in scenarios with low heritability and high dominance.
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S1 Table. Reliability values of selection of generations advanced by self-pollination(Sn),

random mating (An) and hybridization (Bcn) obtained from phenotyping and genotyping

of the same generation (diagonally contemporary) or only from previous genotyping and

phenotyping (outdated off-diagonally, horizontal reading) for the heritability trait equal
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