
Parallel single-cell sequencing links transcriptional and 
epigenetic heterogeneity

Christof Angermueller#1, Stephen J. Clark#2, Heather J. Lee#2,3, Iain C. Macaulay#3, Mabel 
J. Teng3, Tim Xiaoming Hu1,3,4, Felix Krueger5, Sebastien Smallwood2, Chris P. Ponting3,4, 
Thierry Voet3,6, Gavin Kelsey2, Oliver Stegle1, and Wolf Reik2,3

1European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, 
UK

2Epigenetics Programme, Babraham Institute, Cambridge, UK

3Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK

4Medical Research Council Functional Genomics Unit, University of Oxford, UK

5Bioinformatics Group, Babraham Institute, Cambridge, UK

6Department of Human Genetics, Katholieke Universiteit (KU) Leuven, Leuven, Belgium

# These authors contributed equally to this work.

Abstract

We report scM&T-seq, a method for parallel single-cell genome-wide methylome and 

transcriptome sequencing, allowing discovery of associations between transcriptional and 

epigenetic variation. Profiling of 61 mouse embryonic stem cells confirmed known links between 

DNA methylation and transcription. Notably, the method reveals novel associations between 

heterogeneously methylated distal regulatory elements and transcription of key pluripotency 

genes.

Multi-parameter sequencing-based analysis of single cells offers a powerful tool to dissect 

relationships between epigenetic, genomic and transcriptional heterogeneity1. Recent 

advances have enabled single-cell genome-wide or reduced-representation bisulfite 

sequencing (scBS-seq, scRRBS2-4), allowing exploration of intercellular heterogeneity of 
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DNA methylation5, 6. We and others have recently described methods for parallel genome 

and transcriptome sequencing within single cells7, 8. Importantly our method, G&T-seq, 

utilizes physical separation of RNA and DNA allowing bisulfite conversion of DNA without 

affecting the transcriptome. We now apply scBS-seq to genomic DNA purified according to 

the G&T-seq protocol to generate methylomes and transcriptomes from the same single cells 

(Fig. 1a, Supplementary Fig. 1). Parallel-profiling using scM&T-seq will enable detailed 

study of the complex relationship between DNA methylation and transcription in 

heterogeneous cell populations9, 10 and may be used to provide multi-dimensional 

information in clinical contexts where material is severely limited (e.g. in vitro fertilisation).

To demonstrate the potential of the method, we applied scM&T-seq to mouse embryonic 

stem cells (ESCs). In the presence of serum, these cells are a metastable population with 

stochastic switching between transcriptional states11-12. This transcriptional heterogeneity 

has been linked to the differentiation potential of ESCs, with NANOG-low cells having an 

increased propensity to differentiate13 and elevated expression of differentiation 

markers12, 14, 15. Experiments in sorted populations of cells have also linked transcriptional 

and epigenetic heterogeneity by demonstrating differences in DNA methylation between 

transcriptional states, such as gains in DNA methylation in NANOG-low and REX1-low 

(REX1 also known as ZFP42) cells11, 16. The development of single-cell techniques has 

allowed the transcriptional heterogeneity of ESCs to be studied at unprecedented detail, 

revealing a complex population structure and multiple sources of variation17, 18. Using 

scBS-seq, we have also demonstrated DNA methylation heterogeneity in ESCs at the single-
cell level3. To further investigate the link between epigenetic and transcriptional 

heterogeneity in ESCs, we performed scM&T-seq on 76 individual serum ESCs and 16 

ESCs grown in “2i” media, which induces genome-wide DNA hypomethylation16.

We obtained an average of 2.7 million (M) scRNA-seq reads per cell, and excluded cells 

with fewer than 2 M mapped reads (Supplementary Table 1). We have previously shown that 

the scRNA-seq data generated by the G&T-seq method is of comparable quality to that 

generated using stand-alone Smart-seq27. In ESCs passing scRNA-seq QC, we detected 

transcripts from between 4,000 and 8,000 genes exceeding 1 transcript per million (TPM), 

consistent with previous measurements made using the method (see Supplementary Fig. 2 

for additional scRNA-seq quality metrics).

To assess the quality of the scBS-seq data, we compared the resulting single-cell 

methylomes with published data from 20 serum and 12 2i ESCs for which stand-alone scBS-

seq was performed3. Sequencing of the scBS-seq libraries was performed at relatively low 

depth (an average of 11.1 M reads), with an average of 3.15 M genomic reads mapped per 

cell (Supplementary Table 1). We excluded cells with a mapping efficiency of less than 7%, 

or a bisulfite conversion efficiency less than 95% (as estimated by non-CpG methylation). 

Cells passing these QC steps had a mean mapping efficiency of 15.6% (compared to a mean 

of 17.2% for single ESCs by stand-alone scBS-seq3, Supplementary Table 1, Supplementary 

Fig. 3). The low mappibility is not due to foreign DNA, as negative controls aligned less 

than 2% but can be explained by high primer contamination (Supplementary Fig. 3). Due to 

reduced sequencing depth, methylome coverage in scM&T-seq libraries was lower. 

However, genome-wide CpG coverage at matched sequencing depth was consistent across 
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protocols (Fig. 1b; for additional quality metrics, including analysis of representation bias in 

different contexts see Supplementary Fig. 3) and we found that scM&T-seq covered a large 

proportion of sites in different genomic contexts with sufficient frequency to enable the 

analysis of epigenome heterogeneity across cells (Supplementary Fig. 4 and 5). To evaluate 

the potential coverage of scM&T-seq we sequenced a randomly chosen subset of four 

libraries at increased depth (mean of 25.9 M raw reads), which yielded a CpG coverage in 

line with the previous method (4.5 M compared to 3.6 M after 20.2 M raw reads for ESCs in 

stand-alone scBS-seq). Saturation depth was not reached in these four cells (mean 

duplication rate of 25.5%), meaning that additional sequencing would yield greater coverage 

as demonstrated previously3. As additional validation, we assessed the discrimination of 

serum and 2i ESCs by both stand-alone scBS-seq and scM&T-seq, finding a similar degree 

of separation that was consistent with bulk datasets published previously16 (Fig. 1c), with 

similar conclusions when using a joint hierarchical clustering across all cells 

(Supplementary Fig. 6). Notably, the difference between protocols and biological batches 

had a substantially smaller effect (PC2, 3% variance) than cell type differences (PC1, 48% 

variance), and by combining data across cells, we found that both protocols yield genome-

wide methylation profiles that accurately recapitulate bulk methylation profiles in the same 

cell type (Supplementary Fig. 7). Finally, we compared estimates of methylation 

heterogeneity in different genomic contexts, again finding good agreement between 

protocols (Fig. 1d). Taken together, these analyses provide confidence that the parallel 

scM&T-seq method yields results that are in agreement with data from stand-alone scBS-

seq.

For subsequent analyses, we focused on serum ESCs only since transcription and DNA 

methylation are uncoupled in 2i ESCs16, 19. A comparison of the principal components 

derived from the two data types - gene body methylation and gene expression- revealed that 

the global sources of variation were partially linked (Supplementary Fig. 8 and 9). However, 

a hierarchical clustering analysis of gene body methylation and gene expression for the 300 

most variable genes (based on DNA methylation variance; for alternatives see 

Supplementary Fig. 10) revealed distinct clustering of cells when using either source of 

information (Fig. 1e,f). This suggests that global methylome and transcriptome profiles yield 

complementary, but distinct, aspects of cell state. This is also consistent with previous 

observations that the transcriptome and methylome are partially uncoupled in serum ESCs16.

Next, we tested for associations between expression of individual genes and DNA 

methylation variation at several genomic contexts (Methods; Supplementary Table 2), 
identifying a total of 1,493 associations (FDR < 10%; see Fig. 2a, Supplementary Table 3 

and 4), which were robust when using a bootstrapping approach to subsample the set of cells 

(Supplementary Fig. 11). We found both positive and negative associations, highlighting the 

complexity of interactions between the methylome and transcriptome9, 10. While 

methylation of non-CGI promoters is known to be associated with transcriptional repression, 

the role of enhancer methylation is less clear. Accordingly, negative correlations between 

DNA methylation and gene expression were predominant for non-CGI promoters, while 

distal regulatory elements including low methylated regions20 (LMRs) had a more even 

balance of positive and negative associations (Fig. 2a, Supplementary Fig. 12 and 13). 
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Interestingly, associated genes were enriched for known pluripotency and differentiation 

genes18 (FDR < 1%, Fisher’s exact test; Supplementary Table 5). Our results provide the 

first evidence that heterogeneous methylation of distal regulatory elements (e.g. LMRs) 

accompanies heterogeneous expression of key pluripotency factors in stem cell 

populations6, 21. As an example, Figure 2b shows the association map of Esrrb, a known hub 

gene in pluripotency networks22 whose expression negatively correlates with the 

methylation of several LMR and p300 sites overlapping ‘super enhancers’ in the genomic 

neighbourhood23. We also found 516 genes whose expression correlated with the overall 

methylation level (FDR < 10%), indicating substantial links between transcriptional 

heterogeneity and global methylation levels (Fig. 2a).

In addition to between-cell analyses, scM&T-seq can also be used to correlate the 

methylome and transcriptome between genes in individual cells (Fig. 2c). We found that 

correlation between methylation and gene expression varied substantially between cells but 

was consistent in direction with matched RNA-seq and BS-seq data from a population of 

cells16. Again, this attests to scM&T-seq being sufficiently accurate to reliably study 

epigenome-transcriptome linkages. Our results also point to the possibility of heterogeneity 

between cells in the degree of coupling between the methylome and the transcriptome. 

Although we have ruled out obvious confounding factors such as average methylation rate 

and sequence coverage (Supplementary Fig. 14 and 15), more data will be required to 

understand possible technical components in these linkages.

Our work demonstrates that parallel profiling of the methylome and transcriptome from the 

same single cell is feasible, obtaining data of similar quality to methods profiling either 

feature in isolation. For the first time, scM&T-seq allows the relationship between DNA 

methylation and expression to be studied at specific genes in single cells. We have confirmed 

a negative association between non-CGI promoter methylation and transcription in single 

cells and identified both positive and negative associations at distal regulatory regions. The 

expression levels of many pluripotency factors, e.g. Esrrb, were found to be negatively 

associated with DNA methylation, suggesting that an important mechanistic component of 

fluctuating pluripotency in serum ESCs is epigenetic heterogeneity. Finally, we demonstrate 

that the strength of the connection between methylome and transcriptome can vary from cell 

to cell. scM&T-seq is a powerful approach to interrogate the poorly understood connectivity 

between transcriptional and DNA methylation heterogeneity in single cells and provides the 

potential to identify factors that regulate this relationship.

Online Methods

Sample collection & Single-cell sequencing

E14 ESCs were cultured in serum and LIF or 2i media as described previously16. Single 

cells were collected by FACS following ToPro-3 and Hoechst 33342 staining to select for 

live cells with low DNA content (i.e. G0 or G1 phase cells). Cells were collected in RLT plus 

lysis buffer (Qiagen) containing 1 U/μl SUPERase-In (Ambion) and processed using the 

G&T-seq protocol7, but following physical separation of mRNA and genomic DNA from 

single cells, the DNA was eluted into 10 μl of H2O.
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Single-cell bisulfite libraries were then prepared as previously described3 but with the 

following modifications. Conversion was carried out using EZ Methylation Direct bisulfite 

reagent (Zymo) on purified DNA in the presence of AMPure XP beads (Beckman Coulter) 

following G&T-seq. Purification and desulphonation of converted DNA was performed with 

magnetic beads (Zymo) on a Bravo Workstation (Agilent), eluting into the mastermix for the 

first strand synthesis. Primers for first and second strand synthesis contained a 3′-random 

hexamer and biotin capture of first strand products was omitted, however an extra 0.8× 

AMPure XP purification was performed between second strand synthesis and PCR. Each 

pre-PCR AMPure XP purification was carried out using a Bravo Workstation. To avoid 

batch effects all libraries were prepared in parallel in a 96 well plate. Purified scBS-seq 

libraries were sequenced in pools of 16-20 per lane of an Illumina HiSeq2000 using 125-bp 

paired-end reads.

RNA sequencing libraries were prepared from the single-cell cDNA libraries using the 

Nextera XT kit (Illumina) as per the manufacturer's instructions but using one-fifth volumes. 

Multiplexed library pools were sequenced on one lane of an Illumina HiSeq2000 generating 

125-bp paired-end reads.

Sequence data processing and raw data analysis

BS-seq read alignment—Sequencing data was processed as previously described3, with 

small modifications. Briefly, raw sequence reads were trimmed to remove the first 6 base 

pairs (the 6N random priming portion of the reads), adapter contamination and poor-quality 

base calls using Trim Galore (v0.3.8, parameters: --clip_r1 6 (or 9) --clip_r2 6 (or 9). 

Trimmed reads were aligned in single-end mode to the GRCm38 mouse genome assembly 

using Bismark24 (v0.13.1, parameters: --bowtie2 --non-directional). Methylation calls were 

extracted after duplicate alignments had been removed. (Note: due to multiple rounds of 

random priming with oligo 1, the single-cell bisulfite libraries are non-directional).

RNA-seq read alignment and gene expression quantification—GSNAP25 

(version 2014.02.28) was used to align all RNA-seq libraries onto the mouse genome 

assembly GRCm38 (with the --use-splicing option). For computing the transcriptome raw 

read count table, an aligned read was counted towards a gene if it overlaps with any exonic 

region of that gene. To normalize transcriptome counts for library size, library size estimates 

obtained from DESeq226 were used. For computing the transcriptome TPM table 

(Transcripts Per Million table), the output from cufflinks27 (with the --frag-bias-correct --

compatible-hits-norm --multi-read-correct option) were normalized to TPM values. Ensembl 

annotation version 75 was used whenever gene annotations were required.

BS-seq and RNA-seq quality assessment—We included four negative controls 

(empty wells) in the library preparation procedure, to exclude the possibility of DNA or 

RNA contamination. Single-cell BS-seq libraries from negative controls had < 2% mapping 

efficiency (% raw sequencing reads aligned), and scRNA-seq libraries from these samples 

had an alignment rate of less than 1%.

Single-cell BS-seq libraries with low alignment rates (< 7% raw sequencing reads aligned), 

or poor bisulfite conversion < 95% (based on Bismark CHH and CHG methylation 
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estimates), were excluded. Out of a total of 92 single-cell libraries, 81 passed this quality 

filter.

To identify low quality scRNA-seq libraries, we required a minimum of 2 M mapped reads. 

Four serum and 2 2i ESCs were excluded based on this criterion (Supplementary Table 1).

Of the 92 single cell samples, 75 (61 serum ESCs, 14 2i ESCs, 81.5%) passed quality 

assessment for both their methylome and transcriptome sequencing. Complete QC data for 

both scRNA-seq and scBS-seq are provided as Supplementary Table 1.

Statistical analyses

Clustering analyses—PCA analysis in Figure 1c) was performed jointly on gene-body 

methylation of 12 2i and 20 serum cells profiled by stand-alone scBS-seq3, 61 serum and 16 

2i cells profiled by scM&T-seq, as well as a bulk BS-seq sample16 and single-cell bulk 

methylation rates corresponding to genome-wide averages.

DNA methylation-gene expression association analysis—For association 

analyses, gene expression levels were considered on a logarithmic scale, using log10 

normalized TPM counts (see above). Binary single-base pair CpG methylation states were 

estimated by the ratio of methylated read counts to total read counts. The methylation rate in 

different genomic contexts, such as gene-body, promotor, or enhancer annotations, were 

estimated as the mean CpG methylation rate within the region defined by the context 

(Supplementary Table 2). Following the approach of Smallwood et. al.3, weighted arithmetic 

mean and variance estimates were obtained for each context and cell, thereby accounting for 

differences in CpG coverage between cells.

For correlation analysis, genes with low expression levels or low expression and methylation 

variability between cells were discarded, following the rational of independent filtering28. 

First, a minimum expression level (at least 10 TPM counts) in at least 10% of all cells was 

required. From these, the 7,500 most variable genes were considered for analysis. Second, 

methylated regions were required to be covered by at least one read in at least 50% of all 

cells. For association tests, all possible relationships between genes and methylated regions 

within 10 kbp of the gene (upstream and downstream of gene start or stop) were considered. 

Association tests were based on weighted Pearson correlation coefficient, thereby 

accounting for differences in CpG coverage between cells. Precisely, let e be a vector with 

expression rates of cells for a particular gene, m be methylation rates of the associated 

region, and w be weights corresponding to the number of covered CpGs within the region. 

Then the weighted Pearson correlation cor(e, m; w) between gene-expression e and 

methylation m is:

Here, cov(x, y; w) is the weighted covariance

Angermueller et al. Page 6

Nat Methods. Author manuscript; available in PMC 2016 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



and m(x; w) the weighted arithmetic mean:

Two-sided Student’s t-tests were performed to test for non-zero correlation, and p-values 

were adjusted for multiple testing for each context using the Benjamini-Hochberg procedure. 

For the zoom-in plot in Fig. 2b, we considered a sliding window approach (3kb sized 

windows, step-size 1kb) to estimate the methylation rate in consecutive regions. Each region 

was tested for association with gene expression, again using weighted correlation 

coefficients as defined above.

For correlating methylation and expression of a single cell across genes (Fig. 2c), we filtered 

genes in the same way as described above, and used again the weighted Pearson correlation 

to test for associations.

R version 3.1.2 was used for all the analysis. The corresponding source code is available on 

Github (https://github.com/PMBio/scMT-seq). SeqMonk version 0.30 was used to compute 

methylation rates and CpG coverage for different regions (http://

www.bioinformatics.babraham.ac.uk/projects/seqmonk/). Ensembl annotation version 75 

was used whenever gene annotations were required.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Quality control and global methylation and transcriptome patterns identified in serum 
ESCs profiled using scM&T-seq
a) Schematic overview of the scM&T-seq protocol. b) CpG coverage of single cells as a 

function of the number of mapped sequencing reads. Green: stand-alone scBS-seq3, Blue: 

scM&T-seq. c) Joint principal component analysis of the methylomes (gene body 

methylation) of 61 serum ESCs (dark blue) and 16 2i ESCs (light blue) obtained using 

scM&T-seq, as well as 20 serum ESCs (green) and 12 2i ESCs (yellow) sequenced using 

stand-alone scBS-seq3. The solid circles correspond to synthetic bulk datasets form the same 

cells. For comparison, we also included a bulk serum ESC DNA methylation dataset16 

(orange). Cell type explained a substantially larger proportion of variance (PC1, 48%) than 

protocol (PC2, 3%). d) Comparison of epigenetic heterogeneity in different genomic 

context, either considering 61 serum ESCs obtained using scM&T-seq (blue), or 20 serum 

ESCs sequenced using stand-alone scBS-seq3 (green). e, f) Clustering analysis of 

transcriptome and methylation data from 61 serum ESCs, considering gene body 

methylation (e) and gene expression (f) for the 300 most heterogeneous genes (based on 

gene body methylation). The order of genes was taken from an individual clustering analysis 

based on gene body methylation whereas cells were clustered separately either using DNA 

methylation or expression data, and coloured by methylation cluster. The bar plots in the 

center show the heterogeneity in DNA methylation (left) and gene expression (right).
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Figure 2. Genome-wide associations between methylation and transcriptional heterogeneity in 
mouse ESCs
a) Volcano plots of correlation coefficients (Pearson r2) from association tests between gene 

expression heterogeneity of individual genes and DNA methylation heterogeneity in 

alternative genomic contexts. Shown is the correlation coefficient for every gene (x-axis) 

versus the adjusted p-value (using Benjamini-Hochberg correction; y-axis). The size of dots 

corresponds to the adjusted p-value. A set of 86 known pluripotency and differentiation 

genes18 are highlighted in red. The blue horizontal line corresponds to the FDR 10% 

significance threshold. The total number of significant positive (+) and negative (−) 

correlations (FDR < 10%) for each annotation is shown in the header of each panel. The 

orange vertical bar corresponds to the average correlation coefficient across all genes for a 

given context. b) Representative zoom-in view for the gene Esrrb. From bottom to top, 

Angermueller et al. Page 10

Nat Methods. Author manuscript; available in PMC 2016 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



shown is: the annotation of the Esrrb locus with LMR, p300, super enhancer and CGI sites 

indicated; the estimated methylation rate of 3kb windows for each cell with the size of dots 

representing the CpG coverage and the solid line indicating the weighted mean methylation 

rate across all cells; the correlation between the methylation rate and Esrrb expression for 

each region coloured by the strength of the correlation and with the shaded area 

corresponding to the 95% confidence interval of the correlation coefficient; and the 

estimated weighted DNA methylation variance between cells. The top two scatter plots 

depict the association between DNA methylation at a p300 region (yellow) and an LMR 

(blue) and Esrrb expression. c) Gene-specific association analysis, assessing correlations 

between DNA methylation in different genomic contexts and gene expression in individual 

cells. For each annotation, shown are box plots of methylation-expression correlations for all 

variable genes in single cells, with the correlation obtained from matched RNA-seq and BS-

seq of a bulk cell population superimposed16 (orange circles).
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